
Design of an Embedded Low Complexity Image Coder

using CAL language

Khaled Jerbi, Mickaël Raulet, Olivier Déforges, Mohamed Abid

To cite this version:

Khaled Jerbi, Mickaël Raulet, Olivier Déforges, Mohamed Abid. Design of an Embedded Low
Complexity Image Coder using CAL language. Conference on Design and Architectures for
Signal and Image Processing (DASIP) 2009, Sep 2009, Sophia Antipolis, France. 2009. <hal-
00440484>

HAL Id: hal-00440484

https://hal.archives-ouvertes.fr/hal-00440484

Submitted on 10 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00440484

1

Design of an Embedded Low Complexity Image Coder using CAL language

Khaled JERBI
1
, Mickaël RAULET

2
, Olivier DEFORGES

2
, Mohamed ABID

1

1 CES Lab/ENIS Sfax, Route Sokra KM4 BP W 3038 Sfax, Tunisie
2 IETR/INSA Rennes, 20 Av des Buttes de Coësmes 35 043 Rennes Cedex, France

Khaled_jerbi@yahoo.fr, Mickael.raulet@insa-rennes.Fr, Olivier.deforges@insa-rennes.fr, Mohamed.abid@enis.rnu.tn

Abstract

The increasing complexity of image codecs and the
time to market requires a high level design. Caltrop
Actor Language (CAL) is a domain-specific language
that provides useful abstractions for dataflow
programming with actor. It has been chosen by the
ISO/IEC standardization organization in the new
MPEG standard called Reconfigurable Video
Coding. This framework is adopted to design a
multitude of codecs by combining actors. We present
in this paper the specification and synthesis of the
image coder LAR (Locally adaptive resolution) using
the CAL framework. An HDL description and
generation tools are used. The results show that such
a high level design is possible. The quality of the
resulting decoder implementation turns out to be
better than that of a VHDL reference design.
 In the following, the main parts of the LAR coder
will be presented; we will introduce the basic notions
of the CAL language and its infrastructure (edition,
simulation and HDL synthesis tools) and the results
will be discussed.

1. Introduction

MPEG has produced several video coding standards
such as MPEG-1, MPEG-2, MPEG-4 Video, AVC
and SVC. However, the past monolithic specification
of such standards (usually in the form of C/C++
programs) lacks flexibility and does not allow to use
the combination of coding algorithms from different
standards enabling to achieve specific design or
performance trade-offs and thus fill, case by case, the
requirements of specific applications.
So as to overcome the limitations intrinsic of
specifying codecs algorithms by using monolithic
imperative code, Caltrop Actor Language (CAL) [1],
has been chosen by the ISO/IEC standardization

organization in the new MPEG standard called
Reconfigurable Video Coding (RVC) (ISO/IEC
23001-4 and 23002-4). RVC is a framework allowing
users to define a multitude of different codecs, by
combining together actors (called coding tools in
RVC) from the MPEG standard library written in
CAL [2], that contains video technology from all
existing MPEG video past standards (i.e. MPEG- 2,
MPEG- 4, etc.). CAL is used to provide the reference
software for all coding tools of the entire library. The
originality of this paper is the application of the CAL
and its associated tools on an image coder. The
architectures design was more much faster
comparing with an HDL development, while leading
to efficient implementation solutions.

In the next part, the state of the art will be presented.
The part 3 will briefly introduce the most important
original points of the LAR coder. In the part 4 the
CAL language and its associated tools will be
detailed. Part 5 will show the developed architectures
of the Flat LAR and the obtained results. The paper
will be closed by presenting the conclusion and the
perspectives of further works.

2. State of the art

The use of the CAL language and CAL2HDL tool for
HDL generation has increased since the publication
of the interesting primary implementation results [3].
Xilinx was the first company adopting the CAL
approach to generate IPs for complex applications
[7]. In MPEG community, the RVC is currently
under development as the part of MPEG-B and
MPEG-C standards. An abstract decoder is built as a
block diagram in which blocks define processing
entities called Functional Units (FUs) and
connections represent the data path. RVC provides
both a normative standard library of FUs and a set of
decoder descriptions expressed as networks of FUs.
Such a representation is modular and helps the
reconfiguration of a decoder by modifying the

2

topology of the network. RVC mainly focuses on
reusability by allowing decoder descriptions to
contain common FUs across standards. The MPEG-4
SP decoder has already been developed, tested and
compared with the same decoder developed directly
in HDL for more details of this comparison see [3].

In Europe, some research laboratories are using the
framework to design image processing co-processors.
The main application is a smart camera for bar code
reading [4].

In the INSA of Rennes (France), the IETR group
laboratory is working on an original co-design tool of
image processing architectures generation called
PREESM [5]. This tool aims at a mixed (HW and
SW) architecture generation that is why an equivalent
tool to CAL2HDL called CAL2C has been developed
for an automatic transformation from CAL to C and
the compiler is actually being optimized.
Consequently, starting with a CAL description of an
application, PREESM would be able to classify the
actors into HW and SW ones and automatically
generate an HDL code (for HW actors) and a C code
(for SW actors).

Based on the interesting results of the CAL and
associated tools approach, we proposed to apply it on
the LAR coder: an original image coder developed in
the IETR laboratory. In addition, some LAR
functions’ architectures have been implemented and
tested using a direct VHDL development. That is
why we aimed at comparing the results with those
using a higher level conception method (CAL
language development and automatic
transformations). The principle of the LAR coder is
presented in the following.

3. LAR coder

The LAR method [6] relies on the idea that the
resolution can be locally adapted to activity: when
local luminance remains uniform, the resolution can
be low, whereas for high activity areas, good image
representation requires a finer resolution. The second
principle in the LAR method relies on the fact that an
image can be seen as the superposition of two
complementary components:

I = I + (I – I)

 E
 (1)

I represents the image global information (local
average value for instance), estimated on a given

support, and E is the local variation around it (say
local texture). The range of E is dependent on two
main factors :
1) the image local activity,
2) the support dimension of I .
Moreover, if we assume that an image can be roughly
seen as the composition of homogeneous areas and
contours, then the sole adaptation of the support leads
to low dynamic range of E in uniforms areas. On the
other hand, E dynamic range will be wide on
contours as soon as the support of I is superior to one
pixel.

In connection with the previous remarks, the main
concepts of the LAR method rely on a two layers
codec: the first layer called FLAT LAR represents
the global information, whereas the second stage,
called error spectral coder, provides the local texture.
By construction, the LAR method enables two layers
of scalability. Figure 1 shows the associated global
scheme.

Original Flat Flat low resol.
Image coder decoder image

 Spectral coder Spectral
 decoder

 Middle/high
 Resol. image

Fig.1. Global LAR scheme: codecs FLAT + spectral layers

This work mainly focuses on the synthesis of the first
layer (the Flat LAR). The expression “FLAR” means
that the representation of I in first layer is performed
by local flat approximations. As the objective of this
FLAT codec is only to compress the global image
information, it clearly addresses high compression
rates. The relative image representation aims to
distinguish between contours and the remaining of
the image, and to adapt the support of I such as the
rebuilt image remains visually acceptable and
presents reduced error E especially in uniforms areas.
The support takes here the shape of squared blocks.
The global scheme of the FLAT coder is given on
figure 2. It relies on a variable block size
representation of the image, in which blocks are
filled by their mean gray level value. All data
produced by the different processing steps
(partitioning, prediction errors ...) are further
losslessly compressed by a low complexity entropy
coder.

3

Original Partitioning
image size
 P coder

 mean block
 values DPCM
 LR Adapt. quant

low resol. post
image processing
 ~
 LR

Fig.2. FLAT coder scheme

After LAR presentation, the next part will present the
CAL language used for the description of the Flat
LAR functions.

4. CAL language and tools

The CAL language (Caltrop Actor Language) has
been created in the Ptolemy II project in Berkeley’s
university. It is based on actors oriented dataflow
specification. This specification is not dedicated for a
unique language or platform. The main advantage of
using this language is that it is placed between the C
and the VHDL languages and two open source
softwares have been developed to automate the
transformation of the CAL code to C (CAL2C) and
to VHDL&VERILOG (CAL2HDL). CAL describes
algorithms by using a set of encapsulated dataflow
components called actors communicating with each
others. The topology of the connections between
actors input and output ports constitute what is called
a network of actors. It is expressed by using an XML
dialect known as network language (NL) that also
includes the possibility to includes attributes (i.e.
parameters) that may be different for the instantiation
of the same (parametric) actor in a network of actors.
In addition, some researchers from the IETR
developed plug-ins in the ECLIPSE tool as Graphiti
(http://sourceforge.net/projects/graphiti-editor),
which allows the modeling and the connection of the
actors with graphic instances to obtain the required
networks.

4.1. The language’s main notions

In the following, the CAL main notions will be
detailed:

4.1.1. Actor: An actor is a parametric entity with
inputs, outputs and an internal state. It cannot change
the state of another actor in the network but it can
only communicate by exchanging tokens throw
connected inputs/outputs that is why we consider
CAL as a dataflow language. The execution of an
actor is based on the execution of elementary
functions called actions. The modeling of the actor

states can be done using a finite state machine with
the appropriate priorities if necessary. The general
form of an actor is shown below:

actor mem_mgt (generics) int input ==> int output:
action1
action2
…
end

4.1.2. Action: While executing an action some
tokens are consumed and others are produced
independently from the current state of the actor. The
execution of an action can be controlled by a finite
state machine or by a specified condition using the
“guard” syntax or both of them. The “guard” is an
expression to test the value of an input token or a
local variable.

4.1.3. Priority: If more than one action can be
executed at the same time, it is very important to
define the priority between them so the notion of
priority has been introduced in the language. This
notion is very important for the finite state machines
in case of concurrent actions.

4.1.4. Finite state machine: The actor functioning
can be scheduled using a finite state machine. The
required information is: the initial state, the action
that changes the current state and the next state. If
more than one action can change a state than a
priority is advised.

4.2 CAL associated tools

CAL is supported by a portable interpreter
infrastructure called Open Data Flow environment
(OPENDF) [2].

4.2.1. Simulation: In OPENDF we can simulate a
hierarchical network of actors. We can use the
Graphiti editor (http://sourceforge.net/projects/
graphiti-editor) to create networks of actors in DDL
format.

4.2.2. Hardware synthesis with CAL2HDL:
The CAL to HDL conversion is done using the
CAL2HDL tool which makes the following
conversion steps: After parsing, CAL actors are
instantiated with the actual values for their formal
parameters. The result is an XML representation of
the actor which is then precompiled (transformation
and analysis steps, including constant propagation,
type inference and type checking, analysis of data

4

flow through variables...), represented as a sequential
program in static single assignment (SSA) form
(making explicit the data dependencies between parts
of the program) [7]. Then follows the synthesis stage
which turns the SSA threads into a web of circuits
built from a set of basic operators (arithmetic, logic,
flow control, memory accesses and the like). The
synthesis stage can also be given directives driving
the unrolling of loops, or the insertion of registers to
improve the maximal clock rate of the generated
circuit. The final result is a Verilog file containing
the circuit implementing the actor, and exposing
asynchronous handshake style interfaces for each of
its ports. These can be connected either back-to-back
or using FIFO buffers into complete systems. The
FIFO buffers can be synchronous or asynchronous,
making it easy to support multi-clock-domain
dataflow designs.

The connection between actors and FIFOs is
generated using an Intellectual Property developed
with Xilinx’s Actor/DataFlow compiler which
generates I/O conform to a protocol that is highly
compatible with standard FIFO interfaces with First
Word Fall Through (FWFT). Each interface is
composed of a small number of individual signals
providing a simple handshake protocol which ensures
reliable, in-order, transfer of data values (tokens)
across the interface. These signals and their
definition in table 1.

Signal Description Direction Width

DATA N-bit data signal
containing token value

Producer to
consumer

N bits

SEND 1-bit value indicating
that the value on
DATA is valid

Producer to
consumer

1 bit

ACK 1-bit acknowledge
signal indicating that
the token on DATA is
consumed

Consumer
to producer

1 bit

RDY 1-bit signal if asserted
the consumer is
indicating that an
ACK will be provided
immediately

Consumer
to producer

1 bit

Table1: Interface signals definitions

The incorporation of Xilinx’s Actor/DataFlow
compiler generated IP [8] into a system at the
electrical level requires very little logic. As shown
below, any system which is capable of
communicating via traditional FIFO memory
protocols can be connected to the generated IP by
means of a small number of combinatorial gates. The
figure 3 presents the signal level view.

Fig.3. Signal level view

The LAR coder and the CAL framework are now
presented. In the following we will detail the
functioning of the Flat LAR, present the designed
architectures and show the obtained results.

5. The Flat LAR design and test

The objective was to achieve the flat LAR
architecture using the CAL language. We supposed
that we read the original image pixel per pixel. As the
partitioning and the mean block values treatments are
independent, we proposed to design them in parallel
in a first stage which precedes a selection stage and
the DPCM one.

5.1. Flat LAR Principle

As presented previously, the Flat LAR is composed
of 3 main parts: the partitioning, the block mean
value and the DPCM. These parts are detailed in the
following.

5.1.1. Partitioning and block mean value:

-Partitioning: Every system relying on a variable
block size representation of images induce an activity
criterion (or homogeneousness) and a particular
partition topology [9]. In the following, we consider
the Quadtree partition P[Nmax …Nmin] , in which Nmax

and Nmin respectively represent the maximal and
minimal allowed block sizes, expressed as power of
2. I(x , y) denotes a pixel in the image with
coordinates (x , y), and I(bN(i, j)) is the block bN(i , j)
in I such as :

bN (i,j) = (x,y) ∈ Nx x Ny | N x i ≤ x ˂ N x (i+1),

 N x j ≤ x ˂ N x (j+1) (2)

Among all existing coding techniques, some of them
also consider an image partitioning. For instance, the
intra mode of MPEG4-AVC enables two sizes for
blocks, i.e. 4 and 16.
It can be also seen as a P[16,4]

 Quadtree partition. The
block size in AVC is selected according to
distortion/rate criteria, from a PSNR point of view

5

[10]. Other methods involve a finer partitioning such
as tree decomposition solutions: the decomposition
starts at the highest level of the tree (maximal size),
and a node is decomposed into four sons since the
activity threshold is exceeded. Several
homogeneousness criteria have been proposed, [11],
[12], but in most of cases they rely on the estimation
of L1 or L2 norms distance between a given block and
its sons. In our approach, we have adopted a different
criterion, as the notion of activity is closely here
associated to the presence of contours or not. Thus,
the activity estimation is performed by a
morphological gradient (difference between the
maximal and minimal values inside a block). We
consider the Quadtree partition P[Nmax…Nmin]

 .
The sizes image directly provides a coarse image
segmentation map: blocks of size Nmin are mainly
located upon edges and highly textures areas of the
image. We will show in the following that this
feature enables an adapted quantization in the coding
process.
Mean block value: A low resolution image LR is
reconstructed by representing each block by its mean
value. Consequently, for each pixel p(x,y) we get :

����, �� = 1

 � � ���

� ∗
 + � ��

� ∗

���

���

���

���
+ ��

 With N=size(x,y) (3)

5.1.2. Block mean value encoding by DPCM
approach:

- Block mean value quantization: Compression
techniques relying on distortion/rate optimization try
to find the best compromise between the coding cost
and global errors, but only from a PSNR or MSE
point of view, without any consideration about the
human vision. Nevertheless, experimentations have
demonstrated that this human eye is much less
sensitive to luminance and chrominance variations in
areas such as edges (high visual frequencies) than in
uniform areas (low visual frequencies). This principle
is simply used in our coding scheme by performing a
quantization adapted to the block size. Let qN be the
quantization step for blocks of size N. Then using a
set of values, such as qN= (qN / 2) / 2, leads to a
similar visual quality in the image.

- Block gray level mean value prediction: The block
mean value encoding is directly realized in the spatial
domain, by a DPCM (Differential Pulse Coding
Modulation) approach. This choice has been firstly
motivated by the simplicity of the coding process,
requiring only one regular image scan. Secondly, the
block representation provides an interesting a priori
about activity areas, which can be useful to adapt
prediction. Figure 4 shows the principle of the
DPCM.

 X + Σ E Quantization Ê
 -

 Prediction Z-1
 Xp

 Fig. 4. The DPCM principle

 If we consider the 3 neighbors of the X pixel as
presented in figure 5 then the predictor is given by
(4):

Fig. 5. Neighbor pixels for the DPCM

 A if |B-C| ˂ |A-B|
Xp=
 C Else (4)

5.2 Existing architecture

In the beginning, the LAR coder has been developed
in C language and the Flat LAR was implemented on
TI TMSC6416 DSP running at 400 MHZ with 1 MO
of internal memory [9]. Then, aiming at an FPGA
implementation, a dedicated architecture with limited
latency and memory requirement was designed in
VHDL (figure 6). A synchronous system with a data
flow rate of one pixel incoming and out coming per
each clock cycle was imposed. The whole
architecture was finally improved by pipelining the
DPCM functioning. The results are summarized in
table 2 below:

 Image size

64x64 352x288

Internal memory (octet) 684 3470

4inputs LUTs for logical
operations

1166 2463

Frequency (MHZ) 45.8 33

Processing time (ms) 0.09 3.1

Latency time (µs) 18.6 75

Table2: Synthesis results of the existing architecture

6

5.3 Achieved architecture

The different actors realizing the Flat LAR functions
have been developed in CAL language. Every stage
of the coder was simulated independently. When all
stages were validated, we worked on decreasing the
complexity of the computing actors by separating the
treatment FUs from the data management FUs
through the development of two data management
actors that receive the pixels values, store them and
send them in 2X2 blocks. We used this separation
because the estimation results of the 2X2 blocks are
used for the estimation of the 4X4 and 8X8 blocks.
Finally we assembled all the actors in a global
network using Graphiti as shown in figure 7.

In the first stage, the min, max and mean actors will
compute and send the results without saving. The
superposition of 3 max, min and sum actors (figure
7) is explained by the fact of imposing an
architecture using the partial results of some actors to
simplify others. The first max, for example, produces
the maxes of the all the 2X2 blocks of the image. So
to get the max of a 4X4 block, it is easier to compute
the max of its four 2X2 blocks rather than computing
the max of all its 16 values (idem for min and sum
actors).

In the second stage, an actor receives the means and
the size images to generate the mean block image by
placing the means in the adequate blocks as shown in
the following example where a) is a size image, b) is
the RAM containing the means of all the 2X2 and
4X4 blocks and c) is the resulting mean block image:

4 4 4 4 2 2 2 2
4 4 4 4 2 2 2 2
4 4 4 4 2 2 2 2
4 4 4 4 2 2 2 2

a) size image

Means
2X2

14 22 50 9 12 27 43 23

Means
4X4

65 34 - - - - - -

b) Mean values table

65 65 65 65 12 12 27 27
65 65 65 65 12 12 27 27
65 65 65 65 43 43 23 23
65 65 65 65 43 43 23 23

C) Mean block image

In the 3rd stage, the DPCM actor gets the size and the
mean block images as inputs and produces the
quantified errors and the quantified image using the
algorithm presented in 5.1.2.

5.4. Experiments and Results

The achieved architecture has been simulated with
the OPENDF simulator for image sizes of 64x64 and
352x288. This operation took only 3 minutes.

After the simulation, some lines of the CAL codes
have been modified to get synthesizable ones. These
modifications concerned especially the multiplication
and the division operations transformed into left and
right shifts. We also added generic parameters for the
input and output sizes for further dynamic
configurations. The resulting instances were
successfully synthesized into HDL codes using
CAL2HDL. The HDL project manager environment
used was Xilinx ISE Foundation10.1 and the
hardware simulation tools were ModelSim Xilinx
Edition 6.3 and ISE simulator (Full version). We
developed the test benches manually by initializing
the different signals shown in table 1 and figure 3
and by generating the stimulus values corresponding
to the sizes.

After compilation, simulation, RTL synthesis and
place & route on the virtex4: xc4vlx15, package
sf363, speed -12, we obtained the results presented in
table 3:

Criteria consumption percentage
64x64 352x288 64x64 352x288

Number of BUFGs 1/32 1/32 3% 3%

Number of External
IOBs

55/240 55/240 22% 22%

Number of LOCed
IOBs

0/55 0/55 0% 0%

Number of Slice
Registers

5812/6144 594/6144 94% 96%

Number of
SLICEMs

428/3072 668/3072 13% 21%

Number of 4 input
LUTs

7423/12288 7946/12288 60% 64%

Table3: Device Utilization Summary

Concerning the time synthesis report we mention that
the maximum frequency obtained is 136.983MHZ for
a 64x64 image corresponding to a minimum period
of 7.30 ns and 130.1 for a 253x288 image
corresponding to a minimum period of 7.6 ns.

A comparison between the CAL method and the
VHDL one will be detailed in table 4. In this table we
will put the output frequency which is a more
significant criterion than the circuit functioning
frequency.

7

 VHDL CAL

64x64 352x288 64x64 352x288

Internal memory
(octet)

684 3470 3168 13088

4inputs LUTs for
logical operations

1166 2463 7423 7423

Frequency
(MHZ)

45.8 33 8.5 8

Processing time
(ms)

0.09 3.1 0.33 11.7

Latency time (µs) 18.6 75 26.6 27.8

Table4: CAL & VHDL performances comparison

We expected such difference between the results but
our obtained performances remain acceptable if we
consider the area consumption and the advantages of
a high level design in terms of conception time and
functions management.

6. Conclusion and perspectives

The central points of this paper can be summarized as
follows:

Considering the new MPEG RVC coding method,
the CAL language was the most adequate candidate.
The realized works were very successful in terms of
conception time and implementation results. Our task
was to apply the approach on the LAR coder,
previously developed in VHDL, to verify if the
results of a higher level conception method are
acceptable.

The paper presented: The state of the art, the LAR
codec and its functioning principle, the CAL
language and its associated tools, the realized
architectures and the implementation time and area
results.

These results were very encouraging since they are
near those obtained with an optimized code
developed directly in VHDL. There are many
optimization solutions in progress to improve the
results especially in terms of area consumption.
Architecture in progress will pipeline the different
steps of the DPCM (estimation, error quantification
and quantified image filling) for a better functioning.
This architecture will be the same used to develop the
Flat LAR directly in VHDL.

References

[1] Johan Eker and Jorn Janneck, ”CAL Language Report”,
Tech.Rep.ERL Technical Memo UCB/ERL M03/48,
University of Califonia at Berkeley, Dec. 2003.

[2] Shuvra S. Bhattacharyya, Gordon Brebner, Jörn W.
Janneck, Johan Eker, Carl von Platen, Marco Mattavelli
and Mickaël Raulet, “OpenDF – A Dataflow Toolset for
Reconfigurable Hardware and Multicore Systems” in
Proceedings of the Swedish Workshop on Multi-Core
Computing, November, Ronneby, Sweden, 2008.

[3] Jörn W. Janneck, “Notes on an actor language” in 7th
Ptolemy Miniconference, 13 February 2007.

[4] Richard Thavot, Romuald Mosqueron, Mohammad
Alisafaee, Christophe Lucarz, Christophe Lucarz and
Julien Dubois, “Dataflow design of a co-processor
architecture for image processing” in Proceedings of the
Workshop on Design and Architectures for Signal and
Image Processing (DASIP 2008), Bruxelles , Belgium,
November 2008.

[5] Christophe Lucarz,Marco Mattavelli, Matthieu Wipliez,
Ghislain Roquier, Matthieu Wipliez, Mickaël Raulet, Jörn
W. Janneck , Ian D. Miller and Dave B. Parlour
“Dataflow/Actor-Oriented language for the design of
complex signal processing systems” in Proceedings of the
Workshop on Design and Architectures for Signal and
Image Processing (DASIP 2008), Bruxelles , Belgium,
November 2008.

 [6] Déforges O., Babel M., Bédat L., Ronsin J.,
“[09/07/2009 11:06:08] Mickael Raulet: fulltext access
Color LAR codec: a color image representation and
compression scheme based on local resolution adjustment
and self-extracting region representation”, IEEE
Transactions on Circuits and Systems for Video
Technology 17, 8 (2007) 974-987.

[7] Jörn W. Janneck, Ian D. Miller, David B. Parlour,
Ghislain Roquier, Matthieu Wipliez, and Mickaël Raulet,
“Synthesizing hardware from dataflow programs: An
MPEG-4 simple profile decoder case study” in Proceedings
of IEEE Workshop on Signal Processing Systems, SiPS
2008, 2008.

[8] Xilinx, “Xilinx Actor/DataFlow interfacing and
protocol”, ASTG technical Memo Programming Solutions
Group, Xilinx, May 27th 2008.

[9] Olivier Déforges and Marie Babel “LAR method: from
algorithm to synthesis for an embedded low complexity
image coder” in Proceedings of the 2008 IEEE 3rd
International Design and Test Workshop, IDT'08,
Monastir: Tunisia (2008).

[10] H264 MPEG-4 10 AVC, “Joint committee draft (cd),”
Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T
VCEGn 3rd Meeting: Fairfax, Virginia, USA, May 2002.

[11] C.A. Shaffer and H. Samet, “Optimal quadtree
construction algorithms,” Computer Vision, Graphics,
Image processing, vol. 37, October 1987.

[12] P. Strobac, “Tree-structured scene adaptive coder,”
IEEE Trans. On Communication, vol. 38, no. 4, April
1990.

8

Fig. 6. Flat LAR: proposed architecture

Fig. 7. Flat LAR: Realized architecture

