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Modelling and Linear Control of a Buoyancy-Driven Airship

Xiaotao WU Claude H. MOOG and Yueming HU

Abstract— We describe the modelling and control of a new-
kind airship which is propelled by buoyancy. Based on the
Newton-Euler equations and Kirchhoff equations, and referred
to the models of underwater gliders and aircraft, a 6DOF
nonlinear mathematical model of a buoyancy-driven airship
is derived, with features distributed internal mass, and no
thrust, elevators and rudders. The attitudes are controlled by
the motion of internal mass. The performances of the airship
are studied in the vertical plane. A linear feedback controller
is derived for the nonlinear model. The results of simulation
display robustness properties of the controllers to disturbances.

I. INTRODUCTION

Stratospheric platforms or high altitude platforms, which
locate 17-22 km above the ground, and keep quasi-
geostationary positions, attract an increasing research interest
for these recent ten years. Such a platform has the potential
capability to serve as a wireless communication relay station
and as a high resolution observing station [1], [2], [3].

A high altitude unmanned airship as this platform has the
following features; driven by solar power makes it long-
endurance in high altitude, and generally this platform can
take 1000 kg to 3000 kg payload which is a low cast methods
to carry out similar functions of satellites. A conventional
airship is driven forward by propulsors along the hull, the
attitude is controlled by elevators and rudders or vector-
propulsors.
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Fig. 1. Structure of Buoyancy-Driven Airship

Buoyancy-driven airships move forward by a cyclic
change of the net buoyancy of the craft and of the position
of ballast. This concept of airship comes from underwater
gliders who replace traditional thrust propulsion by a cyclic
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change of the net buoyancy and of the position of the
centroid, which has been proved to be efficient in water [4].
Underwater gliders cruise for long distances consumed little
power. The structure of this new-kind airship see Figure 1.
The blower is used to fill an impermeable inner bladder with
ambient air, and the valve is used to release the inner air. The
ballast can move in the horizontal plane.
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Fig. 2. Ascent of the Buoyancy-Driven Airship

The mechanism of operating this kind of airship is as
follows. When releasing air from ballonets, the mass of the
airship reduces, the lift becomes positive. Accompanying the
ballast moves to the tail, the airship gets a positive pitch angle
θ, and moves upward and forward, see Figure 2. Oppositely,
when pumping air into ballonets, the airship mass increases,
the lift decreases and becomes minus. Accompanying the
ballast moving to the head, the airship gets a negative pitch
angle θ, and moves downward and forward, see Figure 3. If
the ballast is moving to side, then the airship will roll. Due
to the coupling of roll and rotation moments, the airship flies
to the right or the left.
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Fig. 3. Descent of the Buoyancy-Driven Airship

The environment of high altitude is quite different from
underwater. Comparing with incompressible water, air is
compressible. The density, temperature, and pressure of
atmosphere is changing with the change of altitude. All of
this make high altitude airship have some differences from
underwater gliders, and more difficult to control.

At present, most research on airship control is based on
airships with actuators-thrusts and elevators [5]-[8]. Almost
no paper discusses the possibility of airship driven by
buoyancy, just as underwater gliders. The only monograph
available on buoyancy-driven airship is the doctoral disserta-



tion [9]. This pioneering study includes the effect of various
atmospheric conditions. However, the complete mathematical
model of 6DOF is not given, and the control method also
needs to be improved.

The contributes in the rest of this paper are as follows. The
complete equations of 6DOF motion are given for the first
time for a high altitude airship only driven by buoyancy.
It includes the modelling of the ballast and the ballonets.
This full model is derived from the model of the underwater
glider. Dynamic performances have been studied, and a linear
controller have been tested.

In section II, the mathematical model of a high altitude
buoyancy-driven airship is derived. In section III, the model
is specialized to the vertical plane. Then the nonlinear model
has been linearized, the static stability and controllability has
been analysed. In section IV, a LQR controller has been
derived for the nonlinear system and the simulations are
presented.

II. AIRSHIP DYNAMIC MODELLING

A. Kinematics

Figure 1 shows the assignment of the two frames. The
body frame {O, e1, e2, e3} is assigned with the reference
point O at the center of hull, overlapped with the center
of buoyancy CB. The inertial {G, i, j, k} frame is fixed to
the earth, with the axis k along the direction of gravity [8].

To reduce the drag of the body, the hull of airship is
designed to have a high volume/surface−area ratio. The
shape comes from revolving of an airfoil profile. The airfoil
profile can be chosen from NACA series of US. A ellipsoid
has been used to represent that special shape for simple in
this paper, and given that the equatorial radii and the polar
radius are 7 m, 3 m and 3 m respectively.

The rotation matrix between the body frame and the
inertial frame is represented by R1 which is composed by
the pitch angle θ, the yaw angle ψ and the roll angle φ The
position of the airship in the inertial frame is represented
by vector b = (x, y, z)T ∈ <3, see Figure 1. R1 ∈ SO(3),
SO(3) is 3×3 special orthogonal matrix, defined as follows:

SO(3) = {R1 ∈ <3×3|RRT = I, detR = 1}
here I denotes a 3×3 identity matrix. The attitude and posi-
tion of the airship is decided by (R1, b). So the configuration
space of the system is defined as:

SE(3) = {(b,R1)|b ∈ <3,R1 ∈ SO(3)} = <3 × SO(3)

SE(3) can be represented by homogeneous coordinates, as
follows: (

R1 b
0 1

)
∈ SE(3)

SE(3) is a rotation matrix group. For example, if G ∈
SE(3), then G is a transformation matrix of the rigid body
from body frame to the inertial frame [10].

Let V = (v1, v2, v3)T and Ω = (Ω1,Ω2,Ω3) denote
the velocity and the angular velocity in the body frame
respectively. So the position and the attitude of the airship

can be described by the Lie algebra of SE(3), denoted as
the group se(3). It is as follows:

(
Ω̂ V
0 0

)
∈ se(3)

Define the operator ∧ for a vector x = (x1, x2, x3)T ∈ <3,

x̂ =




0 −x3 x2

x3 0 −x1

−x2 x1 0




and x̂ ∈ so(3), where so(3)is the Lie algebra of SO(3). The
kinematics of the airship are given by

(
Ṙ1 ḃ
0 0

)
=

(
R1 b
0 1

)(
Ω̂ V
0 0

)
(1)

B. Mass Distribution and Definition
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Fig. 4. Mass Distribution

The airship described in this paper is driven by the
buoyancy and the ballast, just like some underwater gliders
[11]. To set up the mathematical model, The entire mass of
airship have to be splited into several terms. Let mh denote
the uniformly distributed hull mass, mb is the variable mass
of ballonets, m̄ is the mass of the inside movable ballast,
and mw denotes other inside fixed masses whose centroid
offset from CB. rp = (rp1, rp2, rp3)T , rb and rw are the
vectors from CB to the mass points of ballast, the ballonet
and mw, see Figure 4.

The mass ms is the total stationary mass, thus ms = mh+
mb + mw. The total mass of the vehicle is mv , so we have:
mv = ms + m̄ = mh + mb + mw + m̄. Let m = ρa∇ is
the buoyancy of the airship with volume ∇. Thus, the net
buoyancy of the airship is m0 = mv−m. In this paper, mh =
269 kg, m̄ = 30 kg, and mw, rb and rw are neglected.

C. Fluid Inertia Forces and Added Mass

The inertia of airships with a large V olume/Mass ratio
is much more significant in comparison with conventional
airplanes. So, fluid inertial forces should be considered.

In the case of the motion of a rigid body in an ideal fluid
with velocity vi in the direction i, the force acted on the
rigid body by the fluid in the direction j is Rj = −mij v̇i

and the parameter mij is called the added mass. There are 36
added masses for a rigid body in motion; the matrix Madd

including those added masses is called the inertia matrix [5].

Madd =
(

Mf ∗
∗ Jf

)

Mf is the symmetric 3 × 3 added mass matrix; Jf is
the added inertia matrix; and the other two blocks are added



cross terms which are neglected. Here, It is supposed that
the airship is centrosymmetric, so only elements on the
diagonal are nonzero, other elements are zero because of
symmetry. So, Mf = diag{m11 m22 m33} and Jf =
diag{m44 m55 m66}. In this paper, m11 = 0.8mh, m33 =
mh and m55 = 1.3Jyy . Jyy is the moment of inertia of the
airship around y axis, and approximately, Jyy = m(a2 +
b2)/5 ≈ 3500 kg ·m2.

In an ideal fluid, the kinetic energy Tadd of fluid distur-
bances is

Tadd =
1
2

6∑

i=1

6∑

j=1

mijζiζj =
1
2
(m11v

2
1 + m22v

2
2

+m33v
2
3 + m44Ω2

1 + m55Ω2
2 + m66Ω2

3)

here ζ1 = v1, ζ2 = v2, ζ3 = v3, ζ4 = Ω1, ζ5 = Ω2, ζ6 =
Ω3. The momenta B = (B1, B2, B3)T and moments of
momentum K = (B4, B5, B6)T of fluid disturbances are
related to the kinetic energy Tadd:

Bi =
∂Tadd

∂ζi
(i = 1, 2, · · · , 6)

So,

B = Mfv

K = JfΩ

So, the inertial forces FI and moments MI acting on the
airship are as follows

FI = −dB

dt
= −(

dB̃

dt
+ Ω×B)

= −Mf v̇ + Mfv ×Ω (2)

MI = −dK

dt
= −(

dK̃

dt
+ Ω×K + v ×B)

= −Jf Ω̇ + JfΩ×Ω + Mfv × v (3)

here, dB
dt , dK

dt denote the time-derivative of momentum B
and angular momentum K with respect to the inertial frame,
dB̃
dt and dK̃

dt denote the time-derivative in the body frame.

D. Aerodynamic forces and moments

Different pneumatic pressures are distributed on the sur-
face of a vehicle flying in the atmosphere. The effect of those
pneumatic pressures can be presented by aerodynamic forces
Fa and moments Ma as follows,

Fa = (Xa, Ya, Za)
Ma = (La,Ma, Na)

The aerodynamic forces are contributing by the forces
and moments on the hull and fin and act on the center of
buoyancy CB. By convention, the decomposed aerodynamic
forces lie in the velocity frame (also called the wind frame),
and the moments are decomposed in the body frame [6].

Drag : Xa =
1
2
ρaV 2(ShCx1 + SfCx2)

Sideforce : Ya =
1
2
ρaV 2(ShCy1 + SfCy2)

Lift : Za =
1
2
ρaV 2(ShCz1 + SfCz2)

Roll moment : La =
1
2
ρaV 2(Shlh1Cl1 + Sf lf1Cl2)

Pitch moment : Ma =
1
2
ρaV 2(Shlh2Cm1 + Sf lf2Cm2)

Y aw moment : Na =
1
2
ρaV 2(Shlh3Cn1 + Sf lf3Cn2)

here, ρa is the density of ambient air, Sh and Sf are the
reference areas of hull and fin, lh1, lh2, lh3 and lf1, lf2, lf3

are the distances from the CB to the aerodynamic center of
the hull and fin. The Ci’s are the aerodynamic coefficients
which are computed from wind tunnel experiments. Those
coefficients do mainly depend on the angle of attack α and
the sideslip angle β.

Since Fa is respected to the velocity frame, Fa is trans-
ferred to the body frame, which denotes by Fat.

Fat =




cos α cos β cos α sinβ − sinα
− sinβ cos β 0

sinα cos β sinα sinβ cos α


 Fa = R2Fa

(4)
where R2 is the transfer matrix from the velocity frame to
the body frame. Ma is respected to the body frame, so,

Mat = Ma (5)

E. Gravity and Buoyancy

In the inertial frame, the composite effect of gravity and
buoyancy along the axis of inertial frame is denoted by FGB

as follows,
FGB = m0gk

where, k is a unit vector pointing in the direction of gravity.
FGB is transferred to the body frame as follows,

FGBt = RT
1 FGB = m0gRT

1 k (6)

It is assumed that the centroid of the stationary mass ms

is on CB. So there is no moment which is caused by ms and
the buoyancy of the airship. Only the ballast have moments
since rp is not zero. In the inertial frame, the moment is

MGB = m0grs × k

which is transferred to the body frame as follows,

MGBt = RT
1 MGB = m0gRT

1 rs × k (7)

F. Dynamics of the Ballast

Let rp be the position of the ballast in the body frame.
If the airship is rotating with angular velocity Ω. According
to the relation between the absolute velocity and the relative
velocity, the absolute velocity of the ballast in the body frame
vp is as follows,

vp = v + ṙp + Ω× rp



Let Bp = (Bp1, Bp2, Bp3)T denote the momentum of the
ballast, and u = (u1, u2, u3)T denote the total external force
acting on the ballast. Both Bp and u are with respect to the
body frame. So that,

Bp = m̄vp = m̄(v + ṙp + Ω× rp) (8)

Ḃp = u (9)

From (8), one gets,

ṙp =
1
m̄

Bp − v −Ω× rp (10)

G. Model

Let Btotal and Ktotal be the total momentum and the
total moment of momentum of the airship. one gets,

Btotal = msv + Bp (11)
Ktotal = JsΩ + rp ×Bp (12)

here Js is the matrix of the moment of inertia of the airship.
Let Ftotal and Mtotal be the total external force and the

total moment of the airship. From equation (2) to (7), Ftotal

and Mtotal be computed as follows,

Ftotal = FI + Fat + FGBt (13)

= −Mf v̇ + Mfv ×Ω + +m0gRT
1 k + Fat

Mtotal = MI + Mat + MGBt (14)

=−Jf Ω̇+ JfΩ×Ω+ Mfv × v + m0gRT
1 rs × k + Mat

Similar to equation (2) and (3), Ftotal and Mtotal are
derived from (11) and (12) as follows,

Ftotal=
dBtotal

dt
=

dB̃total

dt
+ Ω×Btotal

Mtotal=
dKtotal

dt
=

dK̃total

dt
+ Ω×Ktotal + v ×Btotal

Substituted (9), (11) and (12) into above equations, then,

Ftotal = msv̇ + u + msΩ× v + Ω×Bp (15)

Mtotal = JsΩ̇ + ṙp ×Bp + rp × u− JsΩ×Ω

−msv × v + Ω× (rp ×Bp) + v ×Bp (16)

Substituted (10) into (16), then gets,

Mtotal = JsΩ̇−Ω× rp ×Bp + rp × u− JsΩ×Ω

−msv × v − rp ×Bp ×Ω (17)

v̇ is derived from (13) and (15) as follows,

v̇ = M−1
(
(Mv + Bp)×Ω + m0gRT

1 k + R2Fa − u
)

(18)
where, M = msI + Mf = diag(m1,m2,m3). I is the
3× 3 identity matrix.

Similarly, Ω̇ is derived from (14) and (17) as follows,

Ω̇ = J−1((JΩ + rp ×Bp)×Ω + Ω× rp ×Bp

+ Mv × v + m̄grp ×RT
1 k + Ma − rp × u) (19)

where, J = Js + Jf = diag(J1, J2, J3).

As the airship is driven by change of buoyancy, it is
necessary to control the mass of ballonets, through the input
u4, as

ṁb = u4 (20)

Combining with equations (1), (18), (19), (10), (9) and
(20) , the mathematical model of a buoyancy-driven airship
is obtained as




Ṙ1

ḃ
v̇

Ω̇
ṙp

Ḃp

ṁb




=




R1Ω̂
R1v

M−1F̄
J−1M̄

1
m̄Bp − v −Ω× rp

u
u4




(21)

where, M̄ is a moment matrix, and F̄ is a force matrix. The
values of M̄ and F̄ is as follows,

M̄ = (JΩ + rp ×Bp)×Ω + Ω× rp ×Bp

+Mv × v + m̄grp ×RT
1 k + Ma − rp × u

F̄ = (Mv + Bp)×Ω + m0gRT
1 k + R2Fa − u

III. A SPECIAL CASE OF THE AIRSHIP
DYNAMICS

A. Dynamics in the Vertical Plane

This mathematical model (21) has many complex cou-
plings, which make it difficult to analyse by conventional
ways as decoupling of the longitudinal plane and the lateral
plane through decoupling [5]. Thus, we restrict the airship
in the vertical plane.

The airship has to be driven by a periodic change of net
buoyancy. The airship moves in a saw-tooth pattern path. So
the most ideal and simplest condition is that the airship only
moves in the vertical plane e1 − e3 and it is assumed not
to be disturbed by the wind and the atmosphere. Thus, it
is assumed that there is no wind, and the density, pressure,
temperature of atmosphere are constant; the vertical plane of
the body frame and the inertial frame do coincide.

Since the airship only flies in the vertical plane, some
states are set to zero. Thus, attitude angles ψ = φ = 0,
position y = 0, velocity v2 = 0, angular velocities Ω1 =
Ω2 = 0. And we also suppose the ballast only move in the
vertical plane, so rp2 = 0, Bp2 = 0 and u2 = 0.

Substituting the above restricted conditions into the math-
ematical model (21), the motion equations in the vertical



plane reduce to,

θ̇ =Ω2 (22)

Ω̇2 =
1
J2

((m3 −m1) v1v3 − (rp1Bp1 + rp3Bp3)Ω2 + Ma

− m̄g(rp1 cos θ + rp3 sin θ) + rp1u3 − rp3u1) (23)

v̇1 =
1

m1
(−m3v3Ω2 −Bp3Ω2 −m0g sin θ

+ Xa cos α− Za sinα− u1) (24)

v̇3 =
1

m3
(m1v1Ω2 + Bp1Ω2 + m0g cos θ

+ Xa sinα + Za cos α− u3) (25)

ṙp1 =
1
m̄

Bp1 − v1 − rp3Ω2 (26)

ṙp3 =
1
m̄

Bp3 − v3 + rp1Ω2 (27)

Ḃp1 =u1 (28)

Ḃp3 =u3 (29)
ṁb =u4 (30)

Here, the drag, lift and pitch moment in the vertical plane
are simplified as follows,

Xa =
1
2
ρa∇2/3v2(Cx0 + Cα

x α2)

Za =
1
2
ρa∇2/3v2(Cz0 + Cα

z α)

Ma =
1
2
ρa∇v2(Cm0 + Cα

mα)

B. A Nonlinear Feedback Controller

To keep control of the attitude and velocity of the airship,
let new control input ũ = (ũ1, ũ2, ũ3)T . Differentiating (22),
with (24) and (25), then gives




θ̈
v̇1

v̇3


 =




ũ1

ũ3

ũ4


 = −P + C




u1

u3

u4


 (31)

Form differentiating (22), (24) and (25), matrices P and C
can be derived. Thus, we can get nonlinear state feedback
from (31),




u1

u3

u4


 = C−1







ũ1

ũ3

ũ4


 + P


 (32)

which linearizes θ̈, v̇1 and v̇3 with respect to the new input
ũ.

Substitute (32) into (24)-(30), and get the motion equations
of the airship with a nonlinear states controller in the vertical
plane. Results of (31) will be published elsewhere.

C. Static Stability Analysis

As Figure 5, the airship driven by buoyancy flies along
an oblique line with angle ξe during equilibrium cruise. At
a time t, the airship is at the position (x, z) in the vertical
plane with respect to the inertial frame, and (x

′
, z
′
) in the

coordinate i
′ −G− k

′
.

G i

ξe

Desired Flying Angle
ξe

x

z z’

Fig. 5. Flying Sketch

According to the rotation matrix, the distance from the
airship to the desired path is as follows, see Figure 6,

z
′
= − sin ξex + cos ξez (33)

Differentiating (33) and substituting v1, v3 and θ into it.
The perpendicular velocity to desired path is

ż
′

= − sin ξe (v1 cos θ + v3 sin θ)
+ cos ξe (−v1 sin θ + v3 cos θ) (34)

During the equilibrium cruise, equations (24)-
(30) and (33) are all equal to zero. Through
those equations, the equilibrium states xe =
(θe,Ω2e

, v1e
, v3e

, rp1e
, rp3e

, Bp1e
, Bp3e

,mbe
, z
′
e)

T and
input ue = (u1e

, u2e
, u3e

)T during cruise under desired
path angle ξe and speed Ve can be got.

The nonlinear model (22)-(30) can be simulated directly
in MATLAB through the principle of digital integration, but
the relation between parameters and performances of the
system can not be clear revealed from the nonliear model.
Thus, as conventional [5], small disturbance method is used
to linearize the mathematical model around the equilibrium.
The static stability of the airship around the equilibrium can
be studied through the linearized model.

The motion of airship can be splited into two motions, the
benchmark motion xe and ue which are the values on the
equilibrium, and the disturbing motion ∆x and ∆u which
are the values away from the equilibrium. Substituting x =
xe + ∆x and u = ue + ∆u into (22)-(30) and (34), the
result only keep the first-order of ∆x and ∆u, neglected
high-order terms. Then, the linearized model is as follows,

∆ẋ = A∆x + B∆u (35)

where, A is a 12 × 12 constant system matrix, and B is a
12× 3 input matrix.

Given that the airship is desired to fly with the angler
ξe = 15◦ and the volecity Ve = 10 m/s. After computered
the values of states on that equilibrium and linearization, the
values of matrix A and B can be got. The eigenvalues of the
system are not totally stable, but the system is controllable.

IV. LQR CONTROLLER OF THE AIRSHIP

In this section, we design a simple linear feedback con-
troller for the nonlinear system (22)-(30), and demonstrate
the performance of that controlled flying in the vertical plane.
This simple linear controller is not good enough with large
initial errors, and which need improve.
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Fig. 6. Simulation Result

The linear quadratic regulator (LQR) is a well-known
design technique that provides practical feedback gains. It
is assumed that all the 10 states ∆x are available for the
controller. The infinite horizon cost function is defined as,

J =
∫ ∞

0

(
∆xT Q∆x + ∆uT R∆u

)
dt

The weight matrices Q and R are tuning parame-
ters and their choice will decide about the performance
of the closed loop system. In this simulation, Q =
(2, 1, 2, 2, 1, 1, 1, 1, 0.5, 1)T , R = (0.1, 0.1, 0.1)T .

The feedback gain is a matrix K, implemented as,

∆u = −K(x−xdesired) = −K(x−xe) = −K∆x (36)

where, K is easily computed by MATLAB. Substitute the
linear feedback controller (36) into nonlinear equations
in the vertical plane (22)-(30). Given ξe = 15◦ and the
volecity Ve = 10 m/s, so αe = −10◦, v1 = 9.8 m/s and
v3 = −1.7 m/s. If there is a abrupt wind led up to +2 m/s
offset of v1. Figure 6 is the simulation of the nonlinear
system with controller (36) under that initial errors, and
Figure 7 is the flying path of the airship in this situation.
The system can converge to the equilibrium after 15 seconds
with that LQR controller. But the system will be unstable
with larger initial errors.

V. CONCLUSION

In this paper, A novel airship has been studied, which is
driven by a cyclic changing the net buoyancy of the airship,
and the attitude is controlled by moving the internal ballast.
There are not conventional thrusts, elevators and rudders.

Referred to the model of underwater glider, a full 6DOF
nonlinear model of the airship has been derived with the
ballast and the ballonet being considered separately. The
mathematic model is similar to the model of underwater
sliders, but it is derived by a general aerial way [8], [11].
The dynamics in the vertical plane has been derived. A
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nonlinear controller is designed. The nonlinear model in the
vertical plane has been linearized, and the static stability and
controllability of the airship have been studied. A LQR linear
feedback controller also has been designed and simulated.

Compared to most of the prevalent high-altitude airship
researches, this paper give out a novel concept of the high-
altitude airship. Compared to the conventional engine-driven
airship, the new kind airship is driven by buoyancy. This
driving method aims at making the airship cruise long distant
with consuming little energy.

Future research perspectives include the effects of the
various atmospheric density, temperatures and pressure with
the change of altitude based on this model, and the design
of a better performance nonlinear controller. The dynamics
in the lateral plane also need be considered.
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