
Interface-based hierarchy for synchronous data-flow

graphs

Jonathan Piat, Shuvra S. Bhattacharyya, Mickaël Raulet

To cite this version:

Jonathan Piat, Shuvra S. Bhattacharyya, Mickaël Raulet. Interface-based hierarchy for syn-
chronous data-flow graphs. Signal Processing Systems, 2009. SiPS 2009. IEEE Workshop
on, Oct 2009, Tampere, Finland. pp.145-150, 2009, <10.1109/SIPS.2009.5336240>. <hal-
00440478>

HAL Id: hal-00440478

https://hal.archives-ouvertes.fr/hal-00440478

Submitted on 10 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53015591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00440478

INTERFACE-BASED HIERARCHY FOR SYNCHRONOUS DATA-FLOW GRAPHS

Jonathan Piat1, Shuvra S. Bhattacharyya2, and Mickael Raulet1

(1) IETR/INSA, UMR CNRS 6164
Image and Remote Sensing laboratory, F-35043 Rennes, France

email: {firstname.lastname@insa-rennes.fr}
(2)Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD, 20742, USA

email: {ssb@umd.edu}

ABSTRACT
Dataflow has proven to be an attractive computation model for
programming digital signal processing (DSP) applications. A
restricted version of dataflow, termed synchronous dataflow
(SDF), offers strong compile-time predictability properties,
but has limited expressive power. In this paper we propose
a new type of hierarchy in the SDF domain allowing more
expressivity while maintaining its predictability. This new
hierarchy semantic is based on interfaces that fix the num-
ber of tokens consumed/produced by a hierarchical vertex
in a manner that is independent or separate from the speci-
fied internal dataflow structure of the encapsulated subsystem.
This interface-based hierarchy gives the application designer
more flexibility in iterative construction of hierarchical rep-
resentations, and experimentation with different optimization
choices at different levels of the design hierarchy.

Index Terms— Data-Flow programming, SDF graph,
Scheduling, Code Generation.

1. INTRODUCTION

Since applications such as video coding/decoding or digital
communications with advanced features are becoming more
complex, the need for computational power is rapidly increas-
ing. In order to satisfy software requirements, the use of par-
allel architecture is a common answer. To reduce the soft-
ware development effort for such architectures, it is neces-
sary to provide the programmer with efficient tools capable
of automatically solving communications and software parti-
tioning/scheduling concerns. Most tools such as PeaCE [1],
SynDEx [2] or PREESM [3] use as an entry point a model of
the application associated to a model of the architecture. Data
flow model is indeed a natural representation for data-oriented
applications since it represents data dependencies between the
operations allowing to extract parallelism. In this model the
application is described as a graph in which nodes represent
computations and edges carry the stream of data-tokens be-
tween operations. The Synchronous Data Flow (SDF) model

allows to specify the number of tokens produced/consumed
on each outgoing/incoming edges for one firing of a node.
Edges can also carry initialization tokens, called delay. That
information allows to perform analysis on the graph to deter-
mine whether or not the graph is schedule-able, and if so to
determine an execution order of the nodes and application’s
memory requirements.

In basic SDF representation, hierarchy is used either as
a way to represent cluster of nodes in the SDF graph or as
parameterized sub-system. The purpose of this paper is to de-
scribe a hierarchy type allowing the designer to describe sub-
graph in a classical top down approach. Relevant information
can also be extracted from this representation in order to ease
the graph scheduling and to lead to a better implementation.

Section 2 explains the data flow semantics and particu-
larly the synchronous data flow graphs, section 3 presents the
existing hierarchy types and section 4 the proposed hierarchy
type. Section 5 uses the described hierarchy type to design an
example and provides some results. Finally, section 5 high-
lights the future work and concludes this paper.

2. SYNCHRONOUS DATA FLOW GRAPH

The Synchronous Data Flow (SDF) graph [4] is used to sim-
plify the application specification, by allowing the represen-
tation of the application behavior at a coarse grain. This data
flow model represents operations of the application and spec-
ifies data dependencies between the operations.

A Synchronous Data Flow graph is a finite directed,
weighted graph G =< V,E, d, p, c > where :

• V is the set of nodes; each node represents a compu-
tation that operates on one or more input data streams
and outputs one or more output data streams.

• E ⊆ V ×V is the edge set, representing channels which
carry data streams.

• d : E → N ∪ {0} (N = 1, 2, . . .) is a function with
d(e) the number of initial tokens on an edge e.

• p : E → N is a function with p(e) representing the
number of data tokens produced at e’s source to be car-
ried by e.

• c : E → N is a function with c(e) representing the
number of data tokens consumed from e by e’s sink
node.

The topology matrix is the matrix of size |E| × |V |, in
which each row corresponds to an edge e in the graph and
each column corresponds to a node v. Each coefficient (i, j)
of the matrix is positive and equal to N if N tokens are pro-
duced by the jth node on the ith edge. (i, j) coefficients are
negative and equal to N if N tokens are consumed by the jth

node on the ith edge. It was proved in [4] that a static sched-
ule for graph G can be computed only if its topology matrix’s
rank is one less than the number of nodes in G. This neces-
sary condition means that there is a Basic Repetition Vector
(BRV) q of size |V | in which each coefficient is the repetition
factor for the jth vertex of the graph. SDF graph representa-
tion allows use of hierarchy, meaning that for v = G, a vertex
may be described as a graph. A vertex with no hierarchy is
called an actor.

2.1. SDF to DAG translation

One common way to schedule SDF graphs onto multiple pro-
cessors is to first convert the SDF graph into a precedence
graph such that each vertex in the precedence graph corre-
sponds to a single execution of an actor from the SDF graph.
Thus each SDF graph actor A is “expanded into” qA sepa-
rate precedence graph vertices, where qA is the component of
the BRV that corresponds to A. In general, the SDF graph
aims at exposing the potential parallelism of the algorithm;
the precedence graph may reveal more functional parallelism,
moreover it exposes the available data-parallelism. A valid
precedence graph contains no cycle and is called DAG (Di-
rected Acyclic Graph). Unfortunately, the graph expansion
due to the repetition count of each SDF node can lead to an
exponential growth of nodes in the DAG. Thus, precedence-
graph-based multiprocessor scheduling techniques, such as
those developed in [5] [6], in general have complexity that is
not polynomially bounded in the size of the input SDF graph,
and can result in prohibitively long scheduling times for cer-
tain kinds of graphs (e.g., see [7]).

3. HIERARCHY TYPES IN SDF GRAPH

3.1. Repetition-based SDF hierarchy

Hierarchy has been described in [7], as a mean of represent-
ing cluster of actor in a SDF graph. In [7] clustering is used as
a pre-pass for the scheduling described in [8] that reduces the
number of vertices in the DAG, minimizing synchronization
overhead for multi-threaded implementation and maximizing

the throughput by grouping buffers [8]. Given a consistent
SDF graph, this approach first clusters strongly connected
components to generate an acyclic graph. A set of cluster-
ing techniques are then applied based on topological and data
flow properties, to maximize throughput and minimize syn-
chronization between clusters. This approach is a bottom-up
approach, meaning that the starting point is a SDF graph with
no hierarchy and it automatically outputs a hierarchical (clus-
tered) graph. In order to ensure that clustering an actor may
not cause the application to be deadlock, the authors (in [7])
describe five composition rules based on the data flow prop-
erties (Figure 1).

y

3

x z

(a)

D

y1 x2

x1

x3

z1

z2

z3

y

x z

D

x

y

z

(b)

y

x z

(c)

Fig. 1. (a) illustrate the violation of the first precedence shift
condition, (b) illustrate the violation of the hidden delay con-
dition, and (c) illustrate the violation of the cycle introduction
condition

3.2. Parameter-based SDF hierarchy

Parameter-based SDF hierarchy has been introduced in [9]
where the authors introduce a new SDF model called Param-
eterized SDF. This model aims at increasing SDF expressivity
while maintaining its compile time predictability properties.
In this model a sub-system (sub-graph) behavior can be con-
trolled by a set of parameters that can be configured dynami-
cally. These parameters can either configure sub-system inter-
face behavior by modifying production/consumption rate on
interfaces, or configure behavior by passing parameters (val-
ues) to the sub-system actors. In this model each sub-system
is composed by three graphs: the init graph φi, the sub-init
graph φs, the body graph φb.

Each activation of the sub-system, is composed by an in-
vocation of φs followed by an invocation of φb. The init graph
is effectively decoupled from the dataflow specification of the
parent graph and invoked once, at the beginning of each (min-
imal periodic) invocation (see [9]). The sub-init graph per-
forms reconfiguration that does not affect sub-system inter-
face behavior and is activated more frequently than the init-
graph which can modify sub-system interface behavior. In

order to maintain predictability, actors of φb are assigned a
configuration which specifies parameters values. This value
can either be a domain which specifies the set of valid pa-
rameter value combinations for the actor, or left unspecified,
meaning that this parameter value will be determined at run-
time.

4. INTERFACE-BASED SDF HIERARCHY

While designing an application, user might want to use hi-
erarchy in a way to design independent graphs that can be
instantiated in any design. From a programmer view it be-
haves as closures since it defines limits for a portion of an
application. This kind of hierarchy must ensure that while a
graph is instantiated, its behavior might not be modified by its
parent graph, and that its behavior might not introduce dead-
lock in its parent graph. The rules defined in the composition
rules ensure the graph to be deadlock free when verified, but
are used to analyze a graph with no hierarchy. In order to al-
low the user to hierarchically design a graph, this hierarchy
semantic must ensure that the composed graph will have no
deadlock if every level of hierarchy is independently dead-
lock free. To ensure this rule we must integrate special nodes
in the model that restrict the hierarchy semantic. In the fol-
lowing a hierarchical vertex will refer to a vertex which em-
beds a hierarchy level, and a sub-graph will refer to the graph
representing this hierarchy level.

4.1. Special nodes

Source node: A Source node is a bounded source of tokens
which represents the tokens available for an iteration of the
sub-graph. This node behaves as an interface to the outside
world. A source port is defined by the four following rules:

A-1 Source production homogeneity: A source node Source
produces the same amount of tokens on all its outgoing
connections p(e) = n ∀e ∈ {Source(e) = Source}.

A-2 Interface Scope: The source node remains write-locked
during an iteration of the sub-graph. This means that the
interface cannot be filled by the outside world during the
sub-graph execution.

A-3 Interface boundedness: A source node cannot be re-
peated, thus any node consuming more tokens than
made available by the node will consume the same to-
kens multiple times (ring buffer). c(e)%p(e) = 0 ∀e ∈
{source(e) = source}.

A-4 SDF consistency: All the tokens made available by a
source node must be consumed during an iteration of the
sub-graph.

Sink node: A sink node is a bounded sink of tokens that
represent the tokens to be produced by an iteration of the
graph. This node behaves as an interface to the outside world.
A sink node is defined by the four following rules:

Source
1

A
1 1

1

B
1 1

C
1

1
1

Sink
2

Fig. 2. Design of a sub-graph

B-1 Sink producer uniqueness: A sink node Sink only has
one incoming connection.

B-2 Interface Scope: The sink node remains read-locked dur-
ing an iteration of the sub-graph. This means that the
interface cannot be read by the outside world during the
sub-graph execution.

B-3 Interface boundedness: A sink node cannot be repeated,
thus any node producing more tokens than needed by
the node will write the same tokens multiple times (ring
buffer). p(e)%c(e) = 0 ∀e ∈ {target(e) = Sink}.

B-4 SDF consistency: All the token consumed by a sink node
must be produced during an iteration of the sub-graph.

4.2. Hierarchy deadlock-freeness

Considering a consistent connected SDF graph G = {g, z},
g = {Source, x, y, Sink} with Source being a source node
and Sink being a sink node, and z being an actor. In the
following we show how the hierarchy rules described above
ensure the hierarchical vertex g to not introduce deadlocks in
the graph G:

• if it exists a simple path going from x to y contain-
ing more than one arc, this path cannot introduce cycle
since this path contains at least one interface, meaning
that the cycle gets broken. User must take this into ac-
count to add delay to the top graph.

• Rules A2-B2 ensure that all the data needed for an it-
eration of the sub-graph are available as soon as its ex-
ecution starts, and that no external vertex can consume
on the sink interface while the sub-graph is being ex-
ecuted. As a consequence no external vertex strongly
connected with the hierarchical vertex can be executed
concurrently. The interface ensures the sub-graph con-
tent to be independent to the outside world, as there is

no edge α ∈

α
′‖

(src(α′) = x)

and
(snk(α′) ∈ C)

and
(snk(α′) /∈ {x, y})

 con-

sidering that snk(α′) /∈ {x, y}) cannot happen.

• The designing approach of the hierarchy cannot lead
to an hidden delay since even if a delay is in the sub-
graph, an iteration of the sub-graph cannot start if its
input interfaces are not full.

Those rules also guarantee that the edges of the sub-graph
have a local scope, since the interfaces make the inner graph
independent from the outside world. This means that when an
edge in the sub-graph creates a cycle (and contains a delay),
if the sub-graph needs to be repeated this iterating edge will
not link multiple instances of the sub-graph.

The given rules are sufficient to ensure a sub-graph to not
create deadlocks when instantiated in a larger graph.

4.3. Hierarchy scheduling

As explained in [10] interfaces to the outside world must not
be taken into account to compute the schedule-ability of the
graph. As in our hierarchy interpretation, interfaces have a
meaning for the sub-graph, they must be taken into account
to compute the schedule-ability, since we must ensure that all
the tokens on the interfaces will be consumed/produced in an
iteration of the sub-graph (see rules A4-B4).

Due to the interface nature, every connection coming/-
going from/to an interface must be considered like a con-
nection to an independent interface. Adding an edge e to
graph G increases the rank of its topology matrix Γ if the
row added to Γ is linearly independent from the other row.
Adding an interface to a graph G composed of N vertices,
and one edge e connecting this interface to G adds a linearly
independent row to the topology matrix. This increases the
rank of the topology matrix of one, but adding the interface’s
vertex will yield in aN+1 graph : rank(Γ(GN)) = N−1⇒
rank(Γ(GN+1)) = rank(Γ(GN)) + 1 = (N + 1)− 1. The
rank of the topology matrix remains equal to the number of
vertices less one meaning that this graph remains schedule-
able. Since adding an edge between a connected interface
and any vertex of the graph, results in (in meaning) adding an
edge between a newly created interface and the graph, it does
not affect the schedule-ability considering the proof above.
This means that a sub-graph can be considered schedule-able
if its actor graph (excluding interfaces) is schedule-able.

Before scheduling a hierarchical graph, we must verify
that every level of hierarchy is deadlock free. Applying the
balance equation to every level is sufficient to prove the dead-
lock freeness of a level.

4.4. Hierarchy behavior

Interfaces behavior can vary due to the graph schedule. This
behavior flexibility can ease the development process, but
needs to be understood to avoid meaningless applications.

- Source behavior
As said in the source interface rules, a source interface can

have multiple outgoing (independent) connection and reading
more tokens than made available results in reading modulo
the number of tokens available (circular buffer). This means
that the interface can behave like a broadcast. In Figure 3,
vertices A and B have to execute respectively 4 and 6 times

to consume all the data made available by the port. In this
example, the Source interface will broadcast twice to vertex
A and three times to vertex B. This means that the designer
must keep in mind that the interfaces can have effect on the
inner graph schedule.

Source
2

2

A
1

3

×4

B

2
1

×6

Fig. 3. Source example and its execution pattern

- Sink behavior
As said in the sink interface rules, a source interface can

only have one incoming connection, and writing more tokens
than needed on the interface results in writing modulo the
number of tokens needed (circular buffer). In Figure 4, the
vertex B writes 3 tokens in a Sink that consumes only one
token, due to the circular buffer behavior, only the last to-
ken written will be made available to the outside world. This
behavior allows to easily design iterative pattern without in-
creasing the number of edges. This behavior can also lead
to mistakes (from the designer view) as if there is no prece-
dence between multiple occurrences of a vertex that writes to
an output port, a parallel execution of these occurrences leads
to a concurrent access to the interface and as a consequence
to indeterminate data in the sink node. This also leads to dead
codes from the node occurrences that do not write to the sink
node.

A
3

B
1 1

Sink
1

A

B1

B2

B3

Sink

Fig. 4. Sink example and its precedence graph

4.5. Hierarchy improvements

As said earlier, this hierarchy type eases the designer work,
since he/she can design subsystems independently and may
instantiate them in any application. Not only easing the de-

signer work, this kind of hierarchy also improves the appli-
cation with the same criteria than the clustering techniques.
Those improvements are based on the designer’s choice but it
can be completed by automatic transformation allowing more
performance to be extracted from the graph.

5. APPLICATION CASE STUDY

In this section we will show how the new hierarchy type (in-
terface based hierarchy) can be used to design a IDCT2D CLIP
examples. The IDCT2D is a common application in image
decoding which operates over a 8× 8 matrix of coefficient to
decode 8 × 8 pixel block. In the video decoding context the
IDCT2D is followed by a clip operation which adds or not a
sign bit on samples depending on the kind of prediction being
used for the block (INTER or INTRA).

5.1. IDCT2D description

The IDCT2D CLIP used in this example (Figure 5) is a recur-
sive pattern using only 4 operations.

• mux: This actor, acts as a multiplexor. It outputs the
data from the source port blockIn on its first firing and
outputs the data from trans on the second firing.

• idct: Performs an IDCT on a vector of 8 elements.
• trans: Transposes an 8× 8 matrix.
• clip: Apply an additional signed bit depending on the

kind of the prediction type.

In this representation the trig operation is a null time oper-
ation which forces the loop to iterate twice. The IDCT2D CLIP
is defined using two level of hierarchy. The first level per-
forms a classic IDCT2D by using IDCT1D and transposition
of an 8 × 8 matrix. The additional level add the clip opera-
tion which is specific to the video decoding algorithm. This
operation computes on each sample a 9 bit signed integer for
INTER prediction, while it does an 8 bit unsigned integer for
INTRA prediction.

5.2. Structural analysis

The IDCT2D graph takes into account some of the specific
behavior of the new hierarchy type. This graph is described
as an entity consuming 64 tokens on its input port and pro-
ducing 64 tokens on its output port. The trig operation forces
the recursive pattern composed of mux, idct, trans to iter-
ate twice in order to perform the idct onto line and column of
the 8× 8 block. The read operation being computed twice, it
consumes twice the same 64 tokens on the input port of the
graph, making it behaves in a manner analogous to a dynamic
block of parameter values that is held fixed during an execu-
tion of the subsystem. The trans operation being computed
twice writes two times 64 tokens on the output port of the
graph. In this case the output port behaves as a circular buffer

since only the last 64 tokens written will be made available to
the outside world.

This kind of execution could not be described using
the basic hierarchy as every produced token must be con-
sumed and every vertex firing requires the number of tokens
consumed to be available. In contrast, our new concept of
interface-based hierarchy provides a description format that
captures the desired behavior in a natural and efficient man-
ner.

void i d c t 2 d c l i p (i n t ∗ b l o c k i ,
i n t ∗ s ign ,
i n t ∗ b loc ko){

i n t b l o c k o u t [6 4] ;
i d c t 2 d (b l o c k i , b l o c k o u t) ;
c l i p (b l o c k o u t , s i gn , b lo ck o) ;

}

Fig. 6. Automatic code generation of the first hierarchy level

void i d c t 2 d c l i p (i n t ∗ b l o c k i ,
i n t ∗ s ign ,
i n t ∗ b loc ko){

i n t b l o c k o u t [6 4] ;
i n t t r i g g e r s [2] ;
i n t i d c t 1 d l o o p [6 4] ;
i n i t d e l a y (i d c t 1 d l o o p , 6 4 /∗ i n i t s i z e ∗ /) ;
t r i g (t r i g g e r s) ;
f o r (i = 0 ; i<2 ; i ++){

i n t ∗ t r i g g e r = &t r i g g e r s [(i ∗1)%2];
i n t r o w s i n [6 4] ;
i n t r o w s o u t [6 4] ;
mux (b l o c k i , i d c t 1 d l o o p , t r i g g e r , r o w s i n) ;
f o r (j = 0 ; j<8 ; j ++){

i n t ∗ r o w o u t = &r o w s o u t [(j ∗8)%64];
i n t ∗ r o w i n = &r o w s i n [(j ∗8)%64];
i d c t 1 d (row in , r o w o u t) ;

}
t r a n s (rows ou t , b l o c k o u t , i d c t 1 d l o o p) ;

}
c l i p (b l o c k o u t , s i gn , b lo ck o) ;

}

Fig. 7. Automatic code generation of the second hierarchy
level

6. FURTHER WORK AND CONCLUSION

This paper introduces a classification of hierarchy types in
synchronous dataflow representations and introduces a new
hierarchy type that involves the designer more in the applica-
tion optimization process by allowing him/her to modify the
application structural description. In order to extract efficient
schedules from synchronous dataflow graphs, we need to de-
velop special scheduling and optimization methods to exploit
hierarchical structure in the given application. Scheduling
techniques discussed in [9] could be exploited as a starting
point. The new hierarchy type proposed in our paper allows
the designer to perform optimization on the application at a

IDCT2D
IDCT2D CLIP

blockIn
64 64

mux

1

64

64

64

idct
8

8

trans
64 64

64

trig

2

blockOut
64

64
blocki

64

signedi

1

clip

6464

1

blocko

64

Fig. 5. IDCT2D CLIP SDF graph designed with hierarchy type 2

structural level and provides a programming interface for hi-
erarchical organization that is more natural in various con-
texts. In particular, our hierarchy representation is closer to C
code semantics, and makes the application easier to describe
for programmers who are for example more familiar with C,
and less familiar with concepts such as repetitions vectors and
subinit graphs. Our method allows reuse of graphs developed
in other applications with no modifications, and offer more
flexibility by allowing the description of execution patterns
that do not map directly into conventional types of hierar-
chy. The Interface-based hierarchy for Synchronous Data-
Flow Graphs has been implemented as the algorithm speci-
fication model in the tool PREESM [3]. A useful direction
for further investigation is the development of techniques for
optimized scheduling that are derived from our proposed new
hierarchy type. Another useful direction for further investiga-
tion is the extension of the proposed interface-based hierarchy
formulations to cyclo-static dataflow [11].

7. REFERENCES

[1] Wonyong Sung, Moonwook Oh, Chaeseok Im, and
Soonhoi Ha, “Demonstration Of Codesign Workflow
In PeaCE,” in in Proc. of International Conference of
VLSI Circuit, Seoul, Koera, 1997.

[2] T. Grandpierre and Y. Sorel, “From algorithm and ar-
chitecture specification to automatic generation of dis-
tributed real-time executives: a seamless flow of graphs
transformations,” in Proceedings of First ACM and
IEEE International Conference on Formal Methods and
Models for Codesign, MEMOCODE’03, Mont Saint-
Michel, France, June 2003.

[3] Jonathan Piat, Mickaël Raulet, Maxime Pelcat,
Pencheng Mu, and Olivier Déforges, “An extensi-
ble framework for fast prototyping of multiprocessor
dataflow applications,” in IDT08: Proceedings of the

3rd International Design and Test Workshop, Monastir,
Tunisia, december 2008.

[4] E.A Lee and D.G Messerschmitt, “Synchronous data
flow,” Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–
1245, sept 1987.

[5] Harry William Printz, Automatic mapping of large sig-
nal processing systems to a parallel machine, Ph.D. the-
sis, Pittsburgh, PA, USA, 1991.

[6] E.A. Sih, G.C.; Lee, “Dynamic-level scheduling for het-
erogeneous processor networks,” in Proceedings of the
Second IEEE Symposium on Parallel and Distributed
Processing, October 1990, pp. 42–49.

[7] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee, “A
hierarchical multiprocessor scheduling system for DSP
applications,” in Proceedings of the IEEE Asilomar
Conference on Signals, Systems, and Computers, Pacific
Grove, California, November 1995, pp. 122–126 vol.1.

[8] C. Hsu, J. L. Pino, and S. S. Bhattacharyya, “Multi-
threaded simulation for synchronous dataflow graphs,”
in Proceedings of the Design Automation Conference,
Anaheim, California, June 2008, pp. 331–336.

[9] B. Bhattacharya and S. S. Bhattacharyya, “Parameter-
ized dataflow modeling for DSP systems,” IEEE Trans-
actions on Signal Processing, vol. 49, no. 10, pp. 2408–
2421, October 2001.

[10] E. A. Lee and D. G. Messerschmitt, “Static schedul-
ing of synchronous data flow programs for digital signal
processing,” IEEE Trans. Comput., vol. 36, no. 1, pp.
24–35, 1987.

[11] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peper-
straete, “Cyclo-Static Dataflow,” IEEE Transactions on
Signal Processing, vol. 44, no. 2, pp. 397–408, February
1996.

