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In this paper, a sensorless output feedback controller is designed in order to drive the Induction Motor (IM ) without the use of �ux and
speed sensors. Firstly, an observer that uses only the measured stator currents is synthesized to estimate the mechanical variables (speed
and load torque) and the magnetic variables (�uxes) by structurally taking into account the unobservability phenomena of the Sensorless
IM (SIM ) and the parametric uncertainties. Secondly, a current-based �eld oriented sliding mode control, that uses the �ux and the
speed estimates given by the former observer is developed so as to steer the estimated speed and �ux magnitude to the desired references.
Since the observer error dynamic is independent from the known input control and depends on the IM parametric uncertainties, a
kind of separation principle is introduced to guarantee the practical stability of the whole closed-loop system "observer -controller"
("O-C") according to observability and unobservability time variation. A signi�cant benchmark taking into account the unobservability
phenomena of the SIM is presented to show the performances of the whole control scheme against experimental set-up.

1 Introduction

High performance electrical drives based on the use of the IM can be implemented by means of speed/�ux
controllers which rely on �eld orientation concepts `Blaschke et al. (1972)'. Generally speaking, a �eld
orientation algorithm is an output feedback controller based on currents and rotor speed/position
measurements. In such controllers, a shaft encoder or a resolver is usually used to measure the motor
speed. Meanwhile, the presence of this sensor increases the cost and the complexity of the drive system
and reduces the reliability of the overall system. Recently, considerable research e�orts are focused on
the SIM control problem, see `Holtz et al. (2006)' for an exhaustive overview of IM sensorless control
methods. The aim of sensorless techniques is to provide methods of estimating the mechanical speed by
using only electrical applied voltages and line currents, as close as possible to the sensor case. Because
the load torque is in general unknown, the resistances are temperature varying, the rotor �ux and speed
are not measurable, several theoretical and practical solutions have been proposed in the open literature.
For instance, a speed estimation method is proposed in `Tajima et al. (1993)' and incorporated in a
�eld-orientation control scheme. In `Kubota et al. (1994)' an algorithm for simultaneous estimation of
motor speed and rotor resistance is proposed. In `Peresada et al. (1999)', a backstepping output feedback
controller based on an indirect �eld-oriented control is presented. Moreover, estimations of load torque
and angle of rotor �ux are obtained. By using the estimations of load torque and angle of rotor �ux,
the controller provides a global asymptotic tracking of smooth speed and �ux reference trajectories.
In addition, a rotor speed and rotor �ux observer which is adaptive with respect to rotor resistance
is presented in `Lin et al. (2000)'. This observer is combined with a state feedback controller which is
adaptive with respect to the load torque. In `Feemster et al. (2001)' a semi-global exponential rotor
velocity and �ux tracking algorithm is proved assuming the machine parameters are well known and the
rotor �ux is measured. In `Marino et al. (2005)' a sensorless controller based on a speed/�ux observer is
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designed under the assumptions of unknown rotor/stator �uxes but with known and smooth load torque.
This controller guarantees the local exponential rotor �ux tracking with explicit computable attraction
domain. Other results dealing with the SIM control problem without load torque knowledge can be found
in `Marino et al. (2007)'.
On the other hand, removing the speed sensors a�ects the IM observability properties. Important
contributions in this direction have been reported in `Canudas de Wit et al. (2000)', `Ibarra-Rojas et al.
(2004)' and `Ghanes et al. (2006)', where under some operating conditions (low speed) the IM is not
observable. Furthermore, strategies based on IM spatial saliency methods with fundamental excitation
and high frequency signal injection `Holtz et al. (2006)', extended Kalman �lter techniques `Zein et al.
(2000)' and adaptive system approaches `Montanari et al. (2006)' have been studied.

The �rst main contribution of this paper is to design an interconnected observer for the SIM by a
structural consideration of the unobservability phenomena1. It is also shown that this observer enables to
estimate the speed, the load torque and the magnetic variables by using only stator current measurements
according to the observability and unobservability time variation.

Secondly, by using the estimated IM �ux and speed given by the observer, a sensorless control scheme is
designed. This later is based on a combination of �eld oriented control (FOC) methodology and robust
sliding mode technique. Due to parametric uncertainties of the IM and following partially a "separation
principle" introduced in `Atassi et al. (1999)' and `Jankovic et al. (1997)', a practical stability of the
closed loop system "O-C" is achieved according to the ratio between the unobservable and observable time
intervals.

Furthermore, a Sensorless Control Benchmark is designed in order to test and to evaluate the performance
of sensorless controllers, particularly when the IM remains in the unobservable conditions (very low speed:
zero frequency).
This paper is organized as follows. In section 2, the IM model is reminded. In section 3, su�cient conditions
to ensure the observer convergence by taking into account the SIM unobservability phenomena are given.
To achieve the tracking control objective, a sensorless feedback controller combining the FOC and Sliding
Mode techniques is designed in Section 4. In Section 5, the closed loop stability analysis using the proposed
"O-C" scheme is presented. In Section 6, the benchmark and experimental results showing the e�ciency
of the proposed control methodology are given2. Finally, some conclusions are drawn.

2 Observer design under unobservability phenomena of IM

2.1 IM Model

In the (α, β) �xed reference frame, the dynamics of the IM reads



φ̇rα

φ̇rβ

i̇sα
i̇sβ
Ω̇r




=




−aφrα − pΩrφrβ + aMsrisα
−aφrβ + pΩrφrα + aMsrisβ
b(aφrα + pΩrφrβ)− γisα
b(aφrβ − pΩrφrα)− γisβ
m(φrαisβ − φrβisα)− cΩr




+




0 0 0
0 0 0

m1 0 0
0 m1 0
0 0 − 1

J







usα

usβ

Tl


 (1)

where isα, isβ, φrα, φrβ, usα, usβ, Ωr, Tl respectively denote the stator currents, the rotor �uxes, the stator
input voltages, the angular rotor speed and the load torque. While, the subscripts s and r refer to the
stator and rotor. The parameters a, b, c, γ, Υ, m and m1 are de�ned by a = (Rr/Lr), b = (Msr/ΥLsLr),

1see section 2.2 for more details
2The proposed control algorithm is experimentally tested and validated using this Benchmark on an experimental set-up located at
IRCCyN laboratory of Nantes, France
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c = (fv/J), γ =
(

L2
rRs+M2

srRr

ΥLsL2
r

)
, Υ =

(
1− (M2

sr/LsLr)
)
, m = (pMsr/JLr), m1 = (1/ΥLs). In which Rs

and Rr are the resistances, Ls and Lr are the self-inductances, Msr is the mutual inductance between the
stator and rotor windings, p is the number of pole-pairs, J is the inertia of the system (motor and load)
and fv is the viscous damping coe�cient. The control inputs are the stator voltages. Only stator currents
and stator voltages are measured. Furthermore, an operating domain D is de�ned by:
Definition 2.1 : Operation Domain D
Φrα

max, Φrβ
max, Isβ

max, Isβ
max, Ωr

max and Tl
max are respectively the actual maximum values for the �uxes,

currents, speed and load torque such that |φrα| ≤ Φrα
max, |φrβ| ≤ Φrβ

max, |isα| ≤ Isα
max, |isβ| ≤

Isβ
max, |Ωr| ≤ Ωmax

r , |Tl| ≤ Tl
max. In the following, the maximum values of parameter variations will

be also included for the stability analysis.

2.2 Quick Recall on the Observability Phenomena of SIM

The observability phenomena of induction motor has been studied by several authors (see for instance
Canudas de Wit et al. (2000), Ibarra-Rojas et al. (2004)). Following the ideas of these works, we have pre-
sented in Ghanes et al. (2006) some cases under which the induction motor is observable and unobservable.
The problem was to characterize the condition under which the state x of the sensorless induction motor
can be observed from measures (currents). The result is that the induction motor observability cannot be
established in the particular case when the �uxes φrα, φrβ and the speed Ωr are constant even if we use
the higher derivatives of currents. This is a su�cient condition for lost of observability. This operating case
match to the following physically interpretation :
1) when the �uxes are constant (φ̇rβ = φ̇rβ = 0), or equivalently, the excitation voltage is zero (Ωs = 0), it
implies that: pΩr + RrTe

pφ2
d

= Ωs = 0 or: Tem = −KΩr where Tem is the electromagnetic torque and K = p2φ2
d

Rr
.

2) if the speed motor is constant; thus: Tem = (fvΩr + Tl) = −KΩr. This last equation de�nes the unob-
servability curve in the map (Tl, Ωr) with M = p2φ2

d

Rr
+ fv (Figure 1).

-

6

Ωr

Tl

@
@

@
@

@
@

@@

@
@

@
@

@

−M

Figure 1. Unobservability curve in the map (Tl, Ωr) .

Obviously, the observability is lost gradually when we approach this unobservability curve.

2.3 Observer design

This section is devoted to the SIM observer design. As it is already mentioned, this later takes into account
the unobservability phenomena described in section 2.2. The observer design is based on the interconnection
of several observers (`Besançon et al. (1998) and `Besançon et al. (1999)') satisfying suitable properties,
in particular the inputs persistency property (`Besançon et al. (1999)', `Jankovic et al. (1997)'). The main
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idea is to design a set of observers for the whole system from the individual synthesis of an observer for each
subsystem. The key issue is that, for each of this observer, the state of the other subsystems is available.
In this context, the IM model (1) can be rewritten in the following interconnected extended compact form
with parametric uncertainties

Σ :





Σ1 :
{

Ẋ1 = [A1(X2) + ∆A1(X2)]X1 + g1(u, y,X2) + ∆g1(u, y, X2)
y1 = C1X1

Σ2 :
{

Ẋ2 = [A2(X1) + ∆A2(X1)]X2 + ϕ(u, y) + ∆ϕ(u, y)
y2 = C2X2

(2)

where X1 = (isα, Ωr,Tl )T and X2 = (isβ, φrα, φrβ)T are the state of the �rst and the second subsystem re-
spectively. u = [usα, usβ]T and y = [isα, isβ ]T are the input and the output vectors of the whole system, and

A1 =



−γ bpφrβ 0
0 −c − 1

J
0 0 0


 , A2 =



−γ −bpΩr ab
0 −a −pΩr

0 pΩr −a


 , g1 =




m1usα + abφrα

mφrαisβ −mφrβisα
0


 , ϕ =




m1usβ

aMsrisα
aMsrisβ




C1 = C2 =
(
1 0 0

)
.

u ∈ U is the set of admissible inputs and ni is the dimension of each subsystem (n1 = n2 = 3). Tl is
an unknown load torque which is assumed constant. The terms ∆A1(X2), ∆A2(X1), ∆g1(u, y, X2) and
∆ϕ(u, y) represent the uncertain terms of A1(X2), A2(X1), g1(u, y, X2), ϕ(u, y) respectively.

Let us now introduce the following property and de�nition:
Property 2.2 a- Since A1(X2) and A2(X1) are linear, they are respectively globally Lipschitz with respect
to X2, X1.
b- g1(u, y, X2) is Lipschitz with respect to the �ux and uniformly with respect to (u, y) as long as the IM
(1) state remains in D.
c- Due to the fact that the matrix A1 is Lyapunov stable (γ > 0 and c > 0), there exists a positive matrix
S1 > 0 such that AT

1 S1 + S1A1 = −Q where Q ≥ 0.
d- Due to the fact that the matrix A2 is exponentially stable (γ > 0, a > 0), there exists a positive matrix
S2 > 0 such that AT

2 S2 + S2A2 = −I.
Definition 2.3 Let D = detOJ , where OJ = ∂

∂X̃
(O) is the jacobian observability matrix

and X̃ = (isα isβ φ̂rα φ̂rβ Ω̂r T̂l)T . The IM associated observability subspace O is generated by
O =

(
isα isβ i

(1)
sα i

(1)
sβ i

(2)
sα i

(2)
sβ

)T
.

Dmin is the smallest value of D chosen such that the IM is in the observable area.
Now, from property 2.2, de�nition 2.3 and taking into account the unobservability phenomena of the SIM
described in section 2.2, su�cient conditions are given in the sequel such that system (3) is a practical
exponential observer for the whole system (2).

O :





O1 :





Ż1 = A1(Z2)Z1 + g1(u, y, Z2) + MS−1
1 CT

1 (y1 − ŷ1)
Ṡ1 = M(−θ1S1 −AT

1 (Z2)S1 − S1A1(Z2) + CT
1 C1)

ŷ1 = C1Z1

O2 :





Ż2 = A2(Z1)Z2 + ϕ(u, y) + MS−1
2 CT

2 (y2 − ŷ2)
Ṡ2 = M(−θ2S2 −AT

2 (Z1)S2 − S2A2(Z1) + CT
2 C2)

ŷ2 = C2Z2

M = 1 if |D| > Dmin; M = |D|
Dmin

if |D| < Dmin;
M = 0 if |D| = 0

(3)
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where Z1 = (îsα, Ω̂r, T̂l)T , Z2 = (îsβ, φ̂rα, φ̂rβ)T , Si = ST
i > 0, i=1,2. θ1 and θ2 are positive constants. Note

that S−1
1 CT

1 and S−1
2 CT

2 are the respective gains of observers (O1) and (O2). Furthermore, when the IM
is no longer in the observable area, observer (3) can not work any more. Then, a solution based on the IM
observability property is introduced by using a soft switch function M such that observer (3) operates as
an estimator.

Remark 1 1. Z2 and Z1 are considered as inputs for subsystems (O1) and (O2), the solutions of Ṡ1 and Ṡ2

are symmetric positive de�nite matrices (see annexe for the positiveness proof of Si(t), i = 1, 2).
2. When the IM is in the observable area, Z2 and Z1 satisfy the regularly persistence condition.
3. When the IM is in the unobservable area, Z2 and Z1 do not satisfy the regularly persistence condition
and the observer operates as an estimator.
4. It is worth noticing that ‖S1‖ and ‖S2‖ are bounded when the IM is in the observable area.

2.4 Observer convergence

In order to prove the convergence of the proposed observer (3), su�cient conditions are established. De�ning
the estimation errors

{
ε1 = X1 − Z1

ε2 = X2 − Z2.

According to system (2) and observer (3), their errors dynamics read

Σε :





ε̇1 = [A1(Z2)−MS−1
1 CT

1 C1]ε1 + g1(u, y, X2) + ∆g1(u, y, X2)− g1(u, y, Z2)
+ [A1(X2) + ∆A1(X2)−A1(Z2)]X1

ε̇2 = [A2(Z1)−MS−1
2 CT

2 C2]ε2 + ∆ϕ(u, y) + [A2(X1) + ∆A2(X1)−A2(Z1)]X2.
(4)

Proposition 2.4 Consider system (2) with property 2.2. Then, system (3) is a practical exponential
observer1 for system (2), for θ1 > 0 and θ2 > 0 su�ciently large.

Proof Consider the following Lyapunov function candidate

Vo = V1 + V2 (5)

where V1 = εT
1 S1ε1 and V2 = εT

2 S2ε2.

Remark 2 The Lyapunov function candidate (5) is well chosen since Si(t), i = 1, 2 is positive de�nite (see
annexe for more details)

Its time derivative along (4) is

V̇o = −MεT
1 CT

1 C1ε1 −Mθ1ε
T
1 S1ε1 + εT

1 [AT
1 (Z2)S1 + S1A1(Z2)]ε1(1−M)

+2εT
1 S1[A1(X2) + ∆A1(X2)−A1(Z2)]X1 + 2εT

1 S1[g1(u, y, X2) + ∆g1(u, y, X2)− g1(u, y, Z2]

−MεT
2 CT

2 C2ε2 −Mθ2ε
T
2 S2ε2 + εT

2 [A2(Z1)T S2 + S2A2(Z1)]ε2(1−M)

+2εT
2 S2[A2(X1) + ∆A2(X1)−A2(Z1)]X2 + 2εT

2 S2∆ϕ(u, y)X2.

1the observer is exponentially convergent to a ball Br
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By introducing the norm, it follows

V̇o ≤ − MεT
1 CT

1 C1ε1 −Mθ1ε
T
1 S1ε1 −Mθ1ε

T
1 S1ε1 + εT

1

{
AT

1 (Z2)S1 + S1A1(Z2)
}

ε1(1−M)

+2 ‖ε1‖ ‖S1‖ ‖{A1(X2) + ∆A1(X2)−A1(Z2)}‖ ‖X1‖
+2 ‖ε1‖ ‖S1‖ ‖{g1(u, y, X2) + ∆g1(u, y, X2)− g1(u, y, Z2)}‖ (6)
−MεT

2 CT
2 C2ε2 −Mθ2ε

T
2 S2ε2 + εT

2

{
AT

2 (Z1)S2 + S2A2(Z1)
}

ε2(1−M)

+2 ‖ε2‖ ‖S2‖ ‖{A2(X1) + ∆A2(X1)−A2(Z1)}‖ ‖X2‖+ 2 ‖ε2‖ ‖S2‖ ‖{∆ϕ(u, y)}‖ ‖X2‖ .

From property 2.2-a-b, the set inequalities hold




‖S1‖ ≤ k1; ‖{A1(X2)−A1(Z2)}‖ ≤ k2 ‖ε2‖ ; ‖X1‖ ≤ k3;
‖{g1(u, y, X2)− g1(u, y, Z2)}‖ ≤ k4 ‖ε2‖ ; ‖S2‖ ≤ k5;
‖{A2(X1)−A2(Z1)}‖ ≤ k6 ‖ε1‖ ; ‖X2‖ ≤ k7

Using the above inequalities and because the fact pointed in property 2.2-c and 2.2-d, (6) becomes

V̇o ≤ − MεT
1 CT

1 C1ε1 −Mθ1ε
T
1 S1ε1 − εT

1 Qε1(1−M) + 2µ1 ‖ε1‖ ‖ε2‖+ 2µ2 ‖ε1‖ ‖ε2‖
− εT

2 ε2(1−M) + µ4 ‖ε1‖ −MεT
2 CT

2 C2ε2 −Mθ2ε
T
2 S2ε2 + 2µ3 ‖ε2‖ ‖ε1‖+ µ5 ‖ε2‖ (7)

where µ1 = k1k2k3, µ2 = k1k4, µ3 = k5k6k7, µ4 = 2(k1k3ρ1 + k1ρ3), µ5 = 2(k5k7ρ2 + k5ρ4).

The parameters kj , j = 1, ..., 8 and ρi, i = 1, ..., 4 are positives constants which are computed by
determining the maximal values of A1, A2, g1, S1, S2, ∆A1(X2), ∆A2(X1), ∆g1(u, y, X2) and ∆ϕ(u, y) in
the physical domain D of IM (see de�nition 2.1).

Since 0 ≤ M ≤ 1, Q ≥ 0 and CT
i Ci ≥ 0, i = 1, 2, (7) follows

V̇o ≤ − Mθ1ε
T
1 S1ε1 + 2µ1 ‖ε1‖ ‖ε2‖+ 2µ2 ‖ε1‖ ‖ε2‖ (8)

+ µ4 ‖ε1‖ −Mθ2ε
T
2 S2ε2 + 2µ3 ‖ε2‖ ‖ε1‖+ µ5 ‖ε2‖

Using the following inequalities
{

λmin(Si) ‖εi‖2 ≤ ‖εi‖2
Si
≤ λmax(Si) ‖εi‖2

‖εi‖2
Si

= εT
i Siεi, i = 1, 2

where λmin(Si) and λmax(Si) are respectively the minimal and maximal eigenvalues of Si.

By writing (8) in terms of functions V1 and V2, it follows that

V̇o ≤ −M(θ1V1 − θ2V2) + 2(µ̃1 + µ̃2 + µ̃3)
√

V1

√
V2 + µ4 ‖ε1‖+ µ5 ‖ε2‖ (9)

where µ̃i = µi√
λmin(S1)

√
λmin(S2)

, i = 1, 2, 3.

Next, by using the following inequality
√

V1

√
V2 ≤ υ

2V1 + 1
2υV2, ∀υ ∈]0, 1[, one get
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V̇o ≤ −(Mθ1 −Nυ)V1 − (Mθ2 − N

υ
)V2 + µ4 ‖ε1‖+ µ5 ‖ε2‖ . (10)

where N = µ̃1 + µ̃2 + µ̃3. µ̃i = µi√
λmin(S1)

√
λmin(S2)

, i = 1, 2, 3. µ1 = k1k2k3, µ2 = k1k4, µ3 = k5k6k7,
µ4 = 2(k1k3ρ1 + k1ρ3), µ5 = 2(k5k7ρ2 + k5ρ4).

Tacking account µ = max(µ4, µ5), it follows that:

1) when M = 1 (observable conditions), (10) becomes:

V̇o(M = 1) ≤ −δ′Vo + r,

where





δ′ = (δ − 1
2υ )

r = µ2 υ
2

δ = min(δ1, δ2)
δ1 = (θ1 −Nυ) > 0
δ2 = (θ2 − N

υ ) > 0

(11)

By choosing δ > 1
2υ , it implies that the origin of system (4) is practically exponentially stable (more

details about practical stability can be found in `Laskhmikanthan et al. (1990)' and `Panteley et al. (1998)').

2) when M = 0 (unobservable conditions), (10) becomes:

V̇o(M = 0) ≤ K̃ ′Vo + r,

where K̃ ′ = (K̃ + 1
2υ ) and K̃ = max(Nυ, N

υ ).

By de�ning the time trajectory as T = τobs + τunobs (see �gure 2), then

For M = 1 :

V 0
o (M = 1) ≤ exp−δ′τobsV 0

o (M = 0) +
1− e−δ′τobs

δ′
r.

For M = 0 :

V 1
o (M = 0) ≤ eK̃′τunobsV 0

o (M = 1) +
eK̃′τunobs − 1

K̃ ′ r.

Now, de�ne the di�erence between the Lyapunov functions V 1
o (M = 0) and V 0

o (M = 0) (as introduced in
Balluchi et al. (2003)) in order to study the sign of the variation of the Lyapunov function Vo at all T 1:

1cycle of observable and unobservable conditions
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∆Vo ≤ V 1
o (M = 0)− V 0

o (M = 0) : = (eK̃′τunobs−δ′τobs − 1)V 0
o (M = 0)

+ [eK̃′τunobs(
1− e−δ′τobs

δ′
) +

eK̃′τunobs − 1
K̃ ′ ]r.

It is obvious that only practical stability is obtained for

K̃ ′τunobs − δ′τobs < 0. (12)

(12) ensures that the Lyapunov function V0 converges into the interval [0, V max
0 ] where

V max
0 =

[eK̃′τunobs(1−e−δ′τobs

δ′ ) + eK̃′τunobs−1
K̃′ ]r

1− K̃ ′τunobs − δ′τobs

.

If r = 0, then exponential convergence to zero is obtained. ¤

tt

Figure 2. Lyapunov function Vo for T = τobs + τunobs.

3 FOC via Sliding Mode Techniques
In this section, a controller is designed by combining the FOC method (`Blaschke et al. (1972)') with
Sliding Mode Control method (SMC, `Utkin et al. (1992)'). The design procedure is based on the
assumption of current-fed IM.

Field Oriented Control . In the rotating (d-q) reference frame, the IM dynamic model (1) reads (Chiasson
et al. (2005))





Ω̇r = mφrdisq − cΩr − 1
J Tl

˙φrd = −aφrd + aMsrisd
ρ̇ = pΩr + aMsr

φrd
isq

i̇sd = −γisd + abφrd + pΩrisq + aMsr

φrd
i2sq + m1usd

i̇sq = −γisq − bpΩrφrd − pΩrisd − aMsr

φrd
isdisq + m1usq

(13)

where respectively isd, isq and usd, usq are the stator currents and stator voltages. The electromagnetic
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torque Tem = pMsr

Lr
φrdisq is proportional to the product of φrd and isq . Thus, by holding constant the

magnitude of the rotor �ux, a linear relationship between isq and Tem is obtained. In order to cancel the
nonlinear dynamics of isd and isq , the system is forced into current-command mode using high gain feedback
(see Chiasson et al. (2005)). More precisely, the following IP current controllers

{
Vsd = Kivd

∫ t
0 (i∗sd − isd )dt + Kpvd (i∗sd − isd )

Vsq = Kivq

∫ t
0 (i∗sq − isq)dt + Kpvq(i∗sq − isq)

(14)

are used to force isd and isq to track their respective references i∗sd and i∗sq and produce fast responses when
large feedback gains are used. Hence, assuming that i∗sd and i∗sq as the new inputs, it follows that

{
Ω̇r = mφrdi

∗
sq − cΩr − Tl

J
˙φrd = −aφrd + aMsri

∗
sd

(15)

In order to solve the �ux and speed trajectory tracking problem, the following assumption is introduced.
Assumption 3.1 a- The state initial conditions of the IM are in the physical domain D.
b- The desired trajectories (φ∗rd and Ω∗r) are in the physical domain D.
c- The actual load torque is assumed to be bounded by a maximal �xed value %. This maximal value is
chosen in accordance to the realistic torque characteristics of the chosen drive: |Tl| < %.
Sliding Mode Control .

Flux controller design. From (15), consider the following IM �ux dynamic equation with uncertainties

φ̇rd = −aφrd + ∆aφrd + κi∗sd (16)

where κ = aMsr and ∆a is the uncertainty term of parameter a. In order to design a �ux sliding mode
controller, de�ne the �ux tracking error eφrd

= φrd − φ∗rd where φ∗rd is the �ux reference. The associated
error dynamics is

ėφrd
= −aeφrd

+ κi∗sd − aφ∗rd − φ̇∗rd + ∆aφrd (17)

From SMC theory, de�ne the φrd �ux sliding manifold as

σφrd
= eφrd

− (kφrd
− a)

∫ t

0
eφrd

(τ)dτ.

The associated Lyapunov function is selected as

Vσφrd
=

1
2
σ2

φrd
. (18)

Its time derivative is given by

V̇σφrd
= σφrd

[σφrd1 + σφrd2i
∗
sd + ∆aφrd]

where σφrd1 = kφrd
eφrd

+ aφ∗rd + φ̇∗rd and σφrd2 = κ.
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Therefore, the sliding mode controller follows

i∗sd = i∗sd ,equ + i∗sd ,n (19)

In this equation i∗sd ,equ = −σφrd 1

σφrd 2
− lφrd

σφrd
is the equivalent control and i∗sd,n = − udn

σφrd2
is the discontinuous

control where udn = ηφrd
sgn(σφrd

) with

sgn(σφrd
) :





1 if σφrd
> 0

−1 if σφrd
< 0

∈ [−1, 1] if σφrd
= 0.

Then (18) becomes

V̇σφrd
= −lφrd

Vσφrd
+ σφrd

[−ηφrd
sgn(σφrd

) + ∆aφrd].

Choosing lφrd
> 0 and ηφrd

> max{‖∆aφrd‖} (de�ned hereafter) it follows that V̇σφrd
≤ 0. As

Vσφrd
is contracting and from assumption (3.1-a-b) then max{φrd} := Kmax

φrd
can not be greater than

max{φrd(0), φ∗rd}+ |∆eφrd
(0)|. Consequently, ∆aφrd is bounded and can be set as ηφrd

= ∆amaxKmax
φrd

+bφ,
with bφ a small positive constant. Furthermore, all the trajectories reach the sliding manifold σφrd

= 0 in
a �nite time and remain there. Therefore σφrd

= 0 and equation (17) becomes

ėφrd
= (kφrd

− a)eφrd
. (20)

Hence, the �ux tracking error eΩr
exponentially converges to 0 for (kφrd

− a) < 0.
Now, choosing (19) to force φrd to track its reference φ∗rd ensures that the �ux is properly established in
the motor. Hence, after the IM is �uxed (φrd = φ∗rd = constant), the electromagnetic torque (Tem) can
be rewritten as Tem = KT i∗sq , where KT is the motor torque constant de�ned by KT = pMsr

Lr
φrd. As a

consequence, the linear relationship between the input i∗sq and the speed dynamics Ω̇r is obtained. Then,
the speed control is obtained through the input i∗sq via a speed controller described below.

Speed controller design. Consider the mechanical equation of (15) including uncertainties

Ω̇r = −cΩr − Tl

J
+ hi∗sq + dΩr

(21)

where h = mφrd and dΩr
= −∆cΩr − Tl

J is the term uncertainty. De�ning the speed tracking error
eΩr

= Ωr − Ω∗r , it follows

ėΩr
= −ceΩr

+ hi∗sq − cΩ∗
r − Ω̇∗

r + dΩr
(22)

De�ne now the sliding manifold as

σΩr
= eΩr

− (k − c)
∫ t

0
eΩr

(τ)dτ (23)

The Lyapunov candidate function associated to the sliding manifold (23) is de�ned as

VσΩr
=

1
2
σ2

Ωr
.
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By computing its time derivative, one obtain

V̇σΩr
= σΩr

σ̇Ωr

= σΩr
[σΩr1 + σΩr2i

∗
sq + dΩr] (24)

where σΩr1 = keΩr
+ cΩ∗r + Ω̇∗r and σΩr2 = h.

Then, the speed controller reads

i∗sq = i∗sq,equ + i∗sq,n (25)

where i∗sq,equ = −σΩr 1

σΩr 2
− lΩr

σΩr
is the equivalent control and i∗sq,n = − uqn

σΩr2
, with uqn = ηΩr

sgn(σΩr
) and

sgn(σΩr
) :





1 if σΩr
> 0;

−1 if σΩr
< 0;

∈ [−1, 1] if σΩr
= 0.

(24) becomes

V̇σΩr
= −lΩr

VσΩr
+ σΩr

[−ηΩr
sgn(σΩr

) + dΩr
].

By choosing lΩr
> 0 and ηΩr

> max{‖dΩr
‖} (de�ned hereafter) it follows that V̇σΩr

≤ 0. As
VσΩr

is contracting and from assumption (3.1-a-b) then max{Ωr} := Kmax
Ωr

can not be greater than
max{|Ωr(0)|, |Ω∗r|} + |∆eΩr

(0)|. Consequently, as dΩr
= ∆cΩr + Tl

J then dΩr
is bounded. Finally, ηΩr

is set as ηΩr
= ∆cKmax

Ωr
+ %

J + bΩr
, with bΩr

a small positive constant. Furthermore, all the trajectories
reach the sliding manifold σ = 0 in a �nite time and remain there. Therefore, σ = 0 and equation (22)
implies

ėΩr
= (kΩr

− c)eΩr
(26)

which makes that the speed tracking error eΩr
exponentially converges to 0 for (kΩr

− c) < 0.
Proposition 3.2 . Consider IM model (15) and assume that assumption 3.1 is satis�ed. Then under
the action of speed controller (25) and �ux controller (19), the rotor speed and the �ux track their desired
trajectories.
Proof
Using

Vc =
1
2
σ2

φrd
+

1
2
σ2

Ωr

as a Lyapunov function candidate, then the time derivative

V̇c = −lφrd
Vσφrd

+ [−ηφrd
sgn(σφrd

) + ∆aφrd]− lΩr
VσΩr

+ [−ηΩr
sgn(σΩr

) + dΩr
]

is less than 0. ¤

4 Stability analysis of the closed-loop system

In order to implement controllers (19) and (25), the speed/�ux measures are replaced by their estimates
resulting in the new controllers
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i∗sd = −lφ̂rd
σφ̂rd

+
kφ̂rd

eφ̂rd
+ aφ∗rd + φ̇∗rd − ηφ̂rd

sgn(σφ̂rd
)

κ
(27)

i∗sq = −lΩ̂r
σΩ̂r

+
kΩ̂r

eΩ̂r
+ cΩ∗

r + Ω̇∗
r − ηΩ̂r

sgn(σΩ̂r
)

mφ̂rd

(28)

where




eφ̂rd
= φ∗rd − φ̂rd

eΩ̂r
= Ω̂r − Ω∗r

σφ̂rd
= eφ̂rd

+ (kφ − a)
∫ t
0 eφ̂rd

dτ

σΩ̂r
= eΩ̂r

+ (kΩr
− c)

∫ t
0 eΩ̂r

dτ

The IM observer must already be �uxed to ensure estimated speed tracking. In order to avoid the singularity
in (28), the observer (3) is initialized with initial conditions di�erent from zero. In practice, electrical
engineers overcome this singularity by starting to track �rstly the �ux φrd to its reference φ∗rd = constant.
The same trick is adopted for the estimated �ux φ̂rd by adding an o�set ε = 0.05Wb such as

i∗sq = −lΩ̂r
σΩ̂r

+
kΩ̂r

eΩ̂r
+ cΩ∗r + Ω̇∗r − ηΩ̂r

sgn(σΩ̂r
)

max{φ̂rd, ε}m
(29)

To analyze the stability of the closed-loop system ("O-C"), the following procedure is adopted.
Argument 4.1 If it is proved that the controller (27)-(29) enables to track the estimated �ux and estimated
speed to their desired trajectory (e = Z −X∗ → 0 as t →∞), then, it is ensured that the IM �ux and the
speed practically converge to their desired trajectories.
-Estimated �ux tracking. De�ne the candidate Lyapunov function Vσφ̂rd

= 1
2σ2

φ̂rd

, which time derivative
is V̇σφ̂rd

= −lφ̂rd
Vσφ̂rd

− σφ̂rd
[ηφ̂rd

sgn(σφ̂rd
) + Mgφ̂rd

εisβ
], where gφ̂rd

is the gain of the estimated �ux φ̂rd.
By choosing lφ̂rd

> 0 and ηφ̂rd
> max{M

∥∥∥gφ̂rd

∥∥∥
∥∥εisβ

∥∥} (de�ned hereafter) it follows that Vσφ̂rd
≤ 0. Now,

imposing the initial states of the observer to be in D and as Vσφ̂rd
is contracting, then from assumption

(3.1-b), max{φ̂rd} := Kmax
φ̂rd

can not be greater than max{φ̂rd(0), φ∗rd}+ |∆eφ̂rd
(0)|. From where it can be

deduced that
∥∥∥gφ̂rd

∥∥∥ is bounded. Moreover, as V0 = V1 + V2 (see the proposition 2.4 proof) is practically
stable and does not depend on u, then

∥∥εisβ

∥∥ is bounded. Finally, ηφ̂rd
is set as

ηφ̂rd
= Kmax

gφ̂rd

Kmax
εisβ

+ c1, c1 > 0. (30)

-Estimated speed tracking. Consider the candidate Lyapunov function VΩ̂r
= 1

2 Ω̂2
r , which time derivative

is V̇σΩ̂r
= −lΩ̂r

VΩ̂r
− σφ̂rd

[ηΩ̂r
sgn(σΩ̂r

) + MgΩ̂r
εisα

], where gΩ̂r
is the gain of the estimated speed Ω̂r.

By choosing lΩ̂r
> 0 and ηΩ̂r

> max{M
∥∥∥gΩ̂r

∥∥∥ ‖εisα
‖} it follows that VΩ̂r

≤ 0. Following the same ideas as
above leads to

ηΩ̂r
= Kmax

gΩ̂r
Kmax

εisα
+ c2, c2 > 0. (31)
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Lemma 4.2 Consider observer (3) initialized in D and assume that assumption (3.1-a-b) holds. Then,
under the action of the controller (27)-(29), the rotor �ux and rotor speed estimations track their desired
trajectories.
Proof Using

Vc =
1
2
σ2

φ̂rd
+

1
2
σ2

Ω̂r

as a Lyapunov function candidate, it follows

V̇c = −lφ̂rd
Vσφ̂rd

− σφ̂rd
[ηφ̂rd

sgn(σφ̂rd
) + Mgφ̂rd

εisβ
]− lΩ̂r

VσΩ̂r
− σΩ̂r

[ηΩ̂r
sgn(σΩ̂r

) + MgΩ̂r
εisα

] ≤ 0.

¤

Now, a practical stability result of the proposed observer based control for the IM is given.
Theorem 4.3 Consider the controller (27)-(29) and property (2.2). If the observer (3) is initialized on D
and assuming the assumption (3.1) is satis�ed, then

• The IM estimated state practically converges to the real state.
• The estimated �ux and speed exponentially converge to their desired trajectories.
• Finally, the real �ux and speed of IM converge practically to their desired trajectories.

Proof The proof follows from proposition (2.4), lemma (4.2) and argument (4.1). ¤

5 EXPERIMENTAL RESULTS

5.1 Control Benchmark

A Sensorless Control Benchmark de�nes the adequate reference trajectories to evaluate the performances
of the sensorless control algorithms under the following operating conditions (Figure 3).

Area 1. Low speed with nominal load (from 1s to 3s).

Area 2. High speed with nominal load (from 4s to 6s).

Area 3. Very low speed (zero frequency) with nominal load (the IM is unobservable1 from 7s to 9s).

0 1 2 3 4 5 6 7 8 9 10 11
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ra
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s
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0
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N
.m

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

Time (s)

W
b

a 

b 

c 

low speed with 
nominal load torque

high speed with
nominal load torque

Unobservability
conditions

1see section 2.2 for more details
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Figure 3. Control benchmark trajectories: a- Reference speed: Ω∗ (rad/s), b- Reference load: T ∗l (N.m), c-Reference �ux: φ∗rd (Wb).

5.2 Experimental results

Here, the experimental results obtained with the proposed controller using the observer are given. The tests
have been performed with the following induction motor values:

Nominal rate power 1.5kW Rs 1.47Ω
Nominal angular speed 1430 rpm Rr 0.79Ω
Number of pole pairs 2 Ls 0.105H

Nominal voltage 220 V Lr 0.094H
Nominal current 6.1 A J, fv 0.0077Kg.m2, 0.0029Nm/rad/s

and the guidelines parameters tuning for the observer and the controller are given as follows :

- For the observer given by (3), θ1 and θ1 are chosen to satisfy (11). From (11), it is easy to see that
θ1 > Nυ and θ2 >

N

υ
where υ ∈]01]. So, θ1 is proportional to υ while θ2 is inversely proportional. We

choose θ1 = 1 and θ2 = 5000.

- For the controller given by (14), the parameters Kpvd, Kpvq, KIvd, KIvq are determined as follows :

Considering the dynamic equations of isd and isq given by (13) without nonlinearities and coupling terms
{

i̇sd = −γisd + m1usd

i̇sq = −γisq + m1usq
(32)

Writing the transfer function which lies the stator currents of (32) with their references given by (14) as a
second order system in closed loop, it follows





isd
i∗sd

=
w2

nd

s2 + 2ζwnd + w2
nd

isq
i∗sq

=
w2

nq

s2 + 2ζwnq + w2
nq

By imposing ζ = 1 to avoid peaking and a currents bands-widths FBD at least less than a middle of
Fe = 1/Te where Te = 200µs is the sampling time:





ζ = 1
wnd = 2πFBD

wnq = 2πFBD,

the parameters Kpvd, Kpvq, KIvd, KIvq can be established:




Kpvd =
2ζ − γ

m1
, T ivd =

2ζ − γ

w2
nd

Kpvq =
2ζ − γ

m1
, T ivq =

2ζ − γ

w2
nq

where KIvd =
Kpvd

Tivd
and KIvq =

Kpvq

Tivq
. We choose Kpvd = 2, Kpvq = 2, KIvd = 0.05, KIvq = 0.05.
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- For the controller given by (27)-(29), lφ̂rd
> 0, lΩ̂r

> 0 and the parameters kφ̂rd
, kΩ̂r

, ηφ̂rd
and ηΩ̂r

are
chosen to satisfy respectively (20), (26), (30), (31) . We choose ηφ̂rd

= 10, kφ̂rd
= −80, lφ̂rd

= 4, ηΩ̂r
= 5,

kΩ̂r
= −40, lΩ̂r

= 2.

The block diagram scheme used in experimental set-up to test the law control with observer is presented
in �gure 4. The block "Intercon. observers" is constituted by the two interconnected observers we have
designed. This block uses only the current and stator measurements in the reference �xed frame (α−β) to
estimate the speed, the �ux amplitude and the �ux angle. The block "Sliding and Field Oriented Control"
contains the proposed controller. This block uses the estimates of speed, �ux amplitude and �ux angle given
by the block "Intercon. observers" and the current measurements after using the transformation of Park
and Concordia. Then, it gives the inputs control in the reference �xed frame (a,b,c) after using the inverse
transformations of Park and Concordia. These control inputs drive the inverter to impose the speed and
�ux reference trajectories (de�ned by the "Control Benchmark"). The track of the reference load torque
trajectory (also de�ned in the "Control Benchmark") is imposed by the connected synchronous motor.

Figure 4. Diagram of the controller-observer scheme.

5.2.1 Case with identi�ed parameters. Figures 5 and 6 show the experimental results in case where
identi�ed parameters are used to design the �ux and speed sliding mode control with interconnected
observers (Controller-Observer Scheme).
Remark 1 Due to experimental conditions (temperature, ...), the identi�ed parameters are not exactly the
real parameters of induction motor. The control experimental conditions are nearly di�erent compared to
the identi�cation conditions and moreover the identi�cation methodology has a certain uncertainty in its
results. Thus this case is already a �rst robustness test.
We can remark that both systems "Control+Observer" give good performances i) in term of trajectory
tracking: the motor speed (Ωr in �gure 5) tracks correctly its reference (Ω∗r in �gure 5) even under unob-
servable conditions (between 7 and 9 sec), nevertheless it appears a small static error when the motor is
under unobservable conditions, ii) in term of perturbation rejection: the load torque is well rejected under
low speed and high speed. Nevertheless it appears a small static error when the load is applied (Figure 5:
1.5 s) and when it is removed (Figure 5: 2.5 sec). For estimated �ux (φ̂rd in �gure 6), the same conclusion is
given and moreover it exists a small peaking at the beginning (Figure 6) which is due to initial conditions.
Load torque estimate is plotted in �gure 9. The determinant D and the switch function M introduced
respectively by de�nition (2.3) and observer (3) are shown in �gure 10 with Dmin = 0.05. The control
e�orts Vsd and Vsq are shown in �gure 7. In �gure 8 the measured and reference currents of isd and isq are
displayed.
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estimated speed Ω̂r (rad/s)
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Figure 6. Flux, (Wb)
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Case 1: experimental results with identi�ed parameters.

5.2.2 Robustness cases. The interest now is to check the robustness of the designed Control-Observer
with respect to motor parameters variation. We have considered two robustness cases : a stator resistance
variation of +50% and a rotor resistance variation of +50% with respect to the values of the previous case.
Case with +50% of Rr: the results that we have obtained are depicted in �gures 11 and 12.
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Compared with case 1, the motor speed (Ωr in �gure 11) is more a�ected by the increase of the rotor
resistance at high speed when the load torque is applied (Figure 11: 5 s). But the speed tracking when the
motor is under unobservable conditions remains same (Figure 11: from 7 to 9 s). For estimated �ux (Figure
12), the results are nearly similar compared with the case 1. The control e�orts Vsd and Vsq are shown in
�gure 13. In �gure 14 the measured and reference currents of isd and isq are displayed. The load torque
estimate is not depicted because it is nearly similar to the one of case 1.
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Figure 11. Reference speed Ω∗r , motor speed Ωr,
estimated speed Ω̂r (rad/s)
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Figure 12. Flux, (rad/s)

0 2 4 6 8 10
−20

0

20

40

60

80

100

120

140

Time (s)

V

V
sd

V
sq

Figure 13. Vsd and Vsq (V)
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Case 2: experimental results with rotor resistance variation (+50%).
Case with +50% of Rs: in �gures 15 and 16, the sensitivity of both "Control+Observer" with respect to
the variation of the stator resistance is showed. The performances of both "Control+Observer" are nearly
similar with the case 1 for the speed motor (Figure 15. b) and estimated �ux (Figure 16. b). However, an
improvement can be remarked for motor speed at high speed when the load torque is applied (Figure 11: 5
s): the oscillations are removed, it remains only a small static error. This improvement can be explained by
the fact that the parameters are close to the real parameters of induction motor as it can be obtained by
simulation with the same parameters for model and both "Control+Observer". The control e�orts Vsd and
Vsq are shown in �gure 17. In �gure 18 the measured and reference currents of isd and isq are displayed.
The load torque estimate is not depicted because it is nearly similar compared to case 1.
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Figure 15. Reference speed Ω∗r , motor speed Ωr,
estimated speed Ω̂r (rad/s)
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Figure 16. Flux, (rad/s)
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Figure 17. Vsd and Vsq (V)

0 2 4 6 8 10

0

5

10

A

0 2 4 6 8 10
−5

0

5

10

Time (s)

A

i
sd
*

i
sd

i
sq
*

i
sq

Figure 18. isd and isq , (A)

Case 3: experimental results with stator resistance variation (+50%).

6 CONCLUSION

In this paper, a SIM observer has �rstly been designed. This later structurally takes into account the
unobservable conditions of the IM. The gains are chosen according to the ratio between the unobservable and
observable time intervals. Secondly, the estimated speed and �ux are used to design a FOC-SMC in order to
steer the estimated speed and �ux magnitude to their desired trajectories in a �nite time. Consequently, the
performance of the observer based control scheme "O-C" scheme is related to the observer behavior, which
is a natural consequence of the unobservable1 sequences. Finally, this scheme has been tested and validated
on an experimental set-up using the reference trajectories of a realistic proposed benchmark where the IM
remains in the unobservable sequences and not just go across.
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Annexe: Positiveness proof of Si(t)

Consider the expressions of Ṡi, i = 1, 2 given by observer (3):

Ṡi = M(−θiSi −AT
i (Zj)Si − SiAi(Zj) + CT

i Ci), (33)

with j = 2 if i = 1 and j = 1 if i = 2.

We denote by Φi(t, r) the unique solution of:

Φ̇i(t, r) =
dΦi(t, r)

dr
= Ai(Zj)Φi(t, r) (34)

such that

Φi(t, t) = I (35)

where I is the identity matrix and r vary from 0 to t.

Two cases are considered:

M = 1: observable conditions where r vary from 0 to t1.

M = 0 : unobservable conditions where r vary from t1 to t.

1) Case where M = 1 (observable conditions) r ∈ [0, t1]:

Multiplying each term of (33) by Φi(t1, r)T in left side and by Φi(t1, r) in right side, we get




Φi(t1, r)T Ṡi(r)Φi(t1, r) + θiΦi(t1, r)T Si(r)Φi(t1, r)
+Φi(t1, r)T AT

i (Zj)Si(r)Φi(t1, r)
+Φi(t1, r)T Si(r)Ai(Zj)Φi(t1, r)


 = Φi(t1, r)T CT

i CiΦi(t1, r) (36)

By multiplying both sides of (36) by expθir it follows:




expθirΦi(t1, r)T Ṡi(r)Φi(t1, r)
+θiexpθirΦi(t1, r)T Si(r)Φi(t1, r)

+expθirΦi(t1, r)T AT
i (Zj)Si(r)Φi(t1, r)

+expθirΦi(t1, r)T Si(r)Ai(Zj)Φi(t1, r)


 = expθirΦi(t1, r)T CT

i CiΦi(t1, r) (37)

It can be remarked that the left side of (37) is the derivative of expθirΦi(t1, r)T Si(r)Φi(t1, r) with respect
to r. Then we can write:

˙︷ ︸︸ ︷(
expθirΦi(t1, r)T Si(r)Φi(t1, r)

)
= expθirΦi(t1, r)T CT

i CiΦi(t1, r) (38)

The solution Si(t1) is obtained by integrating the equation (38) with r vary from 0 to t1 as
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∫ t1

0

˙︷ ︸︸ ︷(
expθirΦi(t1, r)T Si(r)Φi(t1, r)

)
dr =

∫ t1

0
expθirΦi(t1, r)T CT

i CiΦi(t1, r)dr (39)

Then, equation (39) gives

expθit1Φi(t1, t1)T Si(t1)Φi(t1, t1)− Φi(t1, 0)T Si(0)Φi(t1, 0) =
∫ t1

0
expθirΦi(t1, r)T CT

i CiΦi(t1, r)dr (40)

Finally, by using the property (35) in equation (40), the solution Si(t1) yields

Si(t1) = exp−θit1Φi(t1, 0)T Si(0)Φi(t1, 0) +
∫ t

0
exp−θi(t1−r)Φi(t1, r)T CT

i CiΦi(t1, r)dr (41)

From (41), we can remark that Si(t1) is de�nite positive with Si(0) > 0 due to the fact that Z1 and Z2 of
equations (34) are regularly persistent (see remark 1.2). Then the positiveness of Si(t1) is demonstrated.

2) Case where M=0 (unobservable conditions) r ∈ [t1, t]:

Equation (33) becomes:

Ṡi(r) = 0 (42)

By integrating equation (42) with r varying from t1 to t, we get

Si(t) = Si(t1) (43)

It can be noted that the �nal condition Si(t1) of the interval time where IM is observable is equal to the
�nal condition Si(t) of the interval time where IM is unobservable since Si remains constant during this
unobservable interval of time. Then Si(t) (equation 43) is positive de�nite.

This ends the proof.


