-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

HAL

archives-ouvertes

Implementation of Kalman Filter with Python Language
Mohamed Laaraiedh

» To cite this version:

Mohamed Laaraiedh. Implementation of Kalman Filter with Python Language. The Python

Papers, 2009. <hal-00433886>

HAL Id: hal-00433886
https://hal.archives-ouvertes.fr /hal-00433886
Submitted on 2 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://core.ac.uk/display/53015862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00433886

| mplementation of Kalman Filter with Python Language

Mohamed LAARAIEDH
IETR Labs, University of Rennes 1
Mohamed.laaraiedh@univ-rennes1.fr

Abstract

In this paper, we investigate the implementationadPython code for a Kalman
Filter using the Numpy package. A Kalman Filteriisgcarried out in two steps:
Prediction and Update. Each step is investigatéldcaded as a function with matrix
input and output. These different functions arela@rpd and an example of a
Kalman Filter application for the localization ofofile in wireless networks is
given.

l. Introduction

Within the significant toolbox of mathematical tedhat can be used for stochastic
estimation from noisy sensor measurements, onleeomost well-known and often-
used tools is what is known as the Kalman filtdre Kalman filter is named after
Rudolph E. Kalman, who in 1960 published his fampager describing a recursive
solution to the discrete-data linear filtering peoh [3].

The Kalman filter is essentially a set of mathep@tiequations that implement a
predictor-corrector type estimator that is optinmathe sense that it minimizes the
estimated error covariance when some presumed tcmmslare met. Since the time
of its introduction, the Kalman filter has been thbject of extensive research and
application, particularly in the area of autonomausassisted navigation. This is
likely due in large part to advances in digital garting that made the use of the
filter practical, but also to the relative simptycand robust nature of the filter itself.
A complete tutorial about Kalman filtering is given[2].

I.1. Mathematical Formulation of Kalman Filter
The Kalman filter addresses the general problentryofg to estimate the state

xOO" of a discrete-time controlled process that is goee by the linear stochastic
difference equation

X = A +Bu +w 1)
with a measuremeny O™ that is
Y. =HXx, +v, (2)

The random variablesv, and v, represent the process and measurement noise

respectively. They are assumed to be independeetidi other, white, and with
normal probability distributions

p(w) =N (0,Q) 3)
p(v) = N (O R) (4)

In practice, the process noise covariagzend measurement noide covariance
matrices might change with each time step or measemt, however here we
assume they are constant. Th&n matrix A relates the state at the previous time
step to the state at the current step, in the abseheither a driving function or
process noise. Thax1 matrix B relates the optional control inputdO' to the
state x. Themxn matrix H in the measurement equation relates the stateeto th
measuremeny, . For more deep investigation of the Kalman Fijten may see the
reference [2].

|.2. How does Kalman Filter work?

The Kalman filter process has two steps: the ptiedicstep, where the next state of
the system is predicted given the previous measmtsnand the update step, where
the current state of the system is estimated gitermeasurement at that time step.
The steps translate to equations as follows [2]:

* Prediction

X = AaXtBU,)
P’ = ALPLAL +Qu (6)
* Update

V, =Y, - H X, (7)
S =H R H +R (8)
K,=P H/S")
X, =X, +K,\V, (10)
P =R -K,SK{ (11)

where

« X, and B, are the predicted mean and covariance of the sespectively, on the
time stepk before seeing the measurement.

+ X, and B, are the estimated mean and covariance of the, sespectively, on
time stepk after seeing the measurement.

*Y, is mean of the measurement on time step

* V, is the innovation or the measurement residuaima stepk .

S, is the measurement prediction covariance on the sitepk .

« K, is the filter gain, which tells how much the piains should be corrected on
time stepk .

1.3. Applications of the Kalman Filter

The applications of the Kalman Filtering in real ndoare diverse. An example
application would be providing accurate, contindpugpdated information about
the position and velocity of an object given onlyemuence of observations about its
position, each of which includes some error. Faimailar, more concrete example,
in a radar application, where one is interestelaoking a target, information about
the location, speed, and acceleration of the tasgateasured at each time instant,

-2-

with a great deal of degradation by noise. The Karhlter exploits the dynamics

of the target, which govern its time evolutionyémove the effects of the noise and
get a good estimate of the location of the targeha present time (filtering), at a

future time (prediction), or at a time in the pésterpolation or smoothing). Other

applications are weather forecasting, speech eehagt, economics, autopilot...
etc.

. Python Code of the Kalman Filter

We have chosen to divide the Kalman Filtering Codéwo parts similarly to its
mathematical theory. The code is simple and dividetthree functions with matrix
input and output.

1.1. Prediction Step

This step has to predict the mexnand the covarianc® of the system state at the
time stepk . The Python functiorkf _predi ct performs the prediction of these
output (X and P) when giving six input:

: The mean state estimate of the previous stepl().
: The state covariance of previous stkp-(1).

: The transitionn x n matrix.

: The process noise covariance matrix.

: The input effect matrix.
: The control input.

CmO>TX

The Python code of this step is given by:

from nunmpy i nport dot

def kf _predict(X, P, AL Q B, U:
X = dot (A, X) + dot(B, U
P = dot(A, dot(P, AT)) + Q
return(X P)

1.2. Update Step

At the time stepk , this update step computes the posterior m€aand covariance

P of the system state given a new measurenferithe Python functiorf _updat e
performs the update oK and P giving the predictedX and P matrices, the
measurement vectof , the measurement matrid and the measurement covariance
matrix R. The additional input will be:

K: the Kalman Gain matrix

IM : the Mean of predictive distribution of

IS: the Covariance or predictive meanYof

LH : the Predictive probability (likelihood) of measuarent which is
computed using the Python functigauss_pdf .

The Python code of these two functions is given by:

from nunmpy inport dot, sum tile, linalg
fromnunpy.linalg inport inv

def kf_update(X, P, Y, H R):

M= dot(H, X

IS =R+ dot(H, dot(P, HT

K = dot(P, dot(H T, inv(lS)))

X=X+ dot(K, (Y-1M)

P =P - dot(K, dot(IS, KT))

LH = gauss_pdf (Y, IM IS)

return (X, P,K, IMIS, LH)

def gauss_pdf (X, M S):

if Mshape()[1] == 1:
DX = X - tile(M X shape()[1])
E=05* sun(DX* (dot(inv(S), DX)), axis=0)
E=E+ 0.5* Mshape()[0] * log(2 * pi) + 0.5 * |log(det(S))
P = exp(-E)

elif X shape()[1l] == 1:
DX = tile(X, Mshape()[1])- M
E=0.5* sum{(DX * (dot(inv(S), DX)), axis=0)
E=E+ 0.5* Mshape()[0] * log(2 * pi) + 0.5 * log(det(S))
P = exp(-E)

el se:
DX = X-M

E =0.5* dot(DX. T, dot(inv(S), DX))
E=E+ 0.5* Mshape()[0] * log(2 * pi) + 0.5 * |log(det(S))
P = exp(-E)

return (P[O], E[0])

[ll. Example of application: Tracking of mobile in wireless
network

The most interesting field of application of Kalmeitter, in telecommunications, is
the tracking of a mobile user connected to a waleetwork. In this section, we
will present a simple tracking algorithm of a mebilser who is moving in a room
and connected to at least three wireless antedhas |

The matrix of measuremexit describes the estimated position of the mobilegiain
trilateration algorithm based on a least squargnasibn and the knowledge of at
least three values of Time of Arrival (ToA) at tinstep k . These values are
computed using ranging procedures between the eahd the three antennas [1].
Starting by an initialization of different matriceasd using the updated matrices for
each step and iteration, we plot in Fig- 1 thenested, the real trajectory of the
mobile user, and the measurements performed bigdisé square based trilateration.
We show here that the Kalman Filter enhances tberacy of tracking compared to
the static least square based estimation. The Rytbhde describing the tracking
process is given as below. In order to simplify tmelerstanding of this code, we
draw the matrixY randomly centered on the true value of mobile pwsit

from nunpy inport *
fromnumpy.linalg inport inv

#tinme step of nobile novenent
dt =0.1

Initialization of state matrices

X = array([[0.0], [0O0.0], [O.1], [0O0.1]])

P = diag((0.01, 0.01, 0.01, 0.01))

A]=];:1rray([[1, o, d¢ , 0], [O, 1, O, dt], [O, O, 1, O], [O, O, O,\
1

Q = eye(X. shape()[0])

B = eye(X shape()[0])

U = zeros((X.shape()[0], 1))

Measur enent

matrices
Y = array([[X O ;)
)

]r + abs(randn(1)[0])], [X[1,0] +\
abs(randn(1) []]
H=array([[1, ((J

%) 0], [0, 1, 0O, 0]])
R = eye(Y. shape 0

[0])

Nunmber of iterations in Kalman Filter
Niter = 50

Applying the Kalman Filter
for i in arange(0, N.ter):
(X, P) = kf_predict (X P A Q B,

(X, P, K IM IS LH = kf update(x P, Y, H R
Y = arra y([[X[0, 0] +abs(01* randn(1)[0])],[X1, 0] +\
abs(0.1 * randn(1)[0])]])

4.5

— Estimated Trajectory
« Measured Trajectpry

Ll g Real Trajectory

%5 05 10 15 20 25 30 35 a0
x (m)

Fig- 1. Kalman Filter Applied to ToA Based Localization

IV. Conclusions and future work

In this paper, we presented the Python code foK#dean Filter implementation.
We presented a two step based implementation argiveean example of using this
kind of filters for localization in wireless netw@. The next steps will be the
implementation of others Bayesian filters like Exted Kalman Filter, Unscented
Kalman Filter and Particle Filter. A third step shoothing of estimations may be
introduced later.

V. References

[1] G. Shen, R. Zetik, and R. Thoma. 2008. “Perfance Comparison of ToA
and TDoA Based Location Estimation Algorithms in&@&nvironment,” WPNC'08

[2] G. Welch and G. Bishop. 1995. “An Introductiee the Kalman Filter,”

University of North Carolina, Department of Compugeience, TR 95-041.

[3] R. E. Kalman. 1960. “A New Approach to Lineaittéring and Prediction

Problems,” Transaction of the SME-Journal of B&Sigineering, pp. 35-45 (March
1960).

