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Sébastien Aubert, Fabienne Nouvel, Amor Nafkha

To cite this version:
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Abstract—It has been widely shown that the Sphere Decoding
can be used to find the Maximum Likelihood (ML) solution with
an expected complexity that is roughly cubic in the dimensions
of the problem. However, the computational complexity becomes
prohibitive if the Signal-to-Noise Ratio is too low and/or if the
dimension of the problem is too large. That is why another
technique denoted as Fixed-complexity Sphere Decoder (FSD)
is an interesting approach. This algorithm needs a preprocessing
step, and in this paper the QR-Decomposition-based prepro-
cessing technique, which is not inconsequential, will be studied.
Two different techniques are exposed, including the classical
Gram Schmidt orthonormalization process. Their computational
complexities and their impacts on the FSD computational com-
plexity are studied. In the LTE context, the overall computational
complexities of the two detection techniques are quantified and
are shown to be dependent on the constellation size.

Index Terms—MIMO detection, Sphere Decoder, QR Decom-
position, Householder, LTE.

I. INTRODUCTION AND PROBLEM STATEMENT

One of the main challenges in receiver design for wireless
communication systems lies in the non-orthogonality of the
transmission channel which implies a performance degradation
of the system due to Inter-Layer Interferences (ILI). So, to
ensure high reliability of data transmission, a special attention
has to be paid to the receiver block. The system model, made
of nT and nR transmit and receive antennas respectively, reads

y = Hx + n, (1)

where x ∈ CnT and y ∈ CnR denote the system input and
output respectively, the matrix H ∈ CnR×nT representing
the equivalent channel matrix, and n ∈ CnR the additive
white gaussian noise. Typically, the noise components are
independent and identically distributed as zero-mean Gaussian
random variables with a variance σ2. The entries of x are
assumed to be uniformly distributed over a finite set of
symbols ξnT . The channel matrix H is assumed to be perfectly
known at the receiver end.
The optimum Maximum Likelihood (ML) detection [1] con-
sists in finding the signal vector x̂ ∈ ξnT that minimizes the
Euclidean distance with respect to the received signal vector
y. x̂ is the closest lattice point [2] in the Euclidean space

x̂ = argmin
x∈ξnT

‖y −Hx‖22. (2)

An exhaustive search over all feasible elements ξnT is nec-
essary to solve ML problems (2). However, the computa-
tional complexity is exponential in the number of possible
constellation points, making this technique unsuitable for
practical purposes when aiming at high modulation orders and
numbers of transmit antennas. Nevertheless, for low dimension
problems with low modulation order schemes such as BPSK
and QPSK, exhaustive search methods have been shown to be
feasible [3]. For higher problem dimension, the ML detection
problem (2) can be resolved with a reasonable complexity
using an efficient search method like the universal lattice
decoding algorithm [4], also called Sphere Decoder (SD). The
SD search algorithm is based on the Finke-Pohst enumeration
to explore all the lattice points inside a hypersphere centered at
the received symbol vector [5]. The interest in lattice decoding
has steadily grown in the last few years. One of the most
efficient known SD algorithms has been proposed by Viterbo
and Boutros (VB) in [6]. However, one important drawback
in the VB algorithm and other similar SD algorithms is the
choice of the initial value of the search radius. If this radius is
chosen too small, there may be no solution for the algorithm
(no point inside the hypersphere) and if the radius is chosen
too large, the number of explored points may be very high and
the algorithm will be inefficient, acting like the ML algorithm.
Although there are some methods for deciding on the initial
value of the radius, there is not yet any automatic method
that works well in all different applications. In all proposed
methods, it is still possible that no valid point is found inside
the hypersphere. In those cases, the search procedure must
be repeated with a larger radius. This reiteration considerably
increases the computation time. In some cases, like signal
detection in fading channels, the choice of this radius is even
more difficult [6]: because of the rapid changes in the channel
condition, the initial value of this radius must be determined
more frequently.
The average complexity of the SD algorithm is shown to be
polynomial (roughly cubic) in the number of transmit antennas
over a certain range of Signal-to-Noise Ratio (SNR) and
number of transmit antennas, while the worst case complexity
is still exponential [7].
From a hardware implementation point of view, the SD
algorithm exhibits two major weaknesses. First, its complexity



coefficients can become large when the problem dimension is
high, i.e. at the spectral efficiency demanded by future devices.
Second, the variance of its computation time can also be large,
leading to undesirable highly variable decoding delays.
For the sake of lower computational complexity and simplic-
ity for the hardware implementation, the use of the Fixed-
complexity SD (FSD) is interesting. This detector has been
previously proposed for the detection in uncoded MIMO
systems using Quadrature Amplitude Modulation (QAM) con-
stellations [8]. It overcomes the two main drawbacks of the
SD from an implementation point of view, i.e. its variable
complexity depending on the noise level, and the sequential
nature of its tree search phase.
The next Section briefly reviews the state of the art in the
existing FSD algorithm. Subsequently, in Section III, the con-
tribution is exposed with the description of two efficient pre-
processing methods through their computational complexity
and stability [9]. To demonstrate the efficiency of our approach
to reduce the computational complexity of the FSD, several
simulation results and comparative analysis are provided in
Section IV. The paper concludes with a summary in Section
V.

II. FIXED-COMPLEXITY SPHERE DECODER

The FSD was introduced in [8], [10] to overcome some of
the problems faced by the original SD in relation to its hard-
ware implementation. Specifically, it addressed the variable
complexity of the SD and the sequentiality of certain parts
of the SD algorithm which made a pipelined implementation
difficult. The FSD can in essence be described as a partial
search through a small subset of the constellation using a
specific detection ordering. In [8], it was shown that the FSD
achieves maximal diversity in reception when applied to the
two by two independent and identically distributed Rayleigh
fading multiple antenna channel.
The FSD performs a search over a fixed number of lattice
points Hx, generated by a small subset S included in ξnT ,
around the received vector y. The transmitted vector x which
belongs to S associated to the smallest Euclidean distance is
then selected as the estimate (2).
The processing and preprocessing parts will be presented in
the following Subsections.

A. Preprocessing of FSD

The channel matrix H is first decomposed using a QR
Decomposition (QRD) method. Hence, H = QR, where Q is
a nR × nT unitary matrix, i.e. QHQ = I, and R is a nT × nT
upper triangular matrix. Then, the received symbol vector y
is multiplied with QH prior to the symbol detection step, and
(1) reads

QHy = QHQRx + QHn = Rx + QHn. (3)

The matrix R structure being upper triangular, the transmitted
symbol vector x could be estimated from the vector QHy
denoted as ỹ and the matrix R by employing the Gauss elim-
ination algorithm [9] or the proposed Householder algorithm

(see Section III). Denoting QHn as ñ, (3) reads

ỹ = Rx + ñ. (4)

Note that Q being an unitary matrix, the covariance of the
noise term remains unaffected.
Assuming the QRD is realized and due to the shape of R, (1)
can be written in an iterative monotonically increasing form

x̂ = argmin
x∈ξnT

‖ỹ −Rx‖22 = argmin
x∈ξnT

nT∑
i=1

δi ≤ C (5)

where C is the sphere constraint and δi denotes the Partial
Euclidean Distance (PED) corresponding to the symbol trans-
mitted on the i-th layer and such as

δi = ‖ỹi −
nT∑
j=i

rijxj‖22 (6)

for all 1 ≤ i ≤ nT .

B. Processing of FSD

Thanks to the PED introduction, the optimal symbols vector
search can be depicted as a tree search [11], with the first node
corresponding to nT -th symbol at the top level.
Figure 1 illustrates the tree construction for two transmit
antennas. The FSD algorithm idea is to apply a full ML search
at the top layer and a linear equalizer on the rest of the layers.
Concerning the tree exploration, whether the sphere constraint
is respected or not, the following explored symbol vector is
tested by stepping down the tree from the root node, according
to the depth-first search principle. The Reference FSD (RFSD)
algorithm is detailed in [12].
The basic principle induces some optimizations such as
Schnorr-Euchner (SE) enumeration which was introduced
in [13], [2]. It was shown in [14] that enumerating the symbols
at the top-level of the tree in an ascending order according
to their distance to the Babai point [2] will expedite the
tree search, as depicted in Figure 1. Thus, the processing
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Fig. 1. Tree representation of FSD.

complexity is decreased by reducing the number of visited
nodes. In addition, the problematic setting of a proper initial
radius becomes useless: once the Babai point is obtained, the
radius is shrunk to the total computed Euclidean distance.
The processing complexity can also be decreased through



the preprocessing step, which is presented in the following
Subsections. The preprocessing algorithm stability [9] point of
view is also an important aspect since the loss of orthogonality
in the matrix Q (due to the round-off error) induces ILI and
reduces the FSD performance.
In this paper, Gram-Schmidt (GS) orthogonalization and
Householder (HH) transformation are described as well as
their computational complexities and their impact on the
processing computational complexity.

III. ENHANCED PREPROCESSING STEP

A. Gram-Schmidt

The GS algorithm [9] is an orthogonalization procedure
to get an orthonormal basis Q =

(
q1, q2

)
from any invert-

ible matrix H =
(
h1, h2

)
, as described in Figure 2 which

geometrically illustrates the first two steps of the orthog-
onalization procedure. The (h1, h2) basis is transformed

h1 h2

q2
projh1(h2)

Fig. 2. GS orthogonalization principle.

into the orthonormal (q1, q2) basis thanks to the orthogonal
projection of h2 onto the subspace generated by q1 (which
is the same as the subspace generated by h1). q2 is then
defined as h2 − projh1(h2), with proju(v) the projection of
v on u such that proju(v) = uHv

uHu
u. The obtained set of

orthogonal vectors finally has to be normalized, so that a set
of orthonormal vectors is obtained.
With this technique, the matrix Q is determined first, then the
matrix R is deduced using Q and H. It can be shown that

R =
(
r11 r12
0 r22

)
, with r11 ∈ R+ and r12, r22 ∈ C.

Another technique, which results in real positive coefficients
rather than complex ones, may be used.

B. Householder

The HH algorithm [9] is a transformation procedure to
get an upper triangular matrix R, as described in Figure 3
which geometrically illustrates the first two steps of the
reflection procedure. A Householder matrix, which is also

h1 h2

span(h1)
⊥

Ph2

Fig. 3. HH transformation principle.

known as a Householder reflector, is a matrix of the form

Pv = I− 2vvH

vHv
, with v ∈ C2∗. The application of Pv to a

vector x yields Pvx = x− 2vHx
vHv

v = x− 2 · projv(x).
Figure 3 illustrates the reflection of h2 with respect to
the hyperplane span(h1)⊥. Householder matrices are
a mathematical tool for introducing zeros into vectors,
such as any matrix can be made upper triangular with an
iterative processing, without need of computing explicitly the
Householder matrix.
With this technique, the matrix R is determined first, then
the matrix Q is deduced using R and H. It can be shown

that R =
(
r11 r12
0 r22

)
, with r11, r22 ∈ R+ and r12 ∈ C.

The detector, associated with the HH-based preprocessing,
which takes into account the occurrence of a real positive
coefficient in the matrix R is denoted as the Enhanced FSD
(EFSD). Even if the HH algorithm implies a fixed increase
complexity of the QRD, the EFSD complexity is largely
decreased compared to the RFSD. In Section IV, the overall
complexity changes will be quantified.

C. Householder and Gram Schmidt numerical stability
It has been shown in [9] that the GS-based QRD compu-

tational complexity is lower than the HH-based QRD’s. In
particular, the GS method produces Q explicitly unlike the
HH method which holds the matrix Q in factored form.
Nevertheless, it is shown in Figure 4 that the GS-based
QRD produces a loss of orthogonality of the matrix Q
(‖QHQ− I‖F 6= 0, where ‖·‖F denotes the Frobenius norm),
especially in ill-conditioned channel matrix case, commonly
observed in LTE systems because of the presence of correla-
tion between antennas.
The ratio

Cond(H) =
|λmax|
|λmin|

(7)

is called condition number, with λmax and λmin respectively
denoting maximal and minimal eigenvalues of H. It measures
the degree of singularity of H. In particular, when Cond(H)
is large, the matrix H is ill-conditioned and when Cond(H) is
very small (close to 1) the matrix H becomes more orthogonal.
In Figure 4, the ratio of the loss of orthogonality with the GS
technique by the loss of orthogonality with the HH technique
is depicted versus the condition number, in a complex 5 × 5
matrix case. Thus, the HH tehnique is more stable than the
stable version GS technique [9], even in the case of a QRD
of a quasi-orthogonal matrix.
In the sequel, the two preprocessing results are developed and
compared, in particular in terms of computational complexi-
ties.

D. Householder and Gram Schmidt complexities
It can be shown that GS orthonormalization of

H =
(
h11 h12

h21 h22

)
gives H = QR with

Q =

(
h11
‖h1‖2

h∗21
‖h1‖2

h21
‖h1‖2

−h∗11
‖h1‖2

)
, (8)
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R =
(
‖h1‖2 h∗11h12 + h∗21h22

0 h12h21 − h11h22

)
. (9)

The HH reflection results are given below

Q =

 h11
‖h1‖2

h
′
21

‖h′2‖2
h21
‖h1‖2

h
′
22

‖h′2‖2

 , (10)

R =
(
‖h1‖2 k‖h1‖2

0 ‖h′2‖2

)
, (11)

with k = hH
1 h2

hH
1 h1

and h
′

2 = h2 − kh1.
A complexity change due to HH-based QRD and to EFSD
adaptation can be quantified, in order to come to a conclusion
for the overall complexity evolution in LTE context.
In Table I, an approximation (real additions are ignored) of
the computational complexity in terms of real multiplications,
denoted as MUL, of the GS-based and the HH-based QRD
are presented in a complex two by two MIMO case.
Thanks to the occurrence of a real positive coefficient in the

GS HH

94 141

TABLE I
QRD COMPLEXITIES.

matrix R diagonal, during the preprocessing step (instead of a
complex coefficient), the processing complexity is impacted.
More generally, the FSD computational complexity is variable
and depends on the number of explored branches of the tree,
called in this paper Paths Explorations (PE). A PE denotes
the path from the root to a leaf of the tree (see Figure 1).
In Table II, RFSD and EFSD computational complexities in
terms of MUL are given for different PE numbers.

IV. SIMULATION RESULTS

In this Section, simulation results in terms of complexity
and performance are shown.

PE RFSD EFSD

2 68 38
10 292 190
40 1132 760

TABLE II
FSD COMPLEXITIES.

A. Fixed Complexity Sphere Detector complexity overview in
LTE context

The overall computational complexities in terms of MUL
of the reference GS-based RFSD (GS-RFSD) and of the
proposed HH-based EFSD (HH-EFSD), in different PE
numbers cases, are shown in Table III.
The fixed computational complexity increase in preprocessing

PE GS-RFSD HH-EFSD

2 162 187
10 386 339
40 1226 909

TABLE III
QRD AND FSD COMPLEXITIES.

step and the variable computational complexity decrease in
the detection step imply a switching point between the
GS-RFSD and the HH-EFSD techniques. When less than
5 PE are performed, the computational complexity of the
GS-RFSD is the lowest, whereas when more than 5 PE are
performed, the computational complexity of the HH-EFSD
is the lowest. In order to highlight this threshold, the ratio

2 4 6 8 10 12 14 160.85
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Paths explorations
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Fig. 5. Complexity gain between GS-RFSD and HH-EFSD versions.

of overall computational complexities of GS-RFSD by
overall computational complexities of HH-EFSD is plotted in
Figure 6 and shows that the overall computational complexity
gain grows with the number of PE. The plot confirms that
the proposed technique overall computational complexity is
lower than the reference technique as soon as 5 PE or more



are needed. Therefore the proposed detector is more efficient
in term of computational complexity for the 10 PE calibration
point, which is considered to be the medium PE number in
LTE context [15].

B. Fixed Complexity Sphere Detector performance overview
in LTE context

Considering the proposed detector, this solution perfor-
mance is compared to the ML and the reference detector
performances. The three techniques are plotted in Figure 7
without channel coding. The GS-RFSD and the HH-EFSD
performances in terms of Bit Error Rate (BER) are superposed
in order to check the equivalence of the two methods.
Simulation conditions of ML, GS-RFSD and HH-EFSD are
given in Table IV. Figure 7 shows how curves are lay-

Parameter Value

Number of sub-carriers 1
Code rate 1
Mapping LTE

Channel simulation MIMO 2× 2

Rayleigh
Channel estimation Perfect

Number of simulated channels 105

TABLE IV
SIMULATION PARAMETERS.
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64-QAM modulation
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Fig. 6. ML, GS-RFSD and HH-EFSD techniques comparison for QPSK,
16QAM and 64QAM modulations.

ered. Therefore, the obtained performances are exactly the
same with GS-RFSD and with HH-EFSD for the announced
complexity. Moreover, it is possible to check the HH-EFSD
performance is very similar to ML performance. Indeed, BER
performances are exactly the same in high SNR case, and a
tiny offset is observed in low SNR case which recalls the FSD
is suboptimal.

V. CONCLUSION

In this paper, the HH-EFSD technique has been presented.
The presented technique performance in terms of BER has
been shown to be very similar to ML technique and its
computational complexity has been shown to be decreased
thanks to the HH-based QRD as soon as 5 or more PE
are needed. This enhancement during the preprocessing step
implies an effective gain of complexity in LTE context in
which it has been shown that the mean PE is higher than
this announced threshold.
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