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Abstract – Recently, it has been established that the best space-
time trellis codes (STTCs) belong to a specific class of codes. 
These codes are called “balanced STTCs” because they use the 
points of the MIMO constellation with the same probability. 
Therefore, the search of the best codes can be reduced to this 
class. This paper presents a new and general method to design 2n-
PSK balanced STTCs for any number of transmit antennas. This 
method is simpler than the first method, which was described 
only for 4-PSK modulation and can be generalized for any 
configuration of the space-time trellis encoder. Simulation results 
of new 4-PSK and 8-PSK balanced codes prove the importance of 
this class.  

 
Keywords—space-time trellis codes, balanced codes, MIMO 
systems, design method. 
 

1. INTRODUCTION 

The concept of space-time trellis codes (STTCs) was 
proposed in 1998 by Tarokh et al. [1] by combining time-
convolution coding with multiple transmit antennas to improve 
the data rate and the reliability of wireless communication.  In 
[1], the rank and the determinant criteria were proposed to 
design STTC in the case of slow fading channel. It was shown 
in [2] that, for a great product of the number of transmit and 
receive antennas, the performance for a slow fading channel is 
determined by the trace criterion. 

Based on the above criteria, many codes for 2, 3 and 4 
transmit antennas have been proposed [3-7] after a systematic 
search to decrease the bit and frame error rate. In [8], it has 
been remarked that the codes achieving the best performance 
have the same property: the used points of multiple input 
multiple output (MIMO) constellation are generated with the 
same probability. Therefore, these codes are referred to as 
“Balanced space-time trellis codes: B-STTCs” [8-10].  

The aim of this paper is to present a general method to 
design the class of balanced 2n-PSK STTCs which offers the 
best performance. Therefore, the systematic search for good 
codes can be reduced to this class. The rest of this paper is 
organised as follows. In section 2, the encoder is briefly 
described. The performance criteria of STTCs are presented in 
section 3. Section 4 presents the main properties of the 
balanced codes.  In section 5, the general method to design 
balanced codes is described for any number of transmit 
antennas and for 2n-PSK modulations. Some examples to 

design balanced codes for specific configurations are given. 
Finally, some new balanced codes which outperform the best 
known codes are proposed for 4-PSK and 8-PSK modulations.  

2. SPACE TIME TRELLIS CODING 
We consider the general case of the 2n-PSK space-time 

trellis encoder. Fig. 1 shows the encoder for n=2. 
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Fig. 1. 4-PSK space time trellis encoder with nT transmit antennas 

This encoder has one input block of n bits and ν memory 
blocks of n bits. At each time t ∈ℤ , the n bits of a block are 
replaced by the n bits of the previous block. Usually, the state 
of the encoder is defined by the binary values of ν memory blocks 

of n bits. The thi  bit 1t j
ix − + , i = 1. . . n, of the thj  block, 

j=1...(ν+1), is associated to nT multiplier 

coefficients , 2n
k
i jg ∈ℤ , k = 1. . . nT, where nT is the number of 

transmit antennas. A space-time trellis encoder is thus usually 
defined by its generator matrix G of nT × n(ν + 1) coefficients 
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The encoder outputs for the kth antenna are computed as  

1
1

,
1 1

n v
k t j k
t i i j

i j

y x g
+

− +

= =

=∑∑     mod 2n  (2) 

Each encoder output kty  is mapped onto a 2n-PSK signal 

given by: 
1

exp .
2

k k
t tn

s j y
π

−
 =  
 

 Each output signal kts  is send 

to the kth transmit antenna. The modulated streams of all 
antennas are then transmitted simultaneously.  

3. DESIGN CRITERIA 

Several design criteria have been proposed in [1, 2] to 
exploit the spatial diversity and to offer optimal coding gain. 
The case of slow Rayleigh fading propagation channels is 
mainly considered in this paper. The nT dimension transmitted 

symbols 1 2
ts ... T

Tn
t t ts s s =

 
, where [·] T denotes the transpose 

operator, are assumed to be grouped in a frame of length Lf. 
Traditionally, criteria are derived from the minimization of the 
pairwise error probability (PEP), i.e. the probability of 
transmitting the nT × Lf dimension coded frame 

ft t t+1 t+L -1S s s ...s =
 

and deciding erroneously in favour of 

another nT × Lf dimension coded frame 

ft t t+1 t+L -1E e e ...e =
 

. The nT × nT product matrix A = BB∗∗∗∗    

is introduced, where B∗∗∗∗ denotes the hermitian of the nT × Lf  
difference matrix B = Et − St. 
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Let us defined nR the number of receive antennas.               
In order to achieve the minimum error probability, if      
min(rank(A))nR ≤ 3 and for slow fading channels, we should 
maximize the minimum rank and the minimum determinant of 
the matrix A computed for all pairs of coded frames (Et, St) 
[1].  

In [2], Chen proposed a new criterion which is valid for 
slow and fast Rayleigh fading channels if min(rank(A))nR > 3. 
Under this assumption, the PEP is minimized if the sum of all 
the eigenvalues of the product matrix A is maximized. Because 
A is a square matrix, the sum of all the eigenvalues kλ  is equal 

to the trace of the matrix A 
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For each pair of coded frames, the matrix A and then tr(A) 
can be computed. The minimum trace is the minimum of all 
these values tr(A). When the product min(rank(A))nR > 3, the 
minimization of the PEP amounts to use a code which has the 
maximum value of the minimum trace. 

4. BALANCED CODES 

4.1. What is  a “balanced code”? 

The concept of “balanced codes” has been proposed in      
[8-10]. It is based on the observation that the best STTCs 
proposed in the literature present the same property: the 
generated symbols of the MIMO constellation are equally 
probable.  

The binary input data are supposed to be generated by a 
memory less binary source Sb = {0, 1} with equally probable 
symbols and 2n-PSK modulation are considered. From a given 

extended-state X=[ ]1 2 2... ∈ℤT L
Lx x x  of the L = n(ν + 1) length 

shift register realized by the input block of n bits          
followed by the v blocks of n bits, the MIMO symbol 

1 2 2
...Y T

nT

T n
ny y y = ∈  ℤ  generated by the space time trellis 

encoder shown in Fig. 1 is  

Y = G X  (5) 

where G is the generator matrix (1). This is a deterministic 
relation. Therefore, the STTC is defined by a map  

2 2
: T

n

nLΦ →ℤ ℤ   (6) 

which associates to the extended-state X a unique codeword Y. 

Note that 2 2
( ) T

n
nLΦ ⊆ℤ ℤ  represents the set of generated 

codewords Y.  
By definition, a STTC is balanced if and only if each 

generated codeword Y 2( )L∈ Φ ℤ  has the same number of 

occurrences *
0 .n ∈ℕ  

The number of different codewords generated by relation 

(5) is given by 2( ( ))Lcard Φ ℤ  which is a power of 2. 

The code is fully balanced if  

2
1

( ) mod  2 / {0,1} T
n

j L
nn

j j j
j

x G x
=

=

  ∈ = 
  
∑ ℤ         (7) 

where Gj is the jth column of the generator matrix G. In this 
case: 2 2

( )Φ =ℤ ℤ T
n

nL .  

Due to the random memory less source Sb = {0, 1}, with 
p(0)=p(1)=1/2, from a given extended-state X, the encoder has 

only 2n  equally probable next states. The matrix T of the 
transition probabilities between these states corresponds to a 
Markov chain. Due to the symmetry of the matrix T, the 
steady-state probabilities of the extended-states X are all 
equal. For a balanced code, by using (5), the generated 
codewords Y are also equally-probable. In other words, the 
generated symbols of the MIMO constellation are equally 
probable. 

4.2 Properties of balanced STTC 

Theorem 1: If a STTC is fully balanced then min . .TL L n n≥ =  

One can observe thatmin 2
dim( )T

n

nL = ℤ .  
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Theorem 2: Let us consider a fully balanced MIMO code with 
a 

Tn L×  generator matrix G. Then, for any additional column 

matrix 1 2
T
n

n
LG + ∈ℤ  the resulting generator matrix G’=[G GL+1]  

corresponds to a new fully balanced code. 

Theorem 3: If G is the matrix of a balanced code, each 
permutation of its columns or/and lines generates the matrix of 
a new balanced code. 

Theorem 4: [ ]
1

20 2 TnnC −= ℤ  is a subgroup of 
2
T
n

n
ℤ  such as 

[ ]0v v, v C .= − ∀ ∈  In the case of 4-PSK modulation, each 

element [ ]0v C∈  can be written as 2v p= , with 2 .Tnp∈ℤ  The 

coset [ ] [ ]0pC p C= +  is called “relative to v ”. So, it is 

possible to write: [ ] 14 0
Tn C E=ℤ ∪  where E1 is the set of the 

cosets [ ] [ ]0pC C≠ . In the case of 8-PSK modulation, each 

element [ ] 20
Tnv C 4∈ = ℤ  can be written as 2v p= , with 

22 .Tnp∈ ℤ For 8-PSK, we note by E1 the set of cosets which 

can be written as [ ] [ ]0pC p C= +  with [ ]{ }22 \ 0 0T
Tnp∈ ℤ . So, 

each coset [ ] [ ] 10pC p C E= + ∈  is called “relative to v ”, with 

[ ]02v p C .= ∈  Each element 1q E∈ can be written as q=2r, 

with 4 2\ 2T Tn nr ∈ℤ ℤ  and a new set E2 of cosets [ ] [ ]0rC r C= +  

can be created. Thus, each coset of E2 is also “relative to an 
element of E1”. Therefore, it is possible to write: 

[ ] 1 28 0
Tn C E E=ℤ ∪ ∪ . 

5. A NEW METHOD TO DESIGN 2n-PSK STTC WITH  

SEVERAL  TRANSMIT ANTENNAS 

In [8-9], a first method to design fully balanced codes has 
been presented for several transmit antennas and 4-PSK 
STTC. In [10], a simpler method to design balanced 4-PSK 
STTC was presented. The general method described in this 
paper which is based on the method of [10] allows an easier 
design of balanced codes for any number of transmit antennas 
and for any 2n-PSK modulation. Due to Property 2, it is 
enough to design fully balanced codes with L = Lmin. This 
general method respects two rules: 
• Rule 1: The first no null column G1 must belong to 

0
C
  

. 

Due to the theorem 4, G1 = -G1, so { }1 1,H 0  G=  is a 

subgroup of 
2
T
n

n
ℤ . 

• Rule 2: Each new chosen column of G must create a new 

subgroup Hi+1 of 
2
T
n

n
ℤ  with card(Hi+1) = 2card(Hi).   

Thus, in order to obtain a fully balanced STTC, this 
general algorithm is as follows:  

if i<L min columns of G have been already chosen in 
2
T
n

n
ℤ  and 

{ }
1

 mod  2 / 0,1
i

n
j j j i

j

x G x H
=

  ∈ = 
  
∑  is a subgroup of 

2
T
n

n
ℤ , 

then the column Gi+1  of G must belong to 
2

\T
n

n
iHℤ  and must 

be selected in the cosets relative to the vectors which belong 
to Hi or in the coset [ ]0C . This method ensures that 

1 1( )i i i iH H H G+ += +∪  is a subgroup of 
2
T
n

n
ℤ .  

The algorithm ends when i+1=Lmin. The obtained matrix G 
corresponds to a fully balanced code with n0=1. If necessary, 
more columns can be added to G to create a fully balanced 
code with n0>1. 

In order to obtain balanced codes (not necessary fully 
balanced) the algorithm can be ended when Hi0 is created with  
i0 ≤ Lmin–2 columns. One can add a new column 

T
n

0 0

n
i 1 i2

G \ H .+ ∈ℤ  Once again, the obtained code is balanced 

but not fully balanced. If necessary, several elements of 

0i
H can also be added as columns of the matrix G. The 

resulting code is also balanced but not fully balanced. 
Remark: The main idea of this new method is to generate at 

each step several new elements of 
2
T
n

n
ℤ  and their opposites. 

Therefore, there are not discarded elements of 
2
T
n

n
ℤ  (elements 

that must not be further selected). Thus, this new method to 
design the B-STTC is simpler than the method described in [8-
9]. 

5.1 Design of fully balanced 4-PSK STTC with 2 transmit 
antennas  

In this case, each generated element belongs to 2
4ℤ .  It is 

possible to make the partition in cosets: 
0p

C p C
      

= +  with 

2
20

2C
  

= ℤ  and 2
2p∈ℤ . Thanks to this partition, to generate a 

balanced code with Lmin=4 columns, we can proceed as 
follows:  

• In agreement with rule 1, the first column G1 of G must 

be selected in [ ]0C  (but 1

0

0
G

 
≠  
 

), because [ ]0C  contains 

the vectors with the property : i iG G= − . Therefore, a 

subgroup of 2
4ℤ  is generated: { }1 10,  H G= . 

• The second element G2 has to create a new subgroup  

2 1 2 1 2{0,  ,  ,  }H G G G G= + , where 1G− , 2G−  and 

1 2( )G G− +  are  included in 2H . There are two solutions 

to  choose G2 :  

– If [ ]2 10 \G C H∈ , then 2 2G G− = , − (G1+G2) = G1+G2 

and [ ]2 1 2 1 2 0{0,  ,  ,  }H G G G G C= + =  is a subgroup of 

2
4ℤ . This type of code is called [8, 10] Type II, i.e. G 

has 2 columns in [ ]0C  and thus [ ]0C  is totally generated 

by G1 and G2. It remains to select two different cosets 
and in each coset, one vector must be selected. In fact, 
because [ ]

2
3 4 0

\G C∈ℤ , 3 [0] [0] 3( )H C C G= +∪  is a new 
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subgroup of 2
4ℤ . Finally, if 2

4 4 3\G H∈ℤ , then 
2

4 3 3 4 4( )H H H G= + =∪ ℤ .  

– If [ ]12 pG C∈  with 1 12p G= , then 1 2 2G G G+ = −  and 

2 1 2 1 2{0,  ,  ,  }H G G G G= +  is a subgroup of 2
4ℤ . If no 

more vector is selected in [ ]0C , this type of code is 

called [8, 9] Type I. To create a new group 

3 2 2 3( )H H H G= +∪  without using a new vector of 

[ ]0C  (else the generator matrix G would correspond to a 

balanced code of type II), the third column of G must 
be selected in [ ]1pC  among the two elements that are not 

generated by the combinations of G1 and G2. So, thanks 
to the combinations between G1, G2 and G3, the group 
H3 is equal to [ ] [ ]10 pC C∪ . The last vector G4 is selected 

among the two non generated cosets. Then, {G1, ...G4} 

is a base of 2
4ℤ  and thus a fully balanced space-time 

trellis code for 4-PSK modulation and 2 transmit 
antennas is obtained. 

 
5.2 Design of fully balanced 8-PSK STTC with nT  transmit 

antennas  

For 8-PSK STTC with 2 transmit antennas, each generated 

element belongs to 8 .Tn
ℤ  In agreement with theorem 4, it is 

possible to make the partition of the set of the cosets: 

[ ] 1 28 0
Tn C E E=ℤ ∪ ∪  where each coset of E2 is relative to one 

element of E1 and each coset of E1 is relative to one element 
of [ ]0C . Thanks to this partition, in order to generate a 

balanced code, we can proceed as follows: 

• In agreement with rule 1, the first column G1 of G must 

be selected in [ ]0C  (but [ ]1 0 0
T

G ≠ ⋯ ), because [ ]0C  

contains the vectors with the property : i iG G= − . 

Therefore, a subgroup of 24ℤ  is generated: { }1 10,  H G= .  

• The ith  column Gi (i>1) can be selected either : 
– in [ ] 10 \ iC H − . 

– or in the coset [ ] 1 1\ ipC E H −∈  if and only if  

12 ip H −∈ .  

– or in the coset [ ] 2 1\ iqC E H −∈  if and only if  

12 iq H −∈ . 

 Thus, each new selected column creates a new subgroup 
with twice more elements than the previous subgroup.   

6. PERFORMANCE OF NEW CODES 

In Table 1, the minimum trace of some new balanced 
codes are compared to the minimum trace of Chen’s codes 
with 3 and 4 transmit antennas. These codes have 32 and 64 
states. The new codes have higher values of the minimum trace 
than the traces of Chen’s equivalent codes. The codes noted by 

‘B’ are balanced, those by ‘FB’ are fully balanced and those 
noted by ‘NB’ are not balanced. Each new code is balanced 
and its trace is greater than the trace of Chen’s corresponding 
code. 

TABLE 1: 4-PSK Balanced STTCs  
with 3 and 4 transmit antennas 

nT  States Code G   Trace 

3 32 
Chen    

[7, 11] 

0 2 2 1 1 2 0 2

2 2 3 2 2 3 0 0

2 0 3 2 2 1 0 0

 
 
 
  

 FB 24 

  New 1 

2 1 2 3 2 3 0 2

2 3 0 2 2 1 0 0

2 1 2 1 0 0 0 2

 
 
 
  

 FB 26 

 64 
Chen    

[7, 11] 

0 2 3 2 3 0 3 2

2 2 1 2 3 0 2 0

2 0 0 2 2 3 1 1

 
 
 
  

 B 28 

  New 2 

2 3 2 3 2 1 2 1

0 2 0 2 2 3 0 2

2 1 0 2 2 3 2 1

 
 
 
  

 FB 32 

4 32 Chen    
[7, 11] 

0 2 2 1 1 2 0 2

2 2 3 2 2 3 0 0

2 0 3 2 2 1 0 0

2 1 2 0 1 0 0 2

 
 
 
 
 
  

 NB 36 

  New 3 

2 3 2 1 2 1 0 2

0 2 2 1 2 3 0 3

2 3 2 3 0 0 0 2

2 1 0 2 2 1 0 0

 
 
 
 
 
  

 B 36 

 64 Chen    
[7, 11] 

0 2 3 2 3 0 3 2

2 2 1 2 3 0 2 0

2 0 0 2 2 3 1 1

1 2 2 0 2 1 3 2

 
 
 
 
 
  

 NB 38 

  New 4 

1 2 2 0 3 2 1 2

3 2 3 2 2 0 3 2

2 0 1 2 3 2 3 2

1 2 2 0 2 0 2 0

 
 
 
 
 
  

 FB 40 

 
In Table 2, 8-PSK Chen’s codes and new corresponding 

codes are shown for 3 transmit antennas/16 states and 4 
transmit antennas/8 states. The two new codes have higher 
values of the minimum trace than the traces of Chen’s 
equivalent codes. 

The performance of each code is evaluated by simulation 
in a slow Rayleigh fading channel. The channel fading 
coefficients are independent samples of a complex Gaussian 
process with zero mean and variance 0.5 per dimension. These 
channel coefficients are assumed to be known at the decoder. 
Each frame consists of 130 4-PSK symbols or 198   8-PSK 
symbols. For the simulation, there are 2 receive antennas. The 
decoding is performed by the Viterbi’s algorithm. Figure 2 
shows the performance of the 4-PSK 32 states and 64 states 
codes for 3 transmit antennas given in Table 1. In the same 
way, the performance of 4-PSK STTC with 32 states and 64 
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states for 4 transmit antennas is shown in figure 3. Figure 4 
shows the performance of the new 8-PSK and the 
corresponding Chen’s codes of Table 2.  

TABLE 2: 8-PSK Balanced STTCs  
with 3 and 4 transmit antennas 

nT  States Code G Trace 

3 16 
Chen    
[11] 

2 4 7 3 6 0 0 0 4

4 0 2 7 6 7 0 0 4

2 4 2 2 4 6 0 0 0

 
 
 
  

 14 

  New 5 

4 2 0 0 4 1 0 0 6

4 2 3 4 6 7 0 0 4

0 4 2 4 2 5 0 0 0

 
 
 
  

 15.17 

4 8 Chen    
[11] 

2 4 0 3 2 4

1 6 4 4 0 0

3 2 4 0 4 2

7 2 4 5 4 0

 
 
 
 
 
  

 16.58 

  New 6 

0 4 2 4 2 5

4 6 1 0 0 4

4 2 3 4 6 0

4 6 5 0 4 6

 
 
 
 
 
  

 17.17 
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Fig. 2. Performance of  4-PSK STTC with 3 Tx / 2 Rx antennas 
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Fig. 3. Performance of  4-PSK STTC with 4 Tx/ 2 Rx antennas 
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Fig. 2. Performance of  8-PSK STTC with 3 Tx & 4 Tx / 2 Rx antennas 

7. CONCLUSION 
This paper presents a new and simpler method to design 

balanced space-time trellis codes. It has been shown that the 
best codes belong to this class. The balanced codes generate 
the points of the MIMO constellation with the same 
probability. This new and general method allows to design the 
balanced STTCs for 2n-PSK modulations and nT transmit 
antennas. The search for the best codes can be reduced to the 
class of balanced codes. Furthermore, several new balanced 4-
PSK and 8-PSK codes for 3 and 4 transmit antennas which 
outperform the best previously published codes have also been 
proposed.  
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