
Implementation of Kalman Filter with Python Language

Mohamed Laaraiedh

To cite this version:

Mohamed Laaraiedh. Implementation of Kalman Filter with Python Language. The Python
Papers, 2009. <hal-00433886>

HAL Id: hal-00433886

https://hal.archives-ouvertes.fr/hal-00433886

Submitted on 2 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53015862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00433886

 - 1 -

Implementation of Kalman Filter with Python Language

Mohamed LAARAIEDH
IETR Labs, University of Rennes 1
Mohamed.laaraiedh@univ-rennes1.fr

Abstract
In this paper, we investigate the implementation of a Python code for a Kalman
Filter using the Numpy package. A Kalman Filtering is carried out in two steps:
Prediction and Update. Each step is investigated and coded as a function with matrix
input and output. These different functions are explained and an example of a
Kalman Filter application for the localization of mobile in wireless networks is
given.

I. Introduction
Within the significant toolbox of mathematical tools that can be used for stochastic
estimation from noisy sensor measurements, one of the most well-known and often-
used tools is what is known as the Kalman filter. The Kalman filter is named after
Rudolph E. Kalman, who in 1960 published his famous paper describing a recursive
solution to the discrete-data linear filtering problem [3].
The Kalman filter is essentially a set of mathematical equations that implement a
predictor-corrector type estimator that is optimal in the sense that it minimizes the
estimated error covariance when some presumed conditions are met. Since the time
of its introduction, the Kalman filter has been the subject of extensive research and
application, particularly in the area of autonomous or assisted navigation. This is
likely due in large part to advances in digital computing that made the use of the
filter practical, but also to the relative simplicity and robust nature of the filter itself.
A complete tutorial about Kalman filtering is given in [2].

I.1. Mathematical Formulation of Kalman Filter
The Kalman filter addresses the general problem of trying to estimate the state

nx ℜ∈ of a discrete-time controlled process that is governed by the linear stochastic
difference equation

11 −− ++= kkkk wBuAxx (1)

with a measurement my ∈ℜ that is

k k ky Hx v= + (2)

The random variables kw and kv represent the process and measurement noise

respectively. They are assumed to be independent of each other, white, and with
normal probability distributions

),0()(QNwp ≈ (3)
),0()(RNvp ≈ (4)

 - 2 -

In practice, the process noise covariance Q and measurement noise R covariance
matrices might change with each time step or measurement, however here we
assume they are constant. The n n× matrix A relates the state at the previous time
step to the state at the current step, in the absence of either a driving function or
process noise. The 1n × matrix B relates the optional control input lu ℜ∈ to the
state x. The m n× matrix H in the measurement equation relates the state to the
measurement ky . For more deep investigation of the Kalman Filter you may see the

reference [2].

I.2. How does Kalman Filter work?
The Kalman filter process has two steps: the prediction step, where the next state of
the system is predicted given the previous measurements, and the update step, where
the current state of the system is estimated given the measurement at that time step.
The steps translate to equations as follows [2]:

• Prediction

kkkkk UBXAX += −−
−

11 (5)

1111 −−−−
− += k

T
kkkk QAPAP (6)

• Update
−−= kkkk XHYV (7)

k
T
kkkk RHPHS += − (8)

1−−= k
T
kkk SHPK (9)

kkkk VKXX += − (10)
T
kkkkk KSKPP −= − (11)

where
• −

kX and −
kP are the predicted mean and covariance of the state, respectively, on the

time step k before seeing the measurement.
• kX and kP are the estimated mean and covariance of the state, respectively, on

time step k after seeing the measurement.
• kY is mean of the measurement on time step k .

• kV is the innovation or the measurement residual on time step k .

• kS is the measurement prediction covariance on the time step k .

• kK is the filter gain, which tells how much the predictions should be corrected on

time step k .

I.3. Applications of the Kalman Filter
The applications of the Kalman Filtering in real world are diverse. An example
application would be providing accurate, continuously updated information about
the position and velocity of an object given only a sequence of observations about its
position, each of which includes some error. For a similar, more concrete example,
in a radar application, where one is interested in tracking a target, information about
the location, speed, and acceleration of the target is measured at each time instant,

 - 3 -

with a great deal of degradation by noise. The Kalman filter exploits the dynamics
of the target, which govern its time evolution, to remove the effects of the noise and
get a good estimate of the location of the target at the present time (filtering), at a
future time (prediction), or at a time in the past (interpolation or smoothing). Other
applications are weather forecasting, speech enhancement, economics, autopilot...
etc.

II. Python Code of the Kalman Filter
We have chosen to divide the Kalman Filtering Code in two parts similarly to its
mathematical theory. The code is simple and divided in three functions with matrix
input and output.

II.1. Prediction Step
This step has to predict the mean X and the covariance P of the system state at the
time step k . The Python function kf_predict performs the prediction of these
output (X and P) when giving six input:

X : The mean state estimate of the previous step (1k −).
P : The state covariance of previous step (1k −).
A : The transition n n× matrix.
Q : The process noise covariance matrix.
B : The input effect matrix.
U : The control input.

The Python code of this step is given by:

from numpy import dot
def kf_predict(X, P, A, Q, B, U):
 X = dot(A, X) + dot(B, U)
 P = dot(A, dot(P, A.T)) + Q
 return(X,P)

II.2. Update Step
At the time step k , this update step computes the posterior mean X and covariance
P of the system state given a new measurement Y . The Python function kf_update
performs the update of X and P giving the predicted X and P matrices, the
measurement vector Y , the measurement matrix H and the measurement covariance
matrix R . The additional input will be:

K : the Kalman Gain matrix
IM : the Mean of predictive distribution of Y
IS : the Covariance or predictive mean of Y
LH : the Predictive probability (likelihood) of measurement which is
computed using the Python function gauss_pdf.

The Python code of these two functions is given by:

from numpy import dot, sum, tile, linalg
from numpy.linalg import inv

 - 4 -

def kf_update(X, P, Y, H, R):
 IM = dot(H, X)
 IS = R + dot(H, dot(P, H.T))
 K = dot(P, dot(H.T, inv(IS)))
 X = X + dot(K, (Y-IM))
 P = P - dot(K, dot(IS, K.T))
 LH = gauss_pdf(Y, IM, IS)
 return (X,P,K,IM,IS,LH)

def gauss_pdf(X, M, S):
 if M.shape()[1] == 1:
 DX = X - tile(M, X.shape()[1])
 E = 0.5 * sum(DX * (dot(inv(S), DX)), axis=0)
 E = E + 0.5 * M.shape()[0] * log(2 * pi) + 0.5 * log(det(S))
 P = exp(-E)
 elif X.shape()[1] == 1:
 DX = tile(X, M.shape()[1])- M
 E = 0.5 * sum(DX * (dot(inv(S), DX)), axis=0)
 E = E + 0.5 * M.shape()[0] * log(2 * pi) + 0.5 * log(det(S))
 P = exp(-E)
 else:
 DX = X-M
 E = 0.5 * dot(DX.T, dot(inv(S), DX))
 E = E + 0.5 * M.shape()[0] * log(2 * pi) + 0.5 * log(det(S))
 P = exp(-E)

 return (P[0],E[0])

III. Example of application: Tracking of mobile in wireless
network
The most interesting field of application of Kalman Filter, in telecommunications, is
the tracking of a mobile user connected to a wireless network. In this section, we
will present a simple tracking algorithm of a mobile user who is moving in a room
and connected to at least three wireless antennas [1].
The matrix of measurement Y describes the estimated position of the mobile using a
trilateration algorithm based on a least square estimation and the knowledge of at
least three values of Time of Arrival (ToA) at time step k . These values are
computed using ranging procedures between the mobile and the three antennas [1].
Starting by an initialization of different matrices and using the updated matrices for
each step and iteration, we plot in Fig- 1 the estimated, the real trajectory of the
mobile user, and the measurements performed by the least square based trilateration.
We show here that the Kalman Filter enhances the accuracy of tracking compared to
the static least square based estimation. The Python code describing the tracking
process is given as below. In order to simplify the understanding of this code, we
draw the matrix Y randomly centered on the true value of mobile position.

from numpy import *
from numpy.linalg import inv

#time step of mobile movement
dt = 0.1

Initialization of state matrices
X = array([[0.0], [0.0], [0.1], [0.1]])
P = diag((0.01, 0.01, 0.01, 0.01))
A = array([[1, 0, dt , 0], [0, 1, 0, dt], [0, 0, 1, 0], [0, 0, 0,\
 1]])
Q = eye(X.shape()[0])
B = eye(X.shape()[0])
U = zeros((X.shape()[0],1))

 - 5 -

Measurement matrices
Y = array([[X[0,0] + abs(randn(1)[0])], [X[1,0] +\
 abs(randn(1)[0])]])
H = array([[1, 0, 0, 0], [0, 1, 0, 0]])
R = eye(Y.shape()[0])

Number of iterations in Kalman Filter
N_iter = 50

Applying the Kalman Filter
for i in arange(0, N_iter):
 (X, P) = kf_predict(X, P, A, Q, B, U)
 (X, P, K, IM, IS, LH) = kf_update(X, P, Y, H, R)
 Y = array([[X[0,0] + abs(0.1 * randn(1)[0])],[X[1, 0] +\

 abs(0.1 * randn(1)[0])]])

Fig- 1: Kalman Filter Applied to ToA Based Localization

IV. Conclusions and future work
In this paper, we presented the Python code for the Kalman Filter implementation.
We presented a two step based implementation and we give an example of using this
kind of filters for localization in wireless networks. The next steps will be the
implementation of others Bayesian filters like Extended Kalman Filter, Unscented
Kalman Filter and Particle Filter. A third step of smoothing of estimations may be
introduced later.

V. References

[1] G. Shen, R. Zetik, and R. Thoma. 2008. “Performance Comparison of ToA
and TDoA Based Location Estimation Algorithms in LOS Environment,” WPNC'08
[2] G. Welch and G. Bishop. 1995. “An Introduction to the Kalman Filter,”
University of North Carolina, Department of Computer Science, TR 95-041.
[3] R. E. Kalman. 1960. “A New Approach to Linear Filtering and Prediction
Problems,” Transaction of the SME-Journal of Basic Engineering, pp. 35-45 (March
1960).

