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Résumé

Le but de cette thèse est de contribuer au développement des techniques de localisation et de description
de données dans des environnements P2P. Au niveau de la couche application, nous nous concentrons sur
l’exploitatoin des sémantiques qui peuvent être capturéesà partir des données partagées. Ces sémantiques
peuvent améliorer l’efficacité de recherche, ainsi que permettre des requêtes complexes. A cet effet, nous
présentons une technique originale d’indexation de données dans les systèmes P2P qui se base sur les résumés
linguistiques. Nos résumés sont des vues synthétiques et multidimensionnelles qui supportent la localisation
des données pertinentes en se basant sur leur contenu. Plus intéressant, ils fournissent des représentations
intelligibles de données, qui peuvent renvoyer des réponses approximatives à des requêtes d’utilisateur.

Au niveau de la couche réseau P2P, nous nous concentrons sur l’exploitation des caractéristiques de la
topologie, à savoir les caractéristiques de leur regroupement (clustering). Des informations sur le clustering du
réseau P2P peuvent être utilisées pour réduire le trafic de réseau produit par le mécanisme de flooding. Ceci
permet d’améliorer l’exécution des systèmes P2P, indépendamment de l’emploi des index de données à la
couche application, puisque le mécanisme de flooding représente toujours un bloc constitutif fondamental des
systèmes non structurés P2P.

Dans cette thèse, nous présentons un bref état de l’art sur les systèmes P2P de partage de données P2P et nous
nous concentrons sur l’évolution des systèmes simples de partages des fichiers vers des systèmes de gestion
des données. En second lieu, nous proposons une solution pour la gestion des résumés de données dans des
systèmes P2P. Nous définissons un modèle approprié et des techniques efficaces pour la création et la mise à
jour des résumés. Nous discutons également le traitement des requêtes dans le cadre des résumés. Troisième-
ment, nous proposons une technique de recherche basée sur clustering implémentée au dessus d’un protocole
de custering selon la connectivité des noeuds. Nous nous concentrons sur la reduction des messages de re-
quêtes redondants qui surchargent inutilement le système.Nous avons validé nos solutions par la simulation et
les résultats montrent une bonne performance.

Mots-clés :Systèmes Pair à Pair, Résumés de données, Organisation du réseau

Abstract

The goal of this thesis is to contribute to the development ofdata localization and summarization techniques
in P2P environments. At the application layer, we focus on exploiting the semantics that can be captured from
the shared data. These semantics can improve the search efficiency, and allow for more query facilities. To this
end, we introduce a novel data indexing technique into P2P systems that relies on linguistic summarization.
Our summaries are synthetic, multidimensional views that support locating relevant data based on their
content. More interestingly, they provide intelligible data representations which may return approximate
answers for user queries.

At the P2P network layer, we focus on exploiting the characteristics of the overlay topology, namely its
clustering features, in order to reduce the traffic overheadgenerated by flooding-based mechanisms. This
allows to improve the performance of P2P systems, irrespective of the employment of techniques relying
on data semantics at the application layer. To this end, we define a cluster-based search technique which is
implemented over a connectivity-based clustering protocol. A connectivity-based clustering protocol aims
to discover the natural organization of nodes, based on their connectivity. Thus, it delimits the boundaries
of non-overlapping subgraphs (i.e. clusters) which are loosely connected, and in which nodes are highly
connected.

In this thesis, we first survey P2P data sharing systems. We focus on the evolution from simple file-sharing
systems with limited functionalities, to Peer Data Management Systems (PDMSs) that support advanced ap-
plications with more sophisticated data management techniques. Second, we propose a solution for managing
linguistic summaries in P2P systems. We define an appropriate summary model and efficient techniques for
summary creation and maintenance. We also discuss query processing in the context of summaries. Third, we
propose a cluster-based search technique on top of existingconnectivity-based clustering protocols. We focus
on reducing redundant query messages which unnecessarily overload the system. We validated our solutions
through simulation and the results show good performance.

Keywords: P2P systems, Database summarization, Network Clustering
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Chapter 1

Introduction

1.1 Motivation

In the last decade, the rise of P2P networks is attested by the increasing amount of interest
in both commercial and academic areas. According to studies and statistics made on web
traffic, P2P networks are becoming the killer application of the internet. P2P network
architectures are generally characterized by the direct sharing of computer resources rather
than requiring the intermediating of a centralized server. Initially, the P2P paradigm
gained much popularity with systems and infrastructures designed for sharing digital
media data (e.g. music and video files), such as Gnutella [4], and bittorrent [1].

At the same time, the database community has been slowly evolving toward a higher
degree of distribution. The traditional architectures employed by distributed and parallel
databases, and data integration systems rely on a centralized global schema and strong
assumptions about the network. While these architectures have reached their maturity
and only supported a limited number of users, the new class of P2P architectures starts
to represent an interesting alternative to build large-scale distributed systems.

P2P systems allow to share data on a world-wide scale with many advantages such as
decentralization, self-organization, autonomy, etc. However, their operation as distributed
systems is constrained by the employment of efficient data management techniques. In
distributed databases, the location of content is generally known, the query optimizations
are performed under a central coordination, and answers to queries are expected to be
complete. On the other side, the ad hoc and dynamic membership of participants in P2P
systems makes it difficult to predict about the location and the quality of resources.

Initially, search in P2P systems relied on flooding mechanism. A peer sends a query
message to its neighbors, which in turn forward the message to all their neighbors (except
the sender) and so on, until a stop condition is satisfied (e.g. number of query hops, number
of returned results). The main merits of this approach are its simplicity, reliability, and
its high network coverage, i.e. a large number of nodes could be reached within a small
number of hops. However, flooding suffers from high bandwidth consumption since it may
produce a significant number of query messages. In fact, there are two major concerns
with flooding-based mechanisms.
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• Search Blindness: a peer forwards a query message to its neighbors without any
information on how these neighbors may contribute to query answers. This results
in a poor query recall, i.e. a large number of visited nodes do not store relevant
data.

• Message Redundancy: a peer may receive the same query message multiple times.
This is due to the ad hoc nature of P2P connections, i.e. the neighbor selection
process is random and non-discriminant in P2P topologies. Due to the lack of
structural information, a query message travels all the available paths from a given
node, and thus may reach a same node through different paths.

In the P2P literature, many techniques have been proposed in order to improve
the performance of P2P systems. Initial works have led to structured systems, which
mainly act as global distributed indexes (e.g. [72], [131]). These systems address the
problem of topology randomness by imposing a specific network structure, and remedy
to the blindness problem by making a tight control on data (or data pointers) placement.
Hence, these systems provide an efficient, deterministic search. However, they compromise
node autonomy and may restrict search expressiveness since data are mainly accessed
using numerical identifiers. Other data indexing techniques have been proposed in fully
unstructured systems in order to support query routing with information about the
location or the direction toward relevant data (e.g. [9], [34]). Each of these techniques
achieves a different trade-off between the cost of maintaining indexes and the benefits
obtained in query processing.

Another research axis has focused on network clustering which aims to introduce some
structure to, or extract inherent structural patterns from fully unstructured P2P networks.
A network clustering scheme consists in organizing the nodes into clusters, based on a
given criterion. A clustering criterion could be a physical network metric (e.g. bandwidth,
latency), some peer property/behavior (e.g. node connectivity/stability), or even defined
at the application layer (e.g. similar interests). The motivation behind P2P clustering
schemes is that efficient routing protocols could be defined by taking advantage of the
clustering features of the underlying network [98], [49]. However, the existing works have
focused on proposing clustering techniques that cope with the dynamic and autonomous
nature of P2P systems. Less effort has been put on demonstrating the efficiency of cluster-
based search techniques, i.e. how restructuring unstructured P2P systems may contribute
to enhance the search performance.

As revealed by the large number of P2P research papers and surveys, data localization
(or access) has been the main issue addressed in the P2P community. However, advanced
data management techniques, which allow more than locating data, are strongly required
to support database applications. These applications are facing the information explosion
problem: a huge amount of information is generated and stored each day into data
sources (e.g. biological, astronomical database applications). This ever increasing amount
of available data, in addition to the high distribution of connected resources, makes search
techniques no more sufficient for supporting P2P database applications. To illustrate, in
a scientific collaborative application, a doctor may require information about patients
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diagnosed with some disease, without being interested in individual patient records.
Besides, in today’s decision-support applications, users may prefer an approximate but
fast answer, instead of waiting a long time for an exact one.

To address the problem of managing voluminous databases, the data summarization
paradigm has emerged into the database field. The objective of data summarization is to
synthesize the information which is disseminated within large datasets, in order to provide
the essential. Obviously, data summarization is of higher importance in P2P systems where
the participants share a global database, which is equivalent to the aggregation of all their
local databases, and thus may become much more voluminous. Reasoning on compact data
descriptions that can return approximate answers like “dead Malaria patients are typically
children and old” to queries like “age of dead Malaria patients”, is much more efficient
than retrieving raw records, which may be very costly to access in highly distributed P2P
databases.

1.2 Contribution

The objective of this thesis is to contribute to the development of both data localization
and summarization techniques in P2P systems. Our main contributions are the following.

First, we survey P2P sharing systems [62]. All along, we focus on the evolution
from simple file-sharing systems, with limited functionalities, to Peer Data Management
Systems (PDMS) that support advanced applications with more sophisticated data
management techniques. Advanced P2P applications are dealing with semantically rich
data (e.g. XML documents, relational tables), using a high-level SQL-like query language.
We start our survey with an overview over the existing P2P network architectures, and
the associated routing protocols. Then, we discuss data indexing techniques based on their
distribution degree and the semantics they can capture from the underlying data. We also
discuss schema management techniques which allow integrating heterogeneous data. We
conclude by discussing the techniques proposed for processing complex queries (e.g. range
and join queries). Complex query facilities are necessary for advanced applications which
require a high level of search expressiveness. This last part shows the lack of querying
techniques that allow for an approximate query answering.

At the application layer, our second contribution consists in exploiting data semantics
not only to improve the efficiency of exchanging data, but also to allow exchanging
synthesized information represented in a higher level of abstraction. This is very interesting
for collaborative and decision-support applications.

To this end, we introduce a data summarization technique into Peer Data Management
Systems. Our approach for data summarization is based on SaintEtiQ: an online linguistic
approach for database summarization [51], [94], [126]. The SaintEtiQ model has been
designed by our team for managing voluminous databases, and has been extensively
studied in centralized environments. It exhibits many salient features such as robustness
against the potential imprecision and vagueness in raw data, and scalability in term of
the amount of processed data. The produced summaries are synthetic, multidimensional



chapter 1. Introduction 4

views over relational tables. The novelty of our proposal relies on the double exploitation
of these summaries in distributed P2P systems. First, as semantic indexes, they support
locating relevant nodes based on their data descriptions. Second, due to their intelligibility,
these summaries can be directly queried and thus approximately answer a query without
the need for exploring original data, which might be highly distributed.

Our work has evolved as follows. First, we attempt to study the feasibility of integrating
our summarization technique into an existing PDMS architecture. So, we work in the
context of APPA (Atlas Peer-to-Peer Architecture), a PDMS which has been developed by
our team over the last years [93], [120]. The main objective of APPA is to provide high level
services for advanced applications. To deal with semantically rich data, APPA supports
decentralized schema management and uses novel solutions for complex query processing.
It addresses the problem of data consistency and reliability through efficient solutions
for persistent data management with updates, and data replication with semantic-based
reconciliation.

In our work, we propose PeerSum, a new service for managing data
summaries [58], [63]. First, we define a summary model that deals with the dynamic
and autonomous nature of P2P systems. This model architecture is characterized by an
incremental mechanism of summary construction. Each peer maintains a local summary
LS of its own database. To this end, the summary process is integrated to each peer’s
DataBase Management System (DBMS). Then, peers which are willing to cooperate will
exchange and merge summaries, in order to build a Global Summary GS over their shared
data. Let summary “coverage” be the fraction of peers that own data described by that
summary. According to our model, a global summary GS is characterized by a continuous
evolution in term of coverage, i.e. the cooperation between two sets of peers, each having
constructed a global summary, will result in a higher-coverage one. Second, we define
efficient techniques for global summary creation and maintenance, based on APPA’s
services. In particular, we assume that a common storage for global summaries is provided
by APPA.

The second part has been done in hierarchical P2P networks [60]. Here, we study how
summaries can be efficiently distributed in P2P systems, which has been abstracted when
relying on APPA’s services. The idea is to exploit the node heterogeneity in hierarchical
(superpeer) networks. Hence, the architecture of our summary model is characterized by
2-summary levels. The first level is provided by the set of local summaries maintained
at different peers. The second is obtained by materializing a set of global summaries as
follows. The network is organized into domains, where a domain is defined as being the
set of a supernode and its associated leaf nodes. In a given domain, peers cooperate to
maintain a global summary over their shared data, which is stored at the corresponding
superpeer. The issue of organizing the network into domains, i.e. how the superpeers are
selected and other peers are grouped around them in a fully decentralized manner, is
discussed [59], [61]. Then, we present efficient algorithms for managing summaries in a
given domain.

Finally, we propose a query processing mechanism which relies on the interrogation of
available summaries. Our performance is evaluated through a cost model and a simulation
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model. The simulation results have shown that our solutions allow to significantly reduce
the query cost, without incurring high costs of summary updating.

At the P2P network layer, our third contribution consists in exploiting the
characteristics of the overlay topology, namely its clustering features, in order to reduce
the traffic overhead. This allows to improve the performance of P2P systems, irrespective
of the employment of techniques relying on data semantics at the application layer. In fact,
the efficiency of such techniques depends on the application and the nature of exchanged
data. Besides, they generally have direct implications on the underlying network, such in
data indexing schemes, or additional requirements for maintaining a new overlay built on
top of the P2P network, as in semantic clustering schemes. A semantic clustering may
propose the creation of new overlays in which semantically related peers are connected
to each others. In other terms, such a clustering strives to introduce structure, which is
different from discovering inherent structure of the P2P overlay, as we are considering in
our work. On the other hand, in the context where such techniques are not employed,
or their efficiency degrades (depending on the application), the solution is to resort to
flooding-based techniques. In reality, the flooding approach is still a fundamental building
block of unstructured P2P systems. It represents the natural way for exchanging messages
between nodes which are connected in an ad hoc fashion.

In our work, we propose a search technique, which is implemented over a connectivity-
based clustering protocol, in order to reduce the number of query messages generated
by flooding-based algorithms. A connectivity-based clustering protocol aims to discover
the natural organization of nodes, based on their connectivity. Thus, it delimits the
boundaries of sub-graphs (i.e. clusters) which are loosely connected, and in which nodes
are highly connected. In the P2P literature, two main protocols have been proposed, i.e.
the Connectivity-based Distributed node Clustering (CDC) [121], and the SCM-based
Distributed Clustering (SDC) [86]. These works have been introduced by arguing the
benefits of such a clustering from the search performance point of view. However, none
of them has proposed an appropriate routing protocol, or provided analytical models or
experimental results on how their clustering schemes contribute to reduce the bandwidth
consumption. The main focus was on the clustering scheme accuracy, i.e. using the Scale
Coverage Measure (SCM), and its maintenance against node dynamicity.

Our Cluster-Based Search Technique (CBST) works as follows. Based on a local
knowledge about the network clustering in its neighborhood, each node maintains
information about local links to nodes in its cluster (intra-cluster information), as well
as about global links connecting its cluster to other reachable clusters (inter-cluster
information). The intra-cluster routing information is equivalent to a spanning tree, rooted
at that node and covering its partners (i.e. the nodes that belong to its cluster). These
information are efficiently gathered and maintained in a cluster-based routing table.

The benefits in query routing are two folds. First, a query Q is efficiently disseminated
in a given cluster, using the spanning tree of the first node contacted in that cluster.
Second, the query messages between clusters are restricted to those traversing the
global links specified by the querying node. Extensive simulations have demonstrated the
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efficiency of the CBST technique compared to pure flooding and random walk routing
techniques.

1.3 Roadmap

The rest of this thesis is organized as follows. In Chapter 2, we present an overview of P2P
data sharing systems. In Chapter 3, we present our solutions for summary management in
P2P systems. Chapter 4 proposes CBST, a cluster-based search technique for unstructured
P2P systems. Chapter 5 concludes and discusses future directions of research.



Chapter 2

Data Sharing in P2P Systems

The recent years have witnessed a paradigm shift in the design of internet-scale distributed
systems, with widespread proliferation of peer-to-peer technologies. Nowadays, the P2P
model is used for diverse applications and services–including content storage and sharing
(file-sharing, content distribution, backup storage) and communication (voice, instant
messages, multicast) to name a few.

But, what is the P2P paradigm?

From the application perspective, the P2P paradigm is a way to leverage vast amounts
of computing power, storage, and connectivity from personal computers distributed
around the world [46]. Thus, the P2P model allows distributed systems to scale up on a
world wide scale without the need for an expensive infrastructure, like the one it would
be incurred by a client-server model.

From the system perspective, the P2P paradigm is about managing autonomous,
unreliable resources that connect to the system in order to provide together the desired
objectives, which that system is supposed to achieve. The management of such resources
should be done without any global information or central control.

In other words, the P2P model overcomes the limitations of centralized and client-
server models by introducing symmetry in roles, where each node is both a client and a
server. But unlike Grid systems, P2P networks do not arise from the collaboration between
established and connected groups of systems. Instead, they are characterized by ad hoc
connections between autonomous and dynamic resources. Thus, P2P systems pose new
challenges including resource discovery, reliability and availability.

In late 1999, P2P systems gained much attention with Napster’s support for music
sharing, and then have became a very interesting medium through which users share
huge amount of data. Popular examples of P2P data sharing systems (e.g. Gnutella,
KaZaa) report millions of users, sharing petabytes of data. However, a key challenge is
implementing efficient techniques for search and data retrieval, without which an enormous
shared data collection remains useless.

In a P2P data sharing system, users should be able to locate relevant data in a resource-
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efficient manner. Let us examine the generic architecture of a given peer, as shown by
Figure 2.1. Queries are submitted through a user interface. Then, they are handled by
a data management layer which includes several techniques for supporting an efficient
distributed query processing. This data management layer has been enriched all along the
evolution of P2P systems from simple file-sharing systems with limited functionalities, to
Peer Data Management Systems (PDMSs) which are dealing with semantically rich data.

Local

Data source

Data Management Layer

Indexing

Caching

User Interface

Network Layer

Metadata

Repository

QueryAnswer

Query

Processing

Schema

Management

Replication
Clustering
Network

Figure2.1: Peer Generic Architecture

In early P2P file sharing systems, the data management layer lacks several components.
At a given peer, filename-based queries are blindly broadcasted in the network in order to
locate the requested files. Besides, all the visited peers locally evaluate the received queries
and return results, if any, to be finally merged at the requesting peer. The performance
of these systems is quite dependent of the topology of the underlying network, and the
associated routing protocol. This is discussed in Section 2.1.

To enhance the search performance, P2P works started to employ data indexing
techniques (e.g. [9], [131]). At a given peer, the index allows to select a set of relevant peers
to which the query is directly sent (i.e. location indexes), or to determine the direction
through which relevant peers may be located (i.e. forwarding indexes). Section 2.2
discusses the P2P indexing schemes.

Parallel works have focused on data replication and caching techniques in order to
improve the availability and the consistency of data, against the dynamic and autonomous
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nature of P2P systems. In this work, we do not detail these techniques, however good
pointers can be found in [21, 74, 136].

In Schema-based P2P systems [149], each peer can provide its own database with its
own schema, and may issue queries according to its local schema. In this case, irrespective
of using data indexes, peers have to apply schema management techniques that provide
a common ground for distributed query processing (e.g. [73], [137]). The basic idea is to
identify content or structure similarities among peers. Semantic mappings are then defined
to specify these similarities, and based on the semantic mapping definitions, queries are
reformulated for each specific peer. Semantic mappings and other metadata are stored in
a specific repository. The schema management techniques are presented in Section 2.3.

Network clustering has been also proposed as a viable solution to improve query
processing in P2P systems (e.g. [86], [10]). Clustering techniques aim to organize the
network into groups based on some criteria. A clustering criterion may be a physical
network parameter (e.g. bandwidth), peer property/behavior (e.g. connectivity, stability),
or application-dependent parameter (e.g. similarity of interests). Clustering in P2P
networks will be addressed later in Chapter 4.

Finally, we note that the data management layer presented in Figure 2.1 may include
additional components depending on other application requirements, such as trust and
security.

All the above techniques have a common objective which is improving the efficiency of
locating data. However, they should not restrict the search expressiveness. Certainly, the
required level of search expressiveness is related to the data model used by the application.
For instance, advanced P2P applications which are dealing with semantically rich data
requires a higher expressiveness than key-based lookups or keyword searches. Processing
complex queries in P2P systems is discussed in Section 2.4.

Note that throughout this thesis, the terms “node” and “peer” are used
interchangeably to refer to the entities that are connected in a peer-to-peer network.

2.1 P2P Networks

P2P systems are application-level virtual networks with their own overlay topology and
routing protocols. The overlay topology defines how the nodes are connected to each
others, while routing protocols define how nodes can exchange messages in order to share
information and resources. The network topology and the associated routing protocol
have significant influence on application properties such as performance, scalability, and
reliability. P2P network overlays can be classified into two main categories: unstructured
and structured, based on their structure. By “structure” we refer to the control on overlay
creation and data placement.
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2.1.1 Unstructured

Most popular P2P applications operate on unstructured networks. In these networks, peers
connect in an ad-hoc fashion and the placement of content is completely unrelated to the
overlay topology. Although P2P systems are supposed to operate in a fully decentralized
manner (i.e. fully decentralized routing mechanisms), in practice, unstructured networks
with various degrees of centralization are encountered. Accordingly, three categories can
be identified.

2.1.1.1 Hybrid Decentralized Architectures

In these networks, a central server facilitates the interaction between nodes by indexing
all their shared files (Figure 2.2). Whenever a query is submitted, the central server is
addressed to identify the nodes storing the requested files. Then, the file exchange may
take place directly between two nodes. Certainly, this approach provides a very good
search efficiency. However, the central server, which is a single point of failure, renders
hybrid decentralized networks inherently unscalable and vulnerable to malicious attacks.

The class of P2P systems relying on such hybrid architectures, i.e. including a server
(e.g. red node) and peers (e.g. blue nodes), is usually called the first generation of P2P
systems (1GP ). A well-known example is Napster [6].

Figure2.2: Hybrid decentralized architecture Figure2.3: Pure decentralized architecture

2.1.1.2 Pure Decentralized Architectures

In pure decentralized networks, there is a complete symmetry in node roles without
any central coordination. Each node is both a client a server, i.e. each node may issue
requests and serve/forward requests of other nodes (bi-colored nodes in 2.3). Hence, they
exhibit high fault tolerance against node dynamicity and failure. However, resources are
maintained locally and nodes have only limited knowledge. Thus, guarantees on lookup
efficiency and content availability can not be provided. Here, search mechanisms range
from brute flooding to more sophisticated mechanisms, such as random walks [136] and
routing indices [9]. These mechanisms have direct implications on network scalability.
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Representative examples of pure decentralized P2P systems are Gnutella [4], and
FreeHaven [124].

2.1.1.3 Partially Decentralized Architectures

In these networks, there is a differentiation in roles between supernode and leafnode.
Each supernode acts as a proxy for all its neighboring leaves by indexing their data and
forwarding queries on their behalf. In practice, several supernodes are designated in the
system to avoid all the problems associated to a single server (Figure 2.4). Like pure
decentralized P2P networks, the set of supernodes can be organized in a P2P fashion and
communicate with one another in sophisticated ways. They are dynamically assigned and,
if they fail, the network will automatically take action to replace them with others.

Examples of partially decentralized P2P systems are KaZaa [5], Gnutella2 [3], and
Edutella [137]. Note that partially decentralized networks are also referred as hierarchical
networks, while pure decentralized ones are referred as flat networks. Both categories
represent the so-called, second P2P generation (2GP ).

Figure2.4: Partially decentralized architecture

2.1.2 Structured

In an attempt to remedy the scalability problem of unstructured systems, some works
have focused on introducing “structure” into network topologies. The topology overlay is
tightly controlled, and the content may be distributed according to specific rules. These
works led to the third generation of P2P systems (3GP ), i.e. structured systems. Aiming
basically to act as a decentralized index, structured overlays provide a mapping between
content (e.g. file identifier) and location (e.g. node address), in the form of a distributed
routing table.

Structured networks consist in partitioning a key space among peers, so that each peer
is responsible for a specific key space partition, i.e. it should store all the resources (or
pointers) which are mapped into keys, which are in the respective key-space partition.
Then a routing algorithm is defined to allow a deterministic search based on key content.
A representative class of structured overlays are the Distributed Hash Tables DHT s (e.g.
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Structure
Decentralization

Hybrid Partial Full

Unstructured

Napster KaZaa Gnutella
Publius Morpheus FreeHaven

Gnutella2
Edutella

Structured Infrastructures

Chord
CAN

Trapestry
Pastry

Structured Systems

OceanStore
Mnemosyne
Scan, Past
Kademlia

Table2.1: A classification of P2P Systems and Infrastructures Based on Network Structure, and
Degree of Decentralization [19]

[72], [131]). Freenet [70] is often qualified as a loosely structured system because the nodes
of its P2P network can produce an estimate (not with certainty) of which node is most
likely to store certain data. They use a chain mode propagation approach, where each
node makes a local decision about which node to send the request message next.

Table 2.1 summarizes the P2P categories we outlined, with examples of P2P
systems and infrastructures. P2P infrastructures do not constitute working applications,
but provide P2P based-services (e.g. location and routing, anonymity, reputation
management) and application frameworks. The infrastructures listed here are location and
routing infrastructures. Note that according to the centralization criteria, all structured
systems and infrastructures rely on pure decentralized topologies where all participants
have equal roles.

2.1.3 Unstructured vs. Structured: Competition or
Complementarity?

An important question is: should the P2P overlay be “Structured” or “Unstructured”?
Are the two approaches competing or complementary?

Some have considered unstructured and structured routing algorithms as competing
alternatives. When generic key lookups are required, structured routing schemes guarantee
locating relevant nodes within a bounded number of hops, based on strong theoretical
foundations. The routing unstructured approaches, however, may have large costs or fail
to find available data (in particular unpopular data). Despite of the lookup efficiency of
structured overlays, several research groups are still leveraging unstructured P2P schemes.
In fact, there are two main criticisms for structured systems [155]. First, the strict network
structure imposes high overhead for handling node join and leave, although some works
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have defended performance during churn (e.g. [37]). Second, the lookup efficiency of these
systems is limited to exact-match queries. Their ability to implement keyword searches
and more complex queries is still an open issue. Therefore, given a P2P application, the
best suited network overlay depends on that application functionalities and performance
metrics.

Recently, some have started to justify that unstructured and structured approaches
are complementary, not competing. The approach presented in [97] improves the
unstructured Gnutella network by adding structural components. The motivation behind
is that unstructured routing mechanisms are inefficient for data that are not highly
replicated across the P2P network, while structured key-based lookup performs efficiently,
irrespective of replication. In [29], the authors leverage the idea of cohabiting several P2P
overlays on a same network, so that the best overlay could be chosen depending on the
application. The distinctive feature of this proposal is that, in the joint overlay, the
cohabiting overlays share information to reduce their maintenance cost while keeping the
same level of performance.

Finally, we agree with the statement saying that the “unstructured vs. structured”
taxonomy is becoming less useful, for two reasons. First, almost no network topologies
are truly “unstructured”. Unstructured P2P proposals, which used initially blind flooding
and random walks, have evolved to exploit inherent structure (e.g. small world and scale-
free features), or to incorporate structure through clusters and superpeers. Second, a new
class of schema-based P2P systems, also called Peer Data Management systems PDMSs,
has emerged [149]. Examples of such systems combine approaches from P2P research as
well as from the database and semantic web research areas. These systems allow the
aggregation and integration of data from autonomous, distributed data sources. They are
dealing with heterogeneity of nodes and structure within data.

Following this statement, some studies have adopted database taxonomy rather than
networking taxonomy (e.g. [27], [64]) in order to categorize P2P search networks. The
structure is implicitly determined by the type of the employed index. In the following
section, we discuss the different data indexing schemes that have been proposed in the
P2P literature.

2.2 Data Indexing in P2P Systems

P2P search techniques rely basically on data indexes. A data indexing scheme should take
into account the following requirements. First, the creation/maintenance of indexes should
not overload either the nodes by an extensive usage of their resources, or the network by a
large bandwidth consumption. Second, the mechanism of maintaining indexes should not
restrict peer autonomy. Instead, it should recover from node leave and join in a resource-
efficient manner.

Obviously, the use of indexes should contribute to enhance the efficiency of searches
made in the system. For instance, this efficiency can be quantified by the rate of successful
searches (a search is successful if it locates, at least, one replica of the requested object),
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the response time, the number of returned results, the number of hops made to find a
first query matching, and the number of messages exchanged in the network, which is an
important metric from the system point of view.

The related trade-offs between index update cost, efficiency of the associated search
technique, and peer churn are critical to evaluate a P2P indexing scheme.

2.2.1 Index Types

A P2P index can be local, centralized or distributed according to where it is maintained
in the system, and to the distribution of data which it refers to.

2.2.1.1 Local Index

A node only keeps references to its own data, without obtaining any information about
data stored at other nodes. The very early Gnutella design [4] adopted the local-index
approach. This approach enables rich queries, but also generates huge traffic overhead
since the query needs to be flooded widely in the network. Furthermore, any guarantees
on search success can not be provided.

Considering that the key part of P2P searching approaches is an efficient routing
mechanism, the local-index approaches can be seen as index-free, since they do not support
query routing with any forwarding or location hints [154]. A forwarding index allows to
reach the requested object within a varying number of hops (with the network size), while
a location index allows to reach the target in a single hop. Based on the same reasoning,
the search techniques that have been proposed to improve the performance of index-free
systems, are referred as blind search techniques [140].

Breadth First Search (BFS). The originally Gnutella algorithm uses flooding (BFS
traversal of the underlying graph) for object discovery, and contacts all accessible nodes
within a Time-To-Leave (TTL) value (Figure 2.5). Small TTL values reduce the network
traffic and the load at peers, but also reduce the chances of a successful search.

Modified BFS [143] is a variation of the BFS scheme in which the peers randomly
choose only a ratio of their neighbors to forward the query to (Figure 2.6). This approach
reduces the number of messages needed for query routing at the cost of loosing available
query answers, which might be found by the original BFS.

Iterative Deepening. In [136], the idea of iterative deepening has been borrowed from
artificial intelligence and used in P2P searching. This method is also called expanding ring.
The querying node periodically issues a sequence of BFS with increasing TTL values. The
query terminates when sufficient number of results is found, or the predefined maximum
value of TTL is reached. Iterative deepening is tailored to applications where the initial
number of results found at peers that are closer to the query originator is important.
In this case, it achieves good performance gains compared to the original BFS. In other
cases, its overhead and response time may be much higher.
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Figure2.5: Example of BFS: the received query
is forwarded to all the neighbors

Figure2.6: Example of Modified BFS: the
received query is forwarded to a randomly
selected set of neighbors

Random Walks. In the standard random walk algorithm, the querying node forwards
the query message to one randomly chosen neighbor. This neighbor randomly selects one
of its neighbors and forwards the query to that neighbor, and so on until there is a query
match. This algorithm indeed reduces the network traffic, but massively increases the
search latency.

In the k-walker random walk algorithm [136], the query is replicated at the originator,
so it sends k query messages to an equal number of randomly chosen neighbors. Each of
these messages follows its own path, having intermediate nodes forward it to a randomly
chosen neighbor at each step. These query messages are also known as walkers. When the
TTL of a walker reaches zero, it is discarded.

Figure2.7: Example of Random Walks: each received walk is forwarded to only one neighbor

The algorithm’s most important advantage is the significant message reduction it
achieves. It produces k∗TTL messages in the worst case, a number which seldom depends
on the underlying network. It also achieves some kind of local “load balancing”, since
no nodes are favored in the forwarding process over others. However, the most serious
problem of this algorithm is its highly variable performance. Success rates and number of
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hits vary greatly depending on network topology and the random choices made. Another
drawback is its inability to adapt to different query loads.

Adamic et al [81] addressed the first problem of random walks by recommending that
instead of using purely random walks, the search protocol should bias its walks toward
high-degree nodes (i.e. nodes with large number of connections). They assume that
high-degree nodes are also capable of higher query throughputs. Certainly, the relevance
of such assumption is constrained by the design of balancing rules to avoid overloading
high-degree nodes, which may not have the capacity to handle a large number of queries.

Finally we note that, in spite of their name, the Local Indices proposed in [34] do not
belong to this type of indexes. An index is locally maintained at a given node, however,
it refers to remote data stored at other nodes.

2.2.1.2 Centralized Index

The index is centralized at dedicated servers, but the described data is distributed. In
fact, the centralized schemes [6] were the first to demonstrate the P2P scalability that
comes from separating data index from the data itself. The centralized index is a location
(non-forwarding) index that allows to locate relevant data within one hop, which is very
efficient. However, the central servers are single points of failure which renders the system
inherently unscalable and vulnerable to malicious attack.

The P2P research community has rapidly turned its back on centralized architectures.
Furthermore, P2P systems that only use local indexes are becoming rare, since routing the
query in a blind manner is still providing a poor trade-off between the traffic overhead and
the lookup efficiency. In practice, all current P2P systems are implementing distributed
indexes.

2.2.1.3 Distributed Index

The index refers to data from distributed sources, and is itself distributed across the
network. Here, we are talking about the global index, which is (may be virtually)
obtained from the set of indexes materialized in the network. A hybrid decentralized
approach consists in distributing such global index among some specialized nodes (e.g.
supernodes and ultrapeers). A pure decentralized approach distributes the index among
all participants, that is, each node in the system maintains a part of that index.

An early P2P proposal for a distributed index was Freenet [70]. Freenet uses a hash
function to generate keys, by which the shared files are identified. Each node maintains a
dynamic routing table containing the addresses of other nodes and the file keys they are
thought to hold. To search for a file, the user sends a request message specifying the key
and a TTL value. Upon receiving a query message, a node checks its local table for either
a match or another node with keys close to the target. If the file is eventually found
at a certain node (before exceeding TTL), the query response traverses the successful
query path in reverse, adding a new routing table entry (the requested key and the file
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provider) at each peer. A subsequent request with the same key will be served with this
cached entry. The request will be forwarded directly to the node that had previously
provided the data. Freenet allows to significantly reduce the traffic overhead in the
system. However, it only supports exact-match queries, and only one result is returned.
Another limitation is that Freenet takes time to build an efficient index upon the arrival
of a new node.

As said before, almost all of the current P2P proposals rely on distributed indexes,
which can range from simple forwarding hints to exact object locations. These indexes
can be distinguished according to whether they are semantic-free, or they capture
data semantics. The semantic index is human-readable. For example, it might associate
information with keywords, document names, or database keys. A free-semantic index
typically corresponds to the index by a hash mechanism, i.e. the DHT schemes.

2.2.2 Semantic-free Index: DHT

Structured systems have emerged mainly in an attempt to address that scalability problem
of Gnutella-like systems. They use the Distributed Hash Table (DHT) as a substrate, in
which the overlay topology and the data placement are tightly controlled.

Various DHT schemes differ in the topologies, routing protocols, fault tolerance, and
resilience to churn. In the following, we first briefly discuss the origin of DHTs. Then, we
present the main geometries (i.e. the topology and the associated routing strategies) used
for DHT-based systems, and discuss their search efficiency and robustness.

2.2.2.1 Origins of DHTs

Distributed Hash Tables (DHTs) have been proposed to provide semantic-free, data-
centric references. DHTs allow to find an object’s persistent key in a very large, changing
set of hosts. Three contributions from the 1990s are at the origin of DHTs: Plaxton
Tree [111], Consistent Hashing [77], and Scalable Distributed Data Structure (SDDS) [87].
The Plaxton Tree [111] influenced the design of many P2P structured systems and
infrastructures, such as Pastry [20], Tapestry [36], and OceanStore [75]. The main value
of Plaxton Tree is that it can locate objects using fixed-length routing tables. Objects
and nodes are assigned semantic-free addresses, and each node is effectively the root of
a spanning tree corresponding to a given object. A message routes toward an object by
matching longer address suffixes. This approach has several limitations, including that
an object’s root node is a single point of failure. This issue has been addressed while
designing the Tapestry infrastructure.

Consistent Hashing [77] has been first introduced in the context of distributing objects
across a network of caches. Unlike normal hashing, consistent hashing provides a smooth
object references redistribution, when caches are added or deleted. It also ensures that
the total number of caches responsible for a particular object is limited. However, there
is an open Consistent Hashing problem concerning the fraction of items that should be
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redistributed when a node is inserted.
A Scalable Distributed Data Structure (SDDS) [87] is specifically designed for

multicomputers. An SDDS file can span over the storage of many computers linked
through a high-speed network. An SDDS satisfies three design requirements: files grow to
new servers only when existing servers are well loaded, there is no centralized directory,
and the basic operations like insert, search and split never require atomic updates to
multiple clients. Although the SDDS has not been significantly explored in structured
P2P designs, the authors have continuously worked on elaborating it to be adapted for
P2P environments [89], [139].

2.2.2.2 Tree

Tree is the first geometry which is used for organizing the peers of a DHT and routing
queries among them. In this approach, nodes and objects are assigned unique identifiers
(e.g. 160-bit key). The leaf nodes of the binary tree represent the key-space partitions
(peer’s identifiers). The depth of that tree is log(n), where n is the number of peers. The
responsible for a given object key is the peer whose identifier has the highest number of
prefix bits which are common with the key. A search is routed toward the requested object
based on longest prefix matching at each intermediate peer until reaching the responsible
peer. The distance between two peers is then the height of the smallest common subtree.
Tapestry [36] uses similar prefix matching in order to forward query messages. To avoid
the problem of single point of failure that root nodes constitute in the Plaxton Tree model,
Tapestry assigns multiple roots to each object. Such approach allows reliability at the cost
of redundancy.
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Figure2.8: Tapestry routing mesh from the perspective of a single node. Outgoing neighbor
links point to nodes with a common matching prefix. Higher level entries match more digits.
Together, these links form the neighbor map [36].

For each level in a tree topology there are several choices to select routing table entries.
To illustrate, each Tapestry node maintains a neighbor map as shown in Figure 2.8. The
neighbor map has multiple levels, each level l containing pointers to nodes whose identifier
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must be matched with l bits. For instance, the node in figure 2.8 maintains at the third
level of its routing table one pointer to one node matching his identifier with 3 digits.

The tree geometry has good neighbor selection flexibility, i.e. each peer has 2i − 1
options in choosing a neighbor at a level i. However, it has no flexibility for message
routing: there is only one neighbor which the message must be forwarded to, i.e. this is
the neighbor that has the most common prefix bits with the given key. Several applications
have been designed on the top of Tapestry, such as OceanStore [75]. Pastry [20] is a scheme
similar to Tapestry, however, it differs in the approach to achieving network locality
and object replication. It is employed by the PAST large-scale persistent P2P storage
utility [21].

2.2.2.3 Ring

The Ring geometry is based on a one dimensional cyclic space such that the peers are
ordered on the circle clockwise with respect to their keys. Chord [72] is the prototypical
DHT ring. Chord supports one main operation: find a peer with the given key. The keys
are assigned both to data and peers by means of a variant of Consistent Hashing [77].
Each key on the key-space is mapped to the peer with the least identifier greater or equal
to the key, and this peer is called the key’s successor. Thus to say, this peer is responsible
for the corresponding data. The use of consistent hashing tends to balance load, as each
node receives roughly the same number of keys.
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Figure2.9: The finger table at node 8 on a Chord ring of 10 nodes, m = 6 [72].

In Chord, a peer needs to track the addresses of only m other peers, not all peers
such in the original Consistent Hashing proposal. Each peer p maintains a “finger table”
containing m = log(n) entries such that the ith entry provides the address of the peer
whose distance from p clockwise in the circle is 2i − 1 mod n (see Figure 2.9). Hence,
any peer can route a given key to its responsible in logn hops because each hop reduces
the distance to the destination by half. In Chord, a peer needs to track the addresses of
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only m = O(logn) other peers, not all peers such as in the original Consistent Hashing
proposal.

The correctness of the Chord routing protocol relies on the fact that each peer is
aware of its successors. When peers fail, it is possible that a peer does not know its new
successor, and that it has no chance to learn about it. To avoid this situation, peers
maintain a successor list of size r, which contains the peer’s first r successors. When the
successor peer does not respond, the peer simply contacts the next peer on its list.

2.2.2.4 Hypercube

The Hypercube geometry is based on partitioning a d-dimensional space into a set of
separate zones and attributing each zone to one peer. Peers have unique identifiers with
log n bits, where n is the total number of peers Each peer p has log n neighbors such that
the identifier of the ith neighbor and p differ only in the ith bit. Thus, there is only one
different bit between the identifier of p and each of its neighbors. The distance between
two peers is the number of bits on which their identifiers differ. Query routing proceeds by
greedily forwarding the given key via intermediate peers to the peer that has minimum bit
difference with the key. Thus, it is somehow similar to routing on the tree. The difference
is that the hypercube allows bit differences to be reduced in any order while with the tree
bit differences have to be reduced in strictly left-to-right order.

The number of options for selecting a route between two peers with k bit differences
is (log n) ∗ (log n − 1) ∗ · · · ∗ (log n − k), i.e. the first peer on the route has log n
choices, and each next peer on the route has one choice less than its predecessor. Thus,
in the hypercube, there is great flexibility for route selection. However, each node in the
coordinate space does not have any choice over its neighbors coordinates since adjacent
coordinate zones in the coordinate space can not change. The high selection flexibility
offered by the Hypercube is at the price of poor neighbor selection flexibility.

The routing geometry used in CAN [131] resembles a hypercube geometry. CAN uses a
d-dimensional coordinate space which is partitioned into n zones and each zone is occupied
by one peer (see Figure 2.10). When d = log n, the neighbor sets in CAN are similar to
those of a log n dimensional hypercube.
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Figure2.10: 2-dimensional [0; 1]×[0; 1] coordinate space partitioned between 5 CAN nodes [131].
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Other DHTs geometries are the Butterfly geometry which is used in Viceroy [45], and
the XOR geometry which is used by Kademlia [112]. Certainly, two or more geometries
can be combined together to provide a hybrid geometry that satisfies better the DHT
requirements. To illustrate, Pastry [20] combines the tree and ring geometries in order to
achieve more efficiency and flexibility.

2.2.3 Semantic Index

The initial unstructured file sharing P2P systems offered a filename-based search facility,
while the DHT-based systems offered only a key-based lookup. However, as stated before,
the P2P systems should be able to do more than “finding” things, i.e. to capture
data semantics and to allow for rich, complex queries. Works on both P2P networks,
unstructured and structured, have been started in order to support P2P applications
with higher levels of search expressiveness. First enhancements to existing file sharing
P2P systems have early provided keyword search facilities. Later, providing large-scale
Information Retrieval (IR), e.g. for searching the world wide web, becomes an appealing
application for P2P networks. Consequently, the well known IR techniques have been
brought into the context of P2P networks, in order to support a decentralized document
management (e.g. storing, clustering, indexing) and retrieval.

Recently, the Database and P2P paradigm have meet. The former was slowly
moving toward a higher degree of distribution, and thus requiring a new class of
scalable, distributed architecture. The latter has started to explore more expressiveness
infrastructures in order to extend the representation and query functionalities it can offer
to advanced applications. The P2P Data Management Systems (PDMS) are the point
where the two paradigms meet.

As the P2P networks are going to be adaptable, i.e. to support a wide range of
applications, they need to accommodate many search types. Index engineering has been
always at the heart of P2P search methods. In the following, we introduce the various
types of semantic indexes employed by current P2P systems. Then, the query capabilities
will be discussed in Section 2.4.

2.2.3.1 Keyword Lookup

Gnutella [4] provides a simple keyword match. Queries contain a string of keywords and
peers answer when they have files whose names contain all that keywords. In its first
version, Gnutella was a local-index system. Queries were flooded in the entire network
and peers only used their local indexes for filename matches.

As a way to improve the performance of unstructured Gnutella-like systems, the notion
of ultrapeer was introduced, so that the peer are organized into a hierarchical network
overlay. In [23], each peer maintains an index of filename keywords, called the Query
Routing Table (QRT), and forwards it to its ultrapeer. Upon receiving a query, the latter
sends the query only to leaves which have a match based on their QRTs. Later, there has
been a proposal to exploit the network hierarchy in order to build a hierarchical index.
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Aggregated QRTs are distributed amongst the ultrapeers to improve the query forwarding
from an ultrapeer to another.

In other approach, [34] suggested the local indices : data structures where each node
maintains an index of the data stored at nodes located within a radius r from itself.
The query routing is done in a BFS-like way, except that the query is processed only at
the peers that are at certain hop distances from the query originator. To minimize the
overhead, the hop distance between two consecutive peers that process the query must
be 2 ∗ r + 1. In other words, the query must be processed at peers whose distance from
the query originator is m ∗ (2 ∗ r + 1) for m = 1, 2, . . .. This allows querying all data
without any overlap. The processing time of this approach is less than that of standard
BFS because only a certain number of peers process the query. However, the number of
routing messages is comparable to that of standard BFS. In addition, whenever a peer
joins/leaves the network or updates its shared data, a flooding with TTL = r is needed
in order to update the peers’ indices, so the overhead becomes very significant for highly
dynamic environments.

Routing Indices [9] have been proposed to support query routing with information
about “direction” towards data, rather than providing its actual location. Documents are
assumed to fall into a number of topics, and queries request documents on particular
topics. Routing Indices (RIs) store information about the approximate number of
documents from every topic that can be retrieved through each outgoing link (i.e. not
only from that neighbor but from all nodes accessible from it).

Figure2.11: Example of Routing Indices

Figure 2.11 shows an example of a P2P network with RIs built over four topics of
interest. The first row of each RI contains the summary of the local index presented
before (i.e. radius r = 2). In particular, the summary of A’s local index shows that A has
300 documents: 30 about databases, 80 about networks, none about theory, and 10 about
languages. The rest of the rows represent a compound RI. In the example, the RI shows
that node A can access 100 database documents through D (60 in D, 25 in I, and 15 in
J).
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Given a query, the termination condition relates to a minimum number of hits. A
node that can not satisfy the query stop condition with its local repository will forward it
to the neighbor with the highest “goodness” value. Three different functions which rank
the out-links according to the expected number of documents that could be discovered
through them are proposed. The routing algorithm backtracks if more results are needed.
A limitation of this approach is that RIs require flooding in order to be created and
updated, so they are not suitable for highly dynamic networks. Moreover, stored indices
can be inaccurate due to topic correlations, over-counts or under-counts in document
partitioning and network cycles.

2.2.3.2 Peer Information Retrieval

The amount of data published in the internet and its amazing growth rate become beyond
centralized web search engines. Recently, P2P systems start to represent an interesting
alternative to build large-scale, decentralized Information Retrieval systems.

IR systems define representations of both documents and queries. They may only
support a boolean retrieval model, in which documents are indexed and a document can
match or not a given query. Note that the local and routing indices described in the above
section allow for such a retrieval model. Current IR systems are supporting the retrieval
model with a ranking function that quantifies the order amongst the documents matching
the query. This becomes essential in the context of large document collections, where the
resulting number of matching documents can far exceed the number a user could possibly
require. To this end, the IR system defines relationships between document and query
representations, so that a score can be computed for each matching document, w.r.t. the
query at hand.

A P2P system differs from a distributed IR system in that it is typically larger,
more dynamic with node lifetimes measured in hours. Furthermore, a P2P system lacks
the centralized mediators found in many IR systems that assume the responsibility for
selecting document collections, rewriting queries, and merging ranked results [25]. In the
following, we first introduce the main IR techniques used for indexing documents. Then,
we present the P2P IR systems that have been proposed in the literature.

Inverted Index The inverted index, or sometimes called inverted file, has became the
standard technique in IR. For each term, a list that records which documents the term
occurs in is maintained. Each item in the list is conventionally called a posting. The list is
then called a postings list (or inverted list), postings list and all the postings lists taken
together are referred to as the postings.

Vector Space Model The representation of the set of documents and queries as vectors
in a common vector space is known as the Vector Space Model (VSM) and is fundamental
to support the operation of scoring documents relative to a query. Each component of the
vector represents the importance of a term in the document or query. The weight of a
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component is often computed using the Term Frequency * Inverse Document Frequency
(TF*IDF) scheme.

• Term Frequency : the frequency of each term in each document.

• Inverse Document Frequency : the document frequency dft is the number of
documents, in a collection of N documents, that contain a term t. The Inverse
Document Frequency of term t is given by: log(N/dft).

Viewing a collection of N documents as a collection of vectors leads to a natural view of
a collection as a term-document matrix : this is an M × N matrix whose rows represent
the M terms (dimensions) of the N columns, each of which corresponds to a document.

Latent Semantic Index Latent Semantic Index (LSI) uses Singular Value
Decomposition (SVD) to transform and truncate the term-document matrix computed
from VSM. This allow to discover the semantics underlying terms and documents.
Intuitively, LSI transforms a high-dimensional document vector into a medium-
dimensional semantic vector by projecting the former into a medium-dimensional
semantic subspace. The basis of the semantic subspace is computed using SVD. Semantic
vectors are normalized and their similarities are measured as in VSM.

Several solutions for text-based retrieval in decentralized environments have been
proposed in the literature.

PlanetP [48] is a publish-subscribe service for P2P communities, supporting content
ranking search. PlanetP maintains a detailed inverted index describing all documents
published by a peer locally (i.e. a local index). In addition, it uses gossiping to replicate a
term-to-peer index everywhere for communal search and retrieval. This term-to-peer index
contains a mapping t → p if term t is in the local index of peer p. PlanetP approximate
TF ∗ IDF by dividing the ranking problem into two stages. In first, peers are ranked
according to their likehood of having relevant documents. To this end, PlanetP introduces
the Inverse Peer Frequency (IPF) measure. Similar to IDF , the idea behind is that a term
is of less importance if it is present in the index of every peer. Second, PlanetP contacts
only the first group of m peers from the top of the peer ranked list, to retrieve a relevant
set of documents. It stops contacting peers when the top-k document ranking becomes
stable, where k is specified by the user. A primary shortcoming of PlanetP is the large
amount of metadata that should be maintained, which restricts its scalability.

The PeerSearch system [42] proposes another approach that places documents onto a
DHT network according to their semantic vectors produced by Latent Semantic Indexing
(LSI) in order to reduce document dimensionality and guarantee solution scalability.
However, as semantic vectors have to be defined a priori, the method cannot efficiently
handle dynamic scenarios and adapt to changing collections.

A query-driven indexing method has recently been proposed in [54]. However, the
solution is based on single-term indexing and does not consider indexing with term
combinations. A recent work proposes the AlvisP2P search engine [138], which enables
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retrieval with multi-keywords from a global document collection available in the P2P
network. One of the merits of the proposed approach is that indexing is performed in
parallel with retrieval. However, a main limitation is that the quality of the answer
obtained for a given query depends on the popularity of the term combinations it contains.

2.2.3.3 Peer Data Management

While existing architectures for distributed systems have been reaching their maturity
(e.g. distributed database systems, data integration systems), the P2P paradigm has
emerged as a promising alternative to provide a large-scale decentralized infrastructure
for resource sharing. Grible et al. have addressed an important question “how data
management can be applied to P2P, and what the database community can learn from
and contribute to the P2P area? [53]. The P2P paradigm has gained much popularity
with the first successful file sharing systems (e.g. Gnutella, KaZaa) because of the ease of
deployment, and the amplification of the desired system properties as new nodes join (i.e.
this is aligned with the definition of the P2P paradigm). However, the semantics provided
by these systems is typically weak. So far in this report, we have reviewed P2P systems
that support key lookups or keyword search. In order to support advanced applications
which are dealing with structured and semantically rich data, P2P systems must provide
more sophisticated data access techniques. The overlapping of P2P and database areas
has lead to a new class of P2P systems, called Peer Data Management Systems (PDMS)
or schema-based P2P systems (see Figure 2.12).

Figure2.12: Schema capabilities and distribution [149]

In distributed databases, the location of content is generally known, the query
optimizations are performed under a central coordination, and answers to queries are
expected to be complete. On the other side, the ad-hoc and dynamic membership of
participants in P2P systems makes difficult to predict about the location and the quality
of resources, and to maintain globally accessible indexes which may become prohibitive
as the network size grows.

The work that has been done in PDMSs mainly addresses the information integration
issue. In fact, the potential heterogeneity of data schemas makes sharing structured data in
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P2P systems quite challenging. This issue will be discussed in Section 2.3. Besides, PDMSs
have started to study the design and the implementation of complex query facilities (e.g.
join and range queries). This is a fundamental building block of a given PDMS which
attempts to be a fully distributed data system, with a high level of query expressiveness.
Processing complex queries requires the employment of data access techniques which deal
with the structure and semantics within data. Section 2.4 discusses complex queries in
P2P systems.

2.3 Schema Management in P2P Systems

Semantic heterogeneity is a key problem in large scale data sharing systems [92]. The data
sources involved are typically designed independently, and hence use different schemas.
To be able to allow meaningful inter-operation between different data sources, the system
needs to define schema mappings. Schema mappings define the semantic equivalence
between relations and attributes in two or more different schemas.

The traditional approach for querying heterogeneous data sources relies on the
definition of mediated schema between data sources [55] (see Figure 2.13). This mediated
schema provides a global unified schema for the data in the system. Users submit their
queries in terms of the mediated schema, and schema mappings between the mediated
schema and the local schemas allow the original query to be reformulated into subqueries
executable at the local schemas. There is a wrapper close to each data source that provides
translation services between the mediated schema and the local query language [142].

Figure2.13: Schema Mapping using a Global Mediated Schema

In data integration systems, there are two main approaches for defining the mappings:
Global-as-view (GAV) which defines the mediated schema as a view of the local schemas,
and Local-as-View (LAV) which describes the local schemas as a view of the mediated
schema [85]. In GAV, the autonomy of data sources is higher than LAV because they
can define their local schemas as they want. However, if any new source is added to a
system that uses the GAV approach, considerable effort may be necessary to update the
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mediator code. Thus, GAV should be favored when the sources are not likely to change.
The advantage of a LAV modeling is that new sources can be added with far less work
than in GAV. LAV should be favored when the mediated schema is not likely to change,
i.e. the mediated schema is complete enough that all the local schemas can be described
as a view of it.

Given the dynamic and autonomous nature of P2P systems, the definition of a unique
global mediated schema is impractical. Thus, the main problem is to support decentralized
schema mapping so that a query on one peer’s schema can be reformulated in a query
on another peer’s schema. The approaches which are used by P2P systems for defining
and creating the mappings between peers’ schemas can be classified as follows: pairwise
schema mapping, mapping based on machine learning techniques, common agreement
mapping, and schema mapping using IR techniques.

2.3.1 Pairwise Schema Mappings

In this approach, the users define the mapping between their local schemas and the schema
of any other schema which is interesting for them. Relying on the transitivity of the defined
mappings, the system tries to extract mappings between schemas which have no defined
mapping.

Piazza [73] follows this approach (see Figure [73]). In Piazza, the data are shared as
XML documents, and each peer has a schema, expressed in XMLSchema, which defines
the terminology and the structural constraints of the peer. When a new peer (with a new
schema) joins the system for the first time, it maps its schema to the schema of some
other peers of the network. Each mapping definition begins with an XML template that
matches some path or sub-tree of an instance of the target schema, i.e. a prefix of a legal
string in the target DTD’s grammar. Elements in the template may be annotated with
query expressions (in a subset of XQuery) that bind variables to XML nodes in the source.

Figure2.14: An Example of Pairwise Schema Mapping in Piazza

The Local Relational Model (LRM) [107] is another example that follows this
approach. LRM assumes that the peers hold relational databases, and each peer knows
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a set of peers with which it can exchange data and services. This set of peers is called
p’s acquaintances. Each peer must define semantic dependencies and translation rules
between its data and the data shared by each of its acquaintances. The defined mappings
form a semantic network, which is used for query reformulation in the P2P system.

PGrid also assumes the existence of pairwise mappings between peers, initially
constructed by skilled experts [135]. Relying on the transitivity of these mappings and
using a gossiping algorithm, PGrid extracts new mappings that relate the schemas of the
peers between which there is no predefined schema mapping.

2.3.2 Mapping based on Machine Learning Techniques

This approach is usually used when the shared data is defined based on ontologies and
taxonomies as proposed in the Semantic Web [8]. It uses machine learning techniques to
automatically extract the mappings between the shared schemas. The extracted mappings
are stored over the network, in order to be used for processing future queries.

GLUE [11] uses this approach. Given two ontologies, for each concept in one, GLUE
finds the most similar concept in the other. It gives well founded probabilistic definitions
to several practical similarity measures. It uses multiple learning strategies, each of which
exploits a different type of information either in the data instances or in the taxonomic
structure of the ontologies. To further improve mapping accuracy, GLUE incorporates
commonsense knowledge and domain constraints into the schema mapping process. The
basic idea is to provide classifiers for the concepts. To decide the similarity between two
concepts A and B, the data of concept B is classified using A’s classifier and vice versa. The
amount of values that can be successfully classified into A and B represent the similarity
between A and B.

2.3.3 Common Agreement Mapping

In this approach, the peers that have a common interest agree on a common schema
description for data sharing. The common schema is usually prepared and maintained by
expert users. APPA [120] makes the assumption that peers wishing to cooperate, e.g. for
the duration of an experiment, agree on a Common Schema Description (CSD). Given a
CSD, a peer schema can be specified using views. This is similar to the LAV approach in
data integration systems, except that, in APPA, queries at a peer are expressed in terms
of the local views, not the CSD. Another difference between this approach and LAV is
that the CSD is not a global schema, i.e. it is common to a limited set of peers with
common interest (see Figure 2.15). Thus, the CSD makes no problem for the scalability
of the system. When a peer decides to share data, it needs to map its local schema to the
CSD. In APPA, the mappings between the CSD and each peer’s local schema are stored
locally at the peer. Given a query Q on the local schema, the peer reformulates Q to a
query on the CSD using locally stored mappings.

AutoMed [113] is another system that relies on common agreements for schema
mapping. It defines the mappings by using primitive bidirectional transformations defined
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in terms of a low-level data model.

Figure2.15: Common Agreement Schema Mapping in APPA

2.3.4 Schema Mapping using IR Techniques

This approach extracts the schema mappings at query execution time using IR techniques
by exploring the schema descriptions provided by users. PeerDB [102] follows this
approach for query processing in unstructured P2P networks. For each relation which
is shared by a peer, the description of the relation and its attributes is maintained at that
peer. The descriptions are provided by users upon creation of relations, and serve as a
kind of synonymous names of relation names and attributes. When a query is issued, some
agents are flooded to the peers to find out potential matches and bring the corresponding
meta-data back. By matching keywords from the meta-data of the relations, PeerDB is
able to find relations that are potentially similar to the query relations. The found relations
are presented to the user who has issued the query, and she decides on whether or not to
proceed with the execution of the query at the remote peer which owns the relations.

Edutella [137] also follows this approach for schema mapping in super-peer networks.
Resources in the Edutella are described using the RDF metadata model, and the
descriptions are stored at superpeers. When a user issues a query at a peer p, the query is
sent to p’s super-peer where the stored schema descriptions are explored and the address
of the relevant peers are returned to the user. If the super-peer does not find relevant peers,
it sends the query to other super-peers such that they search relevant peers by exploring
their stored schema descriptions. In order to explore stored schemas, super-peers use the
RDF-QEL query language. RDF-QEL is based on Datalog semantics and thus compatible
with all existing query languages, supporting query functionalities which extend the usual
relational query languages.

Independently of the approach used to implement the schema mappings, P2P systems
attempt to exploit the transitive relationships among peer schemas to perform data
sharing and integration [156]. While in traditional distributed systems, schema mappings
form a semantic tree, in P2P systems the mappings form a semantic graph. By traversing
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semantic paths of mappings, a query over one peer can obtain relevant data from any
reachable peer in the network. Semantic paths are traversed by reformulating queries at
a peer into queries on its neighbors.

2.4 Querying in P2P Systems

The support of a wider range of P2P applications motivates the evolution of current
P2P technologies in order to accommodate many search types. As said before, a P2P
system should support the operating application with an appropriate level of query
expressiveness. Advanced applications which are dealing with semantically rich data
require an expressiveness level higher than filename-based or key-based lookup. In the
following, we discuss the different techniques used for processing complex queries in P2P
systems. These querying techniques can be distinguished according to:

• Search completeness: the network is entirely covered by the search mechanism.
Relaxing the search completeness leads to partial lookup.

• Result completeness: the found result set is entirely returned to the user. Relaxing
the result completeness leads to partial answering.

• Result granularity: generally, the returned results are retrieved from, and thus have
the same type as, the original queried data (e.g. music files, XML documents,
database tuples). Returning results at a different level of granularity (by making
data abstraction) leads to approximate answering. The term “approximate” may still
be ambiguous, due to its wide employment in query processing proposals. However,
the following sections tend to give a precise definition of what we are referring to
by “approximate answers”.

2.4.1 Partial Lookup

The advantages of P2P data sharing systems, like scalability and decentralization, do
not come for free. In large-scale dynamic systems, it is nearly impossible to guarantee
a complete search. Let Q be a query issued by a peer p in the system, and PQ the set
of relevant peers, i.e. the peers that store, at least, one query result. Q is said to be a
total-lookup query if it requires all the results available in the system. Here, the set PQ

should be entirely visited. In the case where Q requires any k results, Q is said to be a
partial-lookup query.

The impracticality of an exhaustive flooding, the limited knowledge provided by
indexes and the errors they may contain, and the incorrect semantic mappings are reasons
among others for considering that all queries in P2P systems are in reality processed as
being partial-lookup queries. In other terms, the query Q issued by peer p in a P2P network
of size N will be routed in a subnetwork of size N ′, and thus a subset P ′

Q ⊆ PQ can be
targeted. The filename-based, key-based and keyword-based searches have been presented
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earlier in this chapter. Here, we discuss four types of complex queries: range, multi-
attribute, join, and fuzzy queries. The importance of these queries has been recognized
in many distributed environments (e.g. parallel databases, Grid resource discovery) since
they significantly enhance the application ability to precisely express its interests.

2.4.1.1 Range Queries

Range queries are issued by users to find all the attribute values in a certain range over
the stored data.

Several systems have been proposed to support range queries in P2P networks. The
query processing in these systems rely on underlying DHTs, or other indexing structures.
Some argue that DHTs are not suited to range queries [12]. The hash functions used to
map data on peers achieve good load balancing, but do not maintain data proximity, i.e.
the hash of two close data may be two far numbers. Despite of this potential shortcoming,
there have been some range query proposals based on DHTs.

Instead of using uniform-hashing techniques, Gupta et al [12] employ locality sensitive
hashing to ensure that, with high probability, similar ranges are mapped to the same peer.
They propose a family of locality sensitive hash functions, called min-wise independent
permutations. The simulation results show good performance of the solution. However,
there is the problem of load unbalance for large networks. In [105] the authors extend the
CAN protocol using the Hilbert space-filling curve and load balancing mechanisms. Nearby
ranges map to nearby CAN zones, and if a range is split into two sub-ranges, then the
zones of the sub-ranges partition the zone of the primary range. Thus, the one-dimensional
space of data items is mapped to the multi-dimensional CAN zones. Conversely, multi-
dimensional data items are mapped to data points in one-dimensional space through the
space-filling curve in [41]. Such a construction gives the ability to search across multiple
attributes.

Some works rely on Skip list data structure which, unlike DHT, does not require
randomizing hash functions and thus can support range queries. SkipNet [103] is a
lexicographic order-preserving DHT that allows data items with similar values to be placed
on contiguous peers. It uses names rather than hashed identifiers to order peers in the
overlay network, and each peer is responsible for a range of strings. This facilitates the
execution of range queries. However, it is not efficient because the number of peers to be
visited is linear in the query range.

Other proposals for range queries avoid both DHT and Skip list structures. P-
Grid [135] is based on a randomized binary prefix tree. One limitation is that P-Grid
considers that all nodes in the system have a fixed capacity, and content is heuristically
replicated to fill all the node capacity. However, there is no formal characterization of
either the imbalance ratio guaranteed, or the data-movement cost incurred.

BATON [65] is a balanced binary search tree with in-level links for efficiency, fault-
tolerance, and load-balancing. VBI-tree [66] proposes a virtual binary overlay which is
an enhancement of BATON, and focuses on employing multi-dimensional indexes to
support more complex range query processing. Common problems to balanced tree overlay
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structures is that peer joining or leaving can cause a tree structural change, and the update
strategies may get prohibitive under a high churn environment.

The work on Scalable Distributed Data Structures (SDDSs) has progressed in parallel
with P2P work and has addressed range queries. Like DHTs, the early SDDS Linear
Hashing (LH*) schemes were not order preserving [87]. To facilitate range queries, a range
partitioning variant, RP* has been proposed in [88]. In [139], the authors investigated TCP
and UDP mechanisms by which servers could return range query results to clients.

2.4.1.2 Join Queries

Distributed data among peers could be seen, in some cases, as a set of large relational
tables fragmented horizontally. Running efficient join queries over such massively dispersed
fragments is a challenging task. Two research teams have done some initial works on P2P
join operations.

In [125], the authors describe a three layer architecture of the PIER system and
implement two equi-join algorithms. In their design, a key is constructed from a
“namespace” (relation) and a “resourceID” (primary key by default). Queries are
multicast to all peers in the two namespaces to be joined. The first algorithm is a version
of the symmetric hash join algorithm [WA91]. Each peer in the two namespaces finds the
relevant tuples and hashes them to a new query namespace. The resource ID in the new
namespace is the concatenation of join attributes. The second algorithm, called “fetch
matches”, assumes that one of the relations is already hashed on the join attributes.
Each peer in the second namespace finds tuples matching the query and retrieves the
corresponding tuples from the first relation. The authors leverage two other techniques,
namely the symmetric semi-join rewrite and the Bloom filter rewrite, to reduce the high
bandwidth overheads of the symmetric hash join. For an overlay of 10, 000 peers, they
evaluated the performance of their algorithms through simulation. The results show
good performance of the proposed algorithms. However, for the cases where the join
relations have a large number of tuples, this solution is not efficient, especially in terms
of communication cost.

In [116], the authors considered multicasting to a large number of peers inefficient.
Thus, they propose using a set of dedicated peers called range guards to monitor partitions
of join attributes. Join queries are therefore sent only to range guards which decide the
peers that should be contacted to execute the query.

2.4.1.3 Multi-Attributes Queries

There has been some work on multi-attribute P2P queries. The Multi-Attribute
Addressable Network (MAAN) [96] is built on top of Chord to provide multi-attribute and
range queries. They use a locality preserving hash function to map attribute values to the
Chord identifier space, which is designed with the assumption that the data distribution
could be known beforehand. Multi-attribute range queries are executed based on single-
attribute resolution in O(logn + n ∗ smin) routing hops, where n is the number of peers
of the DHT and smin is the minimum range selectivity across all attributes. The range
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selectivity is defined to be the ratio of the query range to the entire attribute domain
range. However, the authors notice that there is a query selectivity breakpoint at which
flooding becomes better than their scheme. Another drawback of MAAN is that it requires
a fixed global schema which is known in advance to all peers. The authors followed up with
the RDFPeers system to allow heterogeneity in peers schemas [95]. Each peer contains
RDF based data items described as triples 〈subject, predicate, object〉. The triples are
hashed onto MAAN peers. The experimental results show improvement in load balance,
but no test for skewed query loads was done.

2.4.1.4 Fuzzy Queries

Information Need vs Query: In information systems, the information need is what the user
(or group of users) desires to know from the stored data, to satisfy some intended objective
(e.g. data analysis, decision making). However, the query is what the user submits to the
system in an attempt to get that information need.

Precision vs Accuracy: Let us examine what is the relation between precise query
statements and the accuracy of the returned results according to the information need.
Consider the following relational table (Table 2.2) that maintains some patient records in
a given hospital1. Suppose now that a doctor requires information about young patients

Table2.2: Patient Table
Id Age Sex BMI Disease

t1 36 female 17 Malaria
t2 23 male 20 Malaria
t3 45 female 16.5 Anorexia
t4 33 female 23 Malaria
t5 55 female 21 Rheumatism
t6 19 male 18 Malaria

diagnosed with Malaria (i.e. the information need). In a conventional SQL query, we must
decide what are the ages of people considered as young. In the case where such age values
fall into the [21, 35] range, the SQL query is written as follows:

Select all From Patient Where age in [21, 35] and Disease = Malaria

The query above will return two tuples: t2 and t4. Unlike other contexts where the young
term is well defined, such in banking applications where the age of clients precisely decides
of the advantages they may benefit from, this term may not have a precise definition in
biological contexts. For instance, the tuple t6 may bring additional information to the
doctor, affecting its analysis or decision. From this point of view, we say that the query
results are not accurate, although the query has been precisely stated. One way to include
tuple t6 in the result set is to expand the scope of the selection predicate in order to
encompass more data. Thus, the previous query is modified as follows:

1Body Mass Index (BMI) attribute: patient’s body weight divided by the square of the height.
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Select all From Patient Where age in [18, 35] and Disease = Malaria

Although it selects more tuples, the query still fails to find tuples lying just outside the
explicit range of the selection predicate (e.g. tuple t1). This is due to the crisp boundaries
of the search range. Furthermore, there is no measure of inclusion, i.e. there is no way
to know which tuples are strongly satisfying the information need and which are weakly
satisfying it. Introducing fuzziness into user queries is a viable solution for that
problem, i.e. introducing some imprecision in query statements may in some
cases improve accuracy.

A fuzzy set is a class with unsharp boundaries. The grade of membership of an object
in a fuzzy set is a number in the unit interval or, more generally, a point in a partially
ordered set [82].

The application of gradual predicates, such as the young predicate presented in
Figure 2.16, results in associating membership degrees to tuples in a patient relational
table. For example, a tuple whose attribute value t.age is equal to 21 will be associated
with a membership degree of 0.5 according to the young predicate. Hence, tuples can
“partially” belong to the result set depending on how well they fit the information need.

Figure2.16: Gradual predicate on attribute age

In [122], fuzzy techniques have been used in the design of P2P reputation systems based
on collecting and aggregation peers’ opinions. Characterizing peer’s reputation by either
“bad” or “good” based on some defined threshold is not adequate, as it would characterize
in the same way a positive reputation produced by the collection of only positive opinions
by many users and a reputation built with a limited number of heterogeneous opinions
that produce a value immediately above the threshold; the same reasoning can be applied
to negative reputations.

A recent work tends to introduce fuzziness into the BestPeer platform [150]. In [110],
the authors propose FuzzyPeer, a generic P2P system which supports similarity queries.
An image retrieval application is implemented as a case study. Fuzzy queries like “find the
top-k images which are similar to a given sample” are very common in such applications
because it is difficult for humans to express precisely an image’s content in keywords or
using precise attribute values. The authors investigate the problem of resolving similarity
queries. The approach that consists in setting a similarity threshold and accepting objects
only above this value is rejected. In fact, choosing the threshold value is not trivial given
that the interpretation of an image depends on the user’s perception of the domain.
The approach proposed in [110] is based on the following observation: if two queries are
similar, the top-k answers for the first one may contain (with high probability) some of the
answers for the second query. In FuzzyPeer some of the queries are paused (i.e. they are
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not propagated further) and stay resident inside a set of peers. We use the term frozen for
such queries. The frozen queries are answered by the stream of results that passes through
the peers, and was initiated by the remaining running queries. Then, the authors propose
distributed optimization algorithm in order to improve the scalability and the throughput
of the system.

2.4.2 Partial Answering

As seen before, a first repercussion of the scale of P2P systems on query processing is that
all queries can partially search the network. Another issue is that the amount of available
data in P2P systems is dramatically increasing. More specifically, it becomes difficult to
retrieve a few data items within a large structured data set in current PDMSs. Consider
that a user issues the following query Q: select hotels in Nice where price < 100(euros)
and proximity < 8(km). The set RQ of results returned by the set of relevant peers P ′

Q

may include a number of hotels that is so far from the one required by the user. Therefore,
rank-aware queries like top-k and skyline queries started to emerge in order to provide
a partial result subset R′

Q, with the k results having the highest grades of membership
to the result set RQ, i.e. R′

Q ⊆ RQ. Indeed, the user is interested in the most relevant
available results, which may be specified in the query as follows: select hotels with cheap
price, and yet close to the beach. The degree of relevance (score) of the results to the query
is determined by a scoring function.

Ranking results in a distributed manner is difficult because ranking is global: all results
(matching a query) have to be ranked w.r.t. each other. In a completely distributed system,
the results returned for identical queries should ideally be the same, which is not an issue
in a centralized implementation. In a large-scale P2P system, the lack of a central location
to aggregate global knowledge makes the problem of ranking challenging.

2.4.2.1 Top-k Queries

Given a dataset D and a scoring function f , a top-k query retrieves the k data items in
D with the highest scores according to f . The scoring function is specified by the user
according to its criteria of interests.

In unstructured P2P systems, one possible approach for processing top-k queries is to
route the query to all peers, retrieve all available answers, score them using the scoring
function, and return to the user the k highest scored answers. However, this approach
is not efficient in terms of response time and communication cost. Top-k is a popular
aspect of IR. As mentioned before, PlanetP [48] supports content ranking search in Peer
IR systems. The top-k query processing algorithm works as follows. Given a query Q, the
query originator computes a relevance ranking of peers with respect to Q, contacts them
one by one from top to bottom of ranking and asks them to return a set of their top-
scored document names together with their scores. To compute the relevance of peers, a
global fully replicated index is used that contains term-to-peer mappings. This algorithm
has very good performance in moderate-scale systems. However, in a large P2P system,
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keeping up-to-date the replicated index is a major problem that hurts scalability.

In the context of APPA, a fully distributed solution is proposed to execute top-k
queries in unstructured P2P systems [118]. The solution involves a family of algorithms
that are simple but effective. It executes top-k queries in completely distributed fashion
and does not depend on the existence of certain peers. It also addresses the volatility of
peers during query execution and deals with situations where some peers leave the system
before finishing query processing.

In [147], the authors leverage the usage of super-peer networks, and propose an
algorithm for distributed processing of top k queries on the top of Edutella [137]. In
Edutella, a small percentage of nodes are super-peers and are assumed to be highly
available with very good computing capacity. The super-peers are responsible for top-k
query processing and other peers only execute the queries locally and score their resources.
A limitation of this framework is that it assumes a global shared schema as well as
consistent ranking methods employed at peers.

As for other complex queries, processing top-k queries in DHTs is quite challenging.
A solution is to store all tuples of each relation by using the same key (e.g. relation’s
name), so that all tuples are stored at the same peer. Then, top-k query processing
can be performed at that central peer using well-known centralized algorithms. However,
the central peer becomes a bottleneck and single point of failure. In the context of
APPA, a recent work has proposed a novel solution for Top-k query processing in DHT
systems [119]. The solution is based on the TA algorithm [FLN03, GKB00, NR99] which
is widely used in distributed systems. The solution is based on a data storage mechanism
that stores the shared data in the DHT in a fully distributed fashion, and avoids skewed
distribution of data among peers.

2.4.2.2 Skyline Queries

Top-k queries are sometimes difficult to define, especially if multiple aspects (i.e. scoring
functions) have to be optimized. It is often not clear how to weight these aspects in order
to obtain a global rank. Given such a multi-preference criteria, the concept of skyline
queries provide a viable solution by finding a set of data points that are not dominated
by any other points in a given data set. A point dominates another point if it is no
worse in all concerning dimensions and better in at least one dimension according to user
preferences. Objects belonging to skyline are precisely those objects that could be the
best under some monotonic scoring functions. Most existing studies have focused mainly
on centralized systems, and resolving skyline queries in a distributed environment such as
a P2P network is still an emerging topic.

[117] is the first attempt on progressive processing of skyline queries on a P2P network
such as CAN [131]. The authors present a recursive region partitioning and a dynamic
region encoding method to enforce a partial order over the CAN’s zones, so that all
the participating machines can be correctly pipelined for query execution. During the
query propagation, data spaces are dynamically pruned and query results are progressively
generated. Therefore, users do not have to wait for query termination to receive partial
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results, substantially reducing the query response time. However, this work focuses only
on constrained skyline queries [47] where users are only interested in finding the skyline
points among a subset of data items that satisfies multiple hard constraints. Besides, it
suffers from workload imbalance caused by skewed query ranges.

A more recent work [134] has proposed an efficient solution for skyline query processing
in the context of BestPeer. BestPeer [150] is a P2P platform that supports both
structured and unstructured overlays. The solution proposed in [134] is called Skyline
Space Partitioning (SSP), and is implemented in the BestPeer’s structured network, called
BATON [65]. It supports processing unconstrained skyline queries, which search skyline
points in the whole data space. This work deals with the issue of imbalanced query load.

2.4.3 What about Approximate Answering?

To fix the ideas previously presented, and to eliminate any ambiguity, we precise here
that “approximate answering”,

• Is not only about approximating the search space: In Section 2.4.1, the fact of
relaxing search completeness, due either to the limited coverage of routing protocols
or to the inaccuracy of data indexes, has been referred as “partial lookup”.

• Is not only about introducing flexibility into user’s queries: By flexible queries we
refer to queries that may contain keywords, wildcards, ranges, or include user’s
preferences (e.g. top-k, skyline queries) or user’s perception of the queried domain
(e.g. fuzzy queries). This flexibility certainly supports users with more facilities to
express their interests.

• Is not only about approximating query evaluation techniques: Query evaluation
techniques, which are initially defined in centralized environments, can be only
approximated in the context of P2P systems. Examples are [78] in which the notion
of relaxed skyline is introduced, and [69] in which the well-known TA algorithm [141]
is extended to adapt to P2P scenarios. For more illustration, the top-k answers
returned to a user in a P2P system do not exactly match the set of top-k answers
which would be obtained if all data were available and processed under a central
coordination. This is considered as a natural repercussion of the nature of P2P
networks on any computation method requiring some global information.

• It is about returning approximate results, represented at a different level of
abstraction: As P2P systems start getting deployed in e-business and scientific
environments, the vast amount of data within P2P databases poses a different
challenge that has not been intensively researched until recently. In collaborative and
decision support applications, a user may prefer an approximate but fast answer.
Approximate answers do not belong to the original result set RQ. However, they
provide data descriptions R̃Q, which may be queried or used as an alternative dataset
for other operations input, including querying, browsing, or data mining.
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Aggregation Queries. Aggregation queries have the potential of finding applications
in decision support, data analysis and data mining. For example, millions of peers across
the world may be cooperating on a grand experiment in astronomy, and astronomers
may be interested in asking decision support queries that require the aggregation of vast
amounts of data covering thousands of peers [24].

Consider a single table T that is horizontally partitioned and distributed over a P2P
system. An aggregation query can be defined as follows:

Select Agg-Op(col) From T Where selection-condition

The Agg-Op may be any aggregation operator such as sum, count, avg, max, and
min. Col may be any numeric column of T , or even an expression involving multiple
columns, and the selection-condition decides which tuples should be involved in the
aggregation. Recently, traditional databases and decision support systems have witnessed
the development of new Approximate Query Processing techniques AQP (e.g. [26], [152])
for aggregation queries. These techniques are mainly based on sampling, histograms, and
wavelets.

Initial works have aimed to support aggregation queries in P2P systems by introducing
OLAP techniques which employ materialized views over data ( [109], [99]). However, the
distribution and management of such views seems to be very difficult in such dynamic
and decentralized environments. A recent work has investigated the feasibility of online
sampling techniques for AQP in P2P systems [24]. The authors abandon trying to pick
uniform random samples, which are nearly impossible to obtain in P2P systems. Instead,
they have proposed to work with skewed samples while being able to accurately estimate
the skew during sampling process.

Aggregation queries provide aggregate values which support the user/application with
information about tendencies within data. For example, the data cube [52], which is the
most popular data model used for OLAP systems, generalizes the GROUP BY operation
to N dimensions. Pre-computed aggregate values are stored in the cube cells and then,
the OLAP system provides tools to navigate within these cells. This allows, for example,
to examine the total number of sales of a given product in the last week of the current
year, which have been reported in all cities of France (see Figure 2.17).

Fuzzy summaries. As seen before, fuzziness can be introduced into the user interface
to allow more flexibility in query formulation. Fuzzy queries may be interpreted in
a quantitative preference framework, provided that: 1) a membership function gives
a similarity value of tuples to elementary query requirements (the fuzzy or gradual
predicates) and 2) fuzzy aggregation computes an overall score that allows ranking items in
the result set. However, we believe that it could not be the users’ very first intention when
they deal with such fuzzy queries. The simple fact that they need to define membership
functions to compute attribute-oriented scores is somehow less natural than explicitly
formulating preferences into query [144].

The literature also offers studies of how to express concepts or needs through constructs
such as operators or linguistic variables [83]. One of the main challenges of extending query
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Figure2.17: Data cube

languages is to enrich query formulation without drastically reducing the performance of
the query evaluation process. Linguistic summaries, studied by Yager et al in [153], serve
that concern by expressing the content of a set of data. The new expression is a description
of the data using linguistic terms. Many works, some prior to Yager’s, fall into the domain
of linguistic summaries.

Quantified summaries approaches [114, 123] use fuzzy quantifiers in addition to
linguistic terms to describe the data. For instance, in SummarySQL [123], evaluating
“summary most from PATIENTS where age is young” provides a degree of validity for the
proposition “most PATIENTS are young.” Linguistic summaries also comprise fuzzy rules-
based summaries. Such summaries are discovered by searching associations and relations
between attribute values [31] or by exploiting fuzzy functional dependencies [30, 43].
They produce, in the case of gradual rules of Bosc et al [31], propositions such as “the
more age is old, the more patient day is high2.” It is also possible to summarize records
by repeatedly generalizing linguistic descriptions. This approach uses techniques from
automatic learning and classification. Its output is a tree of descriptions. Lee and Kim’s
“is-a” hierarchies [84] and the SaintEtiQ model [51] are instances of this approach.

At the end of this chapter, we lighten the importance of querying such fuzzy summaries
in centralized as well as in distributed P2P environments. First of all, these database
summaries are a means of significantly reducing the volume of input for processes that
require access to the database. The response time benefits from the downsizing. However,
this response time gain is made clearly at the expense of a loss of precision in the answer
(i.e. this what we are calling approximate answering). This is of no importance when
only a rough answer is required. Besides, imprecision can be sometimes a requirement.
This is the case for instance when querying a medical database for anonymous, statistical
information. Indeed, precise information can violate medical confidentiality. The loss of
precision is also of no importance when a request only aims at determining the absence

2Patient day: number of days spent in a hospital.
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of information in a database. This is the case when one wants to know if a database is
likely to answer the query.

Existing techniques have been proposed for querying fuzzy summaries in centralized
environments [106, 146], however, such techniques have not been studied in P2P
environments yet. The next chapter of this thesis proposes a solution for managing fuzzy
summaries in P2P systems to support DB applications with approximate query facilities.



Chapter 3

Summary Management in P2P
Systems

In this chapter, we propose a new solution for managing linguistic summaries of structured
data in P2P systems. The benefits of this solution are threefold:

• Semantic-based query routing: linguistic summaries are considered as semantic
indexes that allow locating relevant nodes based on their data descriptions.

• Flexible query formulation: querying linguistic summaries is supported with a user
interface that allows to formulate queries using linguistic terms. Linguistic terms
are concepts defined over the data attribute domains, and thus represent the user’s
perception of the shared data.

• Approximate query answering: linguistic summaries provide an intelligible
representation of the underlying data, and thus allow to return approximate query
answers. Remind that approximate answers are synthesized information, provided
at a higher abstraction level of the original queried data.

A proposal for summary management in P2P systems should satisfy two requirements:

• The employment of a summarization technique that permits, at each peer, to
summarize a voluminous data source in a resource-efficient manner. The produced
summaries should satisfy some properties to allow obtaining the desired benefits
(listed above), expected from their exploitation.

• The definition of efficient techniques that allow cooperating peers to exchange and
maintain summaries over their shared data in a decentralized manner, and without
generating large traffic overhead on the P2P network.

Accordingly, we make the following contributions. In Section 3.1, we first propose a
summarization process that exhibits many salient features making from it an interesting
process to be integrated into P2P environments. In Section 3.2, we study the feasibility of
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its integration into an existing Peer Data Management System (PDMS). So, we work in the
context of APPA (Atlas Peer-to-Peer Architecture) [120], a PDMS whose main objective
is to provide high level services for advanced P2P applications. Then, in Section 3.3,
we define a summary model in the context of hierarchical P2P systems. Here, we relax
the assumptions relying on APPA’s services, and which mainly abstract the summary
distribution issue.

Having defined the solutions for summary creation/maintenance in both contexts, we
discuss in Section 3.4 the gains that might be obtained in query processing from the
use of data summaries. In Section 3.5, the performance of our proposals are evaluated
through a cost model and a simulation model. Simulation results show that the cost of
query routing is significantly reduced without incurring high costs of summary updating.
Section 3.6 concludes.

3.1 Summarization Process

In this section, we first briefly discuss the existing approaches of data summarization
according to the characteristics required for our purposes. Then, we define the input data
and describe the summarization process of the approach we have adopted in our work.
Finally, we formally define the structure of distributed summaries in P2P systems.

3.1.1 Data Summarization

The data summarization paradigm has been extensively studied in centralized
environments to address the problem of managing voluminous data sets. In the literature,
many approaches have been proposed, each satisfying the requirements of specific
applications. Here, we discuss the required characteristics that have controlled the choice
of our data summarization process.

• Compression: the summarization process should provide compact versions of the
underlying data. However, we are not referring here to (syntactic) compression
techniques. These techniques consider a data source as a large byte string and
thus use compression algorithms such as Huffman or Lempel-Ziv coding. They were
mainly proposed to deal with throughput and space storage constraints. In fact,
we are concerned with compression (or data reduction) techniques that can provide
fast and approximate answers. This is very efficient in the context where obtaining
an exact answer is a time-consuming process, and an approximate answer may give
information that are sufficiently satisfying. Examples of such techniques are discrete
wavelet transform and linear regression used in signal processing [115], sampling and
histograms [71] used in statistics. Index trees such as B+Tree [40] and K-d-Tree [28]
could also be considered as data reduction techniques in the database field. These
indexes do not provide approximate answers, however, they allow to optimize and
accelerate the access within a large data set.
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• Intelligibility: the summarization process should synthesize the information
disseminated within large datasets in order to provide the essential. In fact, the
data summarization techniques are data reduction techniques that are supposed
to provide intelligible representations of the underlying data. Three categories of
database summarization techniques have been proposed in the literature. The first
one focuses on aggregate computation. Examples are OLAP and multidimensional
databases which allow an end-user to query, visualize and access part of the database
using cubes of aggregate values computed from raw data [22]. The second category,
so-called semantic compression (SC), deals with intentional characterization of
groups of individuals to provide higher-level models such as decision trees or
association rules. Examples are [128], [67] which explicitly refer to semantic
compression of structured data.

The last category is interested in metadata-based semantic compression (MDBSC)
approaches. These approaches use metadata to guide the compression process. The
produced summaries are highly comprehensible since their descriptions rely on user-
defined vocabularies. The main difference between SC and MDBSC is that the latter
provide data descriptions which precisely fit the user perception of the domain,
whereas the former aims to identify hidden patterns from data. One representative
of the MDBSC approaches is the Attribute-Oriented Induction process (AOI). It
provides reduced versions of database relations using is-a hierarchies, i.e. a concept
tree built over each attribute domain [56].

• Robustness: the summarization process should handle the vagueness and the
imprecision inherent to natural language. The theory of fuzzy sets provides a
formal framework associated with a symbolic/numerical interface using linguistic
variables [83] and fuzzy partitions [127]. Hence, the linguistic summaries have the
advantages of being robust and formulated in a user-friendly language (i.e. linguistic
labels).

• Scalability: the summarization process should be scalable in terms of the amount
of processed data. It should be able to treat voluminous databases with low time
complexity, and controlled memory consumption. Besides, an important issue is the
ability of the process to be parallelized and distributed among multiple processors
or computers.

In our work, the approach used for data summarization is based on SaintEtiQ [126]:
an online linguistic approach for summarizing databases. The SaintEtiQ model aims at
apprehending the information from a database in a synthetic manner. This is done through
generating linguistic, multidimensional summaries which are arranged and incrementally
maintained in a hierarchy. The hierarchies of SaintEtiQ summaries differ from those
obtained by the is-a approach in that they rely on one set of linguistic terms, without level
assignment. Indeed, the SaintEtiQ model proceeds first in an abstraction of data by the
use of a user-defined vocabulary, and then in performing a classification that produces data
descriptions at different levels of granularity (i.e. levels of abstraction). The SaintEtiQ
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process exhibits many interesting features and is proposed to be efficiently integrated into
P2P environments, as it is revealed in the rest of this section.

3.1.2 Input Data

The summarization process takes as input the original data to be summarized, and the
“Background Knowledge” BK which guides the process by providing information about
the user perception of the domain.

3.1.2.1 Data Model

The data to be summarized come from relational databases. As such, the data are
organized into records, with a schema R(A1, A2, . . . , An). Each attribute Ai is defined on
an attribute domain Di, which may be numeric or symbolic. Thus, each tuple t consists
of n attribute values from domains D1 to Dn. It is given by:

t = 〈t.A1, t.A2, . . . , t.An〉

A constraint on these data is that it should be complete: any value t.Ai is necessarily
known, elementary, precise, and certain. In other terms, all records with a null value are
dismissed.

3.1.2.2 Background Knowledge

A unique feature of the summarization system is its extensive use of a Background
Knowledge (BK), which relies on linguistic variables and fuzzy partitions.

Consider the following relational database of a given hospital, which is reduced to a
single Patient relation (Table 3.1)1. Figure 3.1 shows a linguistic variable defined on the
attribute age where descriptor young adult is defined as being plainly satisfactory
to describe values between 19 and 37 and less satisfactory as the age is out of this
range. Similarly, Figure 3.2 provides the linguistic variable defined on attribute BMI2.
Thus, linguistic variables come with linguistic terms (i.e. descriptors) used to characterize
domain values and, by extension, database tuples. For a continuous domain Di, the
linguistic variable is a fuzzy partition of the attribute domain. For a discrete domain
Di (disease and sex in our example), the BK element is a fuzzy set of nominal values. In
short, the BK supports the summarization process with means to match attribute domain
values with the summary expression vocabulary.

Note that the BK, given by users or experts of the data domain, concerns the attributes
which are considered as pertinent to the summarization process. In our example, we have
excluded the patient day attribute. However, when the descriptions of that attribute values
might be useful for the hospital application (i.e. requiring information about the length
of stay of patients), a corresponding fuzzy partition should be also provided.

1Patient day: number of days spent in the hospital.
2Recall that BMI is the patient’s body weight divided by the square of its height.
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Id Age Sex BMI Patient days Disease

t1 16 female 16 350 Anorexia
t2 60 male 32 4 High blood pressure
t3 18 female 17 280 Anorexia
t4 17 female 18 230 Anorexia
t5 54 female 26 14 Osteoporosis

Table3.1: Raw data
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Figure3.1: Fuzzy Linguistic Partition on age

3.1.3 Process Architecture

A service oriented architecture has been designed for the summarization process in order
to incrementally build data summaries. By “incremental”, we mean that the database
tuples are processed one by one, and the final hierarchy of summaries is obtained by
repeating this summarization process for each tuple in the table at hand. The architecture
is organized into two separate services: online mapping and summarization.

3.1.3.1 Mapping Service

The mapping service takes as input the original relational records and performs an
abstraction of the data using the BK. A representation of the data under the form of fuzzy
sets is obtained. Basically, the mapping operation replaces the original attribute values of
every record in the table by a set of linguistic descriptors defined in the BK. For instance,
with the linguistic variable defined on the attribute age (Figure 3.1), a value t.AGE = 18
years is mapped to {0.5/adolescent, 0.5/youngadult} where 0.5 is a membership grade
that tells how well the label young adult describes the value 18. Extending this mapping
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Figure3.2: Fuzzy Linguistic Partition on BMI
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to all the attributes of a relation could be seen as locating the overlapping cells in a grid-
based multidimensional space which maps records of the original table. The fuzzy grid is
provided by the BK and corresponds to the user’s perception of the domain.

In our example, tuples of Table 3.1 are mapped into five distinct grid-cells denoted
by c1, c2, c3, c4, and c5 in Table 3.2. The fuzziness in the vocabulary definition of BK
permits to express any single value with more than one fuzzy descriptor and thus avoid
threshold effect thanks to the smooth transition between different categories. For instance,
the tuple t3 of Table 3.1 is mapped to the two grid cells c1 and c2 since the value of the
attribute age is mapped to the two linguistic terms: adolescent and young adult. Similarly,
the tuple t4 is mapped to c1 and c3 since the value of the attribute BMI is mapped to
{0.7/underweight, 0.3/normal}. The tuple count column gives the proportion of records
that belongs to the cell, and 0.5/young adult says that young adult fits the data only with
a degree of 0.5. The degree of a label is the maximum of membership grades to that label,
computed over all the tuples in the corresponding grid cell. For instance, the degree of
adolescent in c1 is equal to one, which is the maximum grade value of the two tuples t1
and t3.

Id Age Sex BMI Disease tuple count

c1 adolescent female underweight Anorexia 2.2
c2 0.5/young adult female underweight Anorexia 0.5
c3 adolescent female 0.3/normal Anorexia 0.3
c4 middle adult male obese High blood pressure 1
c5 middle adult female overweight Osteoporosis 1

Table3.2: Grid-cells mapping

Therefore, the BK leads to the point where tuples become indistinguishable and then
are grouped into grid-cells such that there are finally many more records than cells. Every
new (coarser) tuple stores a record count and attribute-dependent measures (min, max,
mean, standard deviation, etc.). It is then called a summary.

3.1.3.2 Summarization Service

The summarization service is the last and the most sophisticated step of the SaintEtiQ

system. It takes grid-cells as input and outputs a collection of summaries hierarchically
arranged from the most generalized one (the root) to the most specialized ones (the
leaves) [126]. Summaries are clusters of grid-cells, defining hyperrectangles in the
multidimensional space. In the basic process, leaves are grid-cells themselves and the
clustering task is performed on K cells rather than N tuples (K << N).

From the mapping step, cells are introduced continuously in the hierarchy with a top-
down approach inspired of D.H. Fisher’s Cobweb [80], a conceptual clustering algorithm.
Then, they are incorporated into best fitting nodes descending the tree. Three more
operators could be apply, depending on partition’s score, that are create, merge and split
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Figure3.3: Example of SaintEtiQ hierarchy

nodes. They allow developing the tree and updating its current state. Figure 3.3 represents
the summary hierarchy built from the cells c1, c2, c3, c4, and c5.

The summarization process described above has been successfully integrated to an
existing DataBase Management System (DBMS) thanks to the design of a service-oriented
architecture where service calls are made through the SOAP protocol. On the other hand,
the eXtensible Markup Language XML is the format adopted for exchanging data with the
DBMS, as well as for summary representation all along the summarization process (i.e.
raw data, BK, grid cells and the final summaries are represented and exchanged under
the form of XML documents).

3.1.3.3 Scalability Issues

Memory consumption and time complexity are the two main factors that need to be
taken care of in order to guaranty the capacity of the summary system to handle massive
datasets. First, the time complexity of the SaintEtiQ process is in O(n), where n is
the number of candidate tuples to incorporate into a hierarchy of summaries. However,
the number of candidate tuples that are produced by the mapping service is dependent
only on the fuzziness of the BK definition. A crisp BK will produce exactly as many
candidate tuples as there are original tuples. Besides, an important feature is that in the
summarization process, raw data have to be parsed only once, and this is performed with
a low time cost. Second, the system requires low memory consumption for performing the
summary construction algorithm as well as for storing the produced summaries. Moreover,
a cache manager is in charge of summary caching in memory and it can be bounded to
a given memory requirement. Usually, less than a hundred of summaries are needed in
the cache since this number covers the two or three top levels of even a wide hierarchy.
Least recently used summaries are discarded when a required summary is not found in
the cache.

On the other hand, the parallelization of the summary system is a key feature to
ensure smooth scalability. The implementation of the system is based on the Message-
Oriented Programming paradigm. Each sub-system is autonomous and collaborates with
the others through disconnected asynchronous method invocations. It is among the
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least demanding approaches in terms of availability and centralization. The autonomy
of summary components allows for a distributed computing of the summary process.
Once a component completes the treatment and evaluates the best operator for the
hierarchy modification, if needed, a similar method is successively called on children
nodes. The cache manager is able to handle several lists of summaries residing on different
computers [126].

To summarize, our summary system combines advantages such as linear time
complexity, controlled memory consumption, and a parallelized computing of the
summarization process. Thanks to these advantages, we believe that this summary system
is scalable in a distributed environment, and promises a successful integration in P2P
systems.

3.1.4 Distributed Summary Representation

In this section, we introduce basic definitions related to the summarization process.

Definition 1 Summary Let E = 〈A1, . . . , An〉 be a n-dimensional space equipped with
a grid that defines basic n-dimensional areas called cells in E. Let R be a relation defined
on the cartesian product of domains DAi

of dimensions Ai in E. Summary z of relation
R is the bounding box of the cluster of cells populated by records of R.

The above definition is constructive since it proposes to build generalized summaries
(hyper-rectangles) from cells that are specialized ones. In fact, it is equivalent to
performing an addition on cells:

z = c1 + c2 + . . . + cp

where ci ∈ Lz, the set of p cells (summaries) covered by z.
A summary z is then an intentional description associated with a set of tuples Rz as

its extent and a set of cells Lz that are populated by records of Rz.
Thus, summaries are areas of E with hyper-rectangle shapes provided by BK. They

are nodes of the summary tree built by the SaintEtiQ system.

Definition 2 Summary Tree A summary tree is a collection S of summaries connected
by 4, the following partial order:

∀z, z′ ∈ Z, z 4 z′ ⇐⇒ Rz ⊆ Rz′

The above link between two summaries provides a generalization/specialization
relationship. And assuming that summaries are hyper-rectangles in a multidimensional
space, the partial ordering defines nested summaries from the larger one to the single
cells. General trends in the data could be identified in the very first levels of the tree
whereas precise information has to be looked at near the leaves.

For our purpose, we also consider a summary tree as an indexing structure over
distributed data in a P2P system. Thus, we add a new dimension to the definition of a
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summary node z: a peer-extent Pz, which provides the set of peers having data described
by z.

Definition 3 Peer-extent Let z be a summary in a given hierarchy of summaries S,
and P the set of all peers who participated to the construction of S. The peer-extent Pz

of the summary z is the subset of peers owning, at least, one record of its extent Rz:
Pz = {p ∈ P | Rz ∩ Rp 6= ∅}, where Rp is the view over the database of node p, used to
build summaries.

Due to the above definition, we extend the notion of data-oriented summary in a given
database, to a source-oriented summary in a given P2P network. In other words, our
summary can be used as a database index (e.g. referring to relevant tuples), as well as a
semantic index in a distributed system (e.g. referring to relevant nodes).

The summary hierarchy S will be characterized by its Coverage in the P2P system;
that is, the fraction of data sources described by S. Relative to the hierarchy S, we call
Partner Peer a peer whose data is described by at least a summary of S.

Definition 4 Partner peers The set of Partner peers PS of a summary hierarchy S is
the union of peer-extents of all summaries in S: PS = {∪z∈SPz}.
For simplicity, in the following we designate by “summary” a hierarchy of summaries
maintained in a P2P system, unless otherwise specified.

3.2 Summary Model for APPA

APPA is a P2P data management system developed by our team to provide high level
services for advanced P2P applications, which must deal with semantically rich data (e.g.
XML documents, relational tables, etc.) [120]. In this section, we present a summary model
that aims to successfully integrate a new summary service, peersum, into the APPA
architecture. We first present an overview of APPA. Second, we state the problem of
managing summaries in P2P systems, and thus propose the architecture of the summary
model designed for APPA. Then, we describe the peersum’s algorithms for summary
management.

3.2.1 APPA

APPA has a layered service-based architecture. Besides the traditional advantages of
using services (encapsulation, reuse, portability, etc.), this enables APPA to be network-
independent so it can be implemented over different structured (e.g. DHT) and super-peer
P2P networks. The main reason for this choice is to be able to exploit rapid and continuing
progress in P2P networks. Another reason is that it is unlikely that a single P2P network
design will be able to address the specific requirements of many different applications.
Obviously, different implementations will yield different trade-offs between performance,
fault-tolerance, scalability, quality of service, etc. For instance, fault-tolerance can be
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higher in DHTs because no peer is a single point of failure. On the other hand, through
index servers, super-peer systems enable more efficient query processing. Furthermore,
different P2P networks could be combined in order to exploit their relative advantages,
e.g. DHT for key-based search and super-peer for more complex searching.

There are three layers of services in APPA (see Figure 3.4): P2P network, basic services
and advanced services.

P2P network services. This layer provides network independence with services that
are common to different P2P networks:

• Peer id assignment: assigns a unique id to a peer using a specific method, e.g. a
combination of super-peer id and counter in a super-peer network.

• Peer linking: links a peer to some other peers, e.g. by locating a zone in CAN.

• Key-based storage and retrieval (KSR): stores and retrieves a (key, object) pair in
the P2P network, e.g. through hashing over all peers in DHT networks or using
super-peers in super-peer networks. An important aspect of KSR is that it allows
managing data using object semantics (i.e. with KSR it is possible to get and set
specific data attributes).

• Key-based time stamping (KTS): generates monotonically increasing timestamps
which are used for ordering the events occurred in the P2P system.

• Peer communication: enables peers to exchange messages (i.e. service calls).

Basic services. This layer provides elementary services for the advanced services
using the P2P network layer:
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• Update management service (UMS): provides high availability for the (key, object)
pairs by replicating them over several peers using multiple hash functions [16]. It
also deals with updating the stored replicas and also efficient retrieval of current
replicas.

• Communication cost management: estimates the communication costs for accessing
a set of objects that are stored in the P2P network. These costs are computed based
on latencies and transfer rates, and they are refreshed according to the dynamic
connections and disconnections of nodes.

• Group management: allows peers to join an abstract group, become members of
the group and send and receive membership notifications. This is similar to group
communication systems [38].

Advanced services. This layer provides advanced services for semantically rich data
sharing including query processing [14, 15, 17], replication [44, 93], schema management,
security, etc. using the basic services.

In our work, we aim to integrate peersum, a new service for managing data summaries
over the underlying data. peersum supports query processing with semantic indexes, and
allows for approximate query answering using the intentional descriptions of the available
summaries.

3.2.2 Model architecture

Given a P2P network, we consider the two following assumptions.

• Each peer p owns some tuples (Rp) in a global, horizontally partitioned relation R.

• Users that are willing to cooperate agree on a Background Knowledge BK, which
represents their common perception of the domain.

Thus, here we do not address the problem of semantic heterogeneity among peers, since
it is a separate P2P issue on its own. Besides, our work mainly targets collaborative
database applications where the participants are supposed to work on “related” data. In
such a context, the number of participants is also supposed to be limited, and thus the
assumption of a common BK seems not to be a strength constraint. An example of such
BK in a medical collaboration is the Systematized Nomenclature of Medicine Clinical
Terms (SNOMED CT) [7], which provides a common language that enables a consistent
way of capturing, sharing and aggregating health data across specialties and sites of care.
On the other hand, our summaries are data structures that respect the original data
schemas [126]. Hence, we can assume that the techniques that have been proposed to
deal with information integration in P2P systems (e.g. [73], [120]) can be used here to
overcome the heterogeneity of both data and summary representations, in the context of
heterogeneous data.

Let G = (V, E) be the graph corresponding to a P2P network of size N , where V is
the set of nodes (i.e. |V | = N), and E is the set of links between nodes. Our ultimate
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goal is to maintain a global summary that completely describes the global relation R.
However, as stated before, the relation R is horizontally partitioned and distributed among
autonomous peers. Hence, the problem can be defined as follows. Given that each peer
pi locally maintains a Local Summary LSi, we aim to construct the global summary GSc

such that:
GSc = ∪N

i=1(LSi)

The local summaries are obtained by integrating the summarization process previously
defined into each peer’s DBMS. The operator ∪ designates the summary merging
operation which will be discussed later. Note that GSc is an approximation of the summary
which might be obtained if the global relation R were totally available and summarized
under a central coordination.

Once again, the autonomous and dynamic nature of P2P networks imposes additional
constraints and makes the convergence to GSc quite challenging. It is difficult to build
and to keep this summary consistent relative to the current data instances it describes.
So, the problem can be redefined as follows.

Given the set of materialized local summaries {LSi, 1 ≤ i ≤ N}, we require to
build/materialize the set of global summaries {GSj, 1 ≤ j ≤ NG} such that:

• GSj = ∪l
i=1(Si), where Si is a local or global summary. Here, the latter is defined

as being the merging result of, at least, two summaries (i.e. l ≥ 2).

• The set of materialized local/global summaries (each having its set of partner peers
PGSj

), and the set of links (Es ⊂ E) between nodes belonging to different sets
of partner peers (i.e. links connecting different summaries), provide together an
approximation of the virtual summary GSc.

GSc ≈ ({LSi, 1 ≤ i ≤ NL}, {GSj, 1 ≤ j ≤ NG}, Es) (3.1)

NL is the number of local summaries, which is the number of peers that have not
participated to any existing global summary GSj . While NG is the number of global
summaries built in the network (i.e. | ∪NG

j=1 (PGSj
)| + NL = N).

• A “good” trade-off should be achieved between the cost of updating the set of
materialized summaries and the benefits obtained from exploiting these summaries
in query processing.

In APPA, we adopt an incremental mechanism for summary construction. The
“coverage” of a summary S in the network is defined as being the fraction of peers that
own data described by S. This coverage quantifies the convergence of S to the complete
summary GSc, which is obviously characterized by a coverage = 1.

The architecture of our summary model is presented in Figure 3.5. The incremental
aspect of the summary construction approach is described as follows. Peers that cooperate
are exchanging and merging summaries, in order to build a Global Summary GSj over
their shared data. This summary is characterized by a continuous evolution in term of
coverage. In fact, the cooperation between two sets of peers, each having constructed
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a global summary, will result in a higher-coverage one. Obviously, the “good” trade-
off mentioned above in problem statement constraints the level that our incremental
mechanism of summary construction is allowed to reach (Figure 3.5). In other terms, it
constraints the number NG of global summaries. A cost analysis model is presented later
in Section 3.5.1.

3.2.3 Summary Management in PeerSum

According to our summary model, peersum must address the following requirements:

• Peers cooperate for exchanging and merging summaries into a global summary,

• Peers share a common storage in which the global summary is maintained.

The peer linking and peer communication services of the APPA’s P2P network
layer allow peers to communicate and exchange messages (through service calls), while
cooperating for a global summary construction. Besides, the update management service
(UMS) of the basic layer and the Key-based Storage and Retrieval (KSR) service of
the P2P network layer, work together to provide a common storage in which a global
summary is maintained. This common storage increases the availability of “P2P data”
(e.g. metadata, indexes, summaries) produced and used by advanced services. The UMS
and KSR services manage data based on keys. A key is a data identifier which determines
which peer should store the data in the system, e.g. through hashing over all peers in DHT
networks or using super-peers for storage and retrieval in super-peer networks. All data
operations on the common storage are key-based, i.e. they require a key as parameter.

In the following, we will describe our algorithms for summary construction and
maintenance. First, we work in a static context where all the participants remain
connected. Then, we address the dynamicity of peers and propose appropriate solutions.

3.2.3.1 Summary Construction

Starting up with a local summary level (see Figure 3.5), we present the algorithm for peer
cooperation that allows constructing a global summary GS. We assume that each global
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summary is associated with a Cooperation List (CL) that provides information about
its partner peers. An entry in the cooperation list is composed of two fields. A partner
peer identifier PeerID, and a 2-bit freshness value v that provides information about the
freshness of the descriptions as well as the availability of the corresponding database.

• value 0 (initial value): the descriptions are fresh relative to the original data,

• value 1: the descriptions are expired and have to be refreshed,

• value 2: the original data are not available. This value will be used while addressing
peer volatility in Section 3.2.3.3.

Both the global summary and its cooperation list are considered as “summary data” and
are maintained in the common storage, using the UMS and KSR services. The algorithm
of summary construction is divided into the three following phases.

Cooperation Request The algorithm starts at an initiator peer pinit, i.e. the peer
who aims to benefit from a new (or existing) global summary. To this end, pinit sends a
cooperation request message Coop Request to its neighbors. This message contains pinit’s
address and a given value of TTL. One may think that a large value of TTL allows to
obtain directly a high-coverage summary. However, due to the autonomous nature of P2P
systems, pinit may keep waiting for a very long time without having constructed that
global summary. Hence, we choose to limit the value of TTL (e.g. TTL = 3), although it
results initially in a low summary coverage. The incremental aspect of the construction
mechanism will permit to increase the coverage of the newly constructed summary, as
long as new contacts with new cooperating peers are encountered.

Each peer p that receives the message, performs the following steps.

1. Checks if the Coop Request message has been already received. In that case, p
discards the message. Otherwise, it saves the address of the sender as its parent.

2. Decrements TTL by one. If TTL remains positive (i.e. TTL > 0), p sends the
message to its neighbors, except the parent, with the new TTL value.

Thus, the Coop Request message is propagated through a tree, rooted at peer pinit and
with a maximum depth of TTL (see Figure 3.6).

After forwarding the Coop Request message, a peer p must wait for its neighbor’s
responses. To avoid waiting some nodes which might never respond to the request, we
compute the p’s wait time using a cost function based on TTL, network dependent
parameters and p’s local processing parameters.

Cooperation Response The cooperation response Coop Resp of a peer p has the
following structure: Coop Resp = 〈S, PeerIDs, GSKeys〉. S is the summary obtained by
merging the summaries received from p’s children. PeerIDs is the list of identifiers of peers
that have participated to the construction of the global summary (i.e. p’s descendants and
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Figure3.6: Global Summary Construction

their partners). GSKeys is the list of keys of existing global summaries that have been
discovered at those peers.

We describe now how the p’s response is initialized. If p is a partner peer (the pink peers
in Figure 3.6), its response will be the following: Coop Resp =〈∅, extractPeerIDs(CL),
{GSKey}〉. GSKey is the key of the global summary to which it has already participated.
The extractPeerIDs(CL) function returns the identifiers of p’s partners which are
available in the corresponding cooperation list CL. In that case, we say that p locates
at the boundary of two knowledge scopes of two different summaries. Hence, it allows
merging them into a higher-coverage one. Otherwise (the blue peers in Figure 3.6), the
response of peer p will include its local summary and its identifier, i.e. Coop Resp =〈p.LS,
{p.ID}, ∅〉.

In the case where peer p has received the Coop Request message with a TTL value of
1 (e.g. the leaf peers 5, 6 and 7 in Figure 3.6), it sends directly a message containing its
cooperation response to its parent. To avoid bottleneck, we can assume that a leaf peer
waits a little (random) time before sending its response.

However, if peer p has participated to the propagation of the Coop Request message
(i.e. TTL > 1), it must wait for its children’s responses. When a child’s Coop Resp arrives,
peer p merges it with its own response by making the union of PeerIDs and GSKeys
lists, and the merging of summaries Ss. Once the wait time expires, peer p sends the final
response to its parent.

Summary Data Storage The merging of cooperation responses at intermediate peers
continues until reaching the initiator peer pinit. When its wait time expires, pinit proceeds
to store the new summary data, i.e. the new global summary GS and its cooperation
list CL, using the KSR service: GSKey := KSR insert(S, CL). CL contains each peer
identifier obtained in the final PeerIDs list, associated with a freshness value v equal
to zero. At the end, pinit sends the new key (GSKey) to all the participant peers whose
identifiers are available in PeerIDs. These peers become the GS’s partner peers, and
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may thus access the new summary data.

In the above algorithm, all the participants are supposed to remain connected and
accessible during the summary construction. However, even under static conditions, peers
may take more time than expected to respond to the cooperation request. Besides,
each peer computes locally its wait time using a cost function, which is based on local
parameters of other peers. Thus, the autonomy of peers and the inaccuracy in wait time
computation may result in late cooperation responses. This is the case where a peer p
receives a response from one of its children, after it has sent its final response to its own
parent q. To address this problem, we propose the following solutions.

• Peer p sends directly the late response to the initiator peer pinit, which will
merge it with the other received responses. Remember that the pinit’s address is
communicated to all peers along with the Coop Request message. If pinit has already
stored the new summary data, it may either ignore it or decide to merge it with
the summary data in order to increase its coverage. The summary data are accessed
using GSKey.

• To avoid overloading the initiator peer pinit with many late response arrivals, we
can suppose that peer p sends directly the late response to its parent q. If the latter
is still in its waiting phase, it ordinarily treats it and thus incorporates it to its final
response. Otherwise, peer q will send it in its turn to its parent, and so on until
reaching a peer that is still waiting for cooperation responses or, in the worst case,
reaching peer pinit.

• Let us assume that the Coop Request contains an additional ancestor field, whose
initial value is the pinit’s address. Then, each peer will save that field value as its
“ancestor” and replace it by the address of its parent, before forwarding the message
to its neighbors. Under this assumption, we can suppose that peer p sends directly
the late response to its ancestor, let say peer r, instead of sending it to its parent
q. This will increase the probability of finding a peer in its waiting phase, as well as
to reduce the number of messages that may be incurred by the previous solution.

Note that, only the initiator peer pinit can insert the new summary data it has computed.
This avoids the conflicts that may arise due to multiple updates. Indeed, all the responses
(including the late ones) have to be finally treated by pinit. However, it is not about a
centralized role. Once the final global summary is built and stored, the mechanism of its
updating is fully distributed, as it will be discussed in the next section.

3.2.3.2 Summary Maintenance

An important issue for any indexing technique is to efficiently maintain the indexes against
data changes.

For a local summary, it has been demonstrated that the summarization process
guarantees an incremental maintenance (using a push mode for exchanging data with the



57 3.2. Summary Model for APPA

DBMS), while performing with a low complexity. This allows for an online data processing
without the need for an overall summary computation.

In this section, we propose a strategy for maintaining the summary data: a global
summary GS which has been obtained by merging the local summaries of the set of peers
PGS, and its associated cooperation list CL. The objective is to keep GS consistent with
the current instances of the local summaries. The latters are supposed to be consistent
with the current instances of the original data sources. Our maintenance strategy uses
both push and pull techniques, in order to minimize the number of messages exchanged
in the system.

Push: Cooperation List Update Each peer p in PGS is responsible for refreshing its
own element in the cooperation list CL. The partner p monitors the modification rate
issued on its local summary LS. When LS is considered as enough modified, the peer p
sets its freshness value v to 1, through a push message. The value 1 indicates that the local
summary version being merged while constructing GS does not correspond any more to
the current instance of the database.

An important feature is that the frequency of push messages depends on modifications
issued on local summaries, rather than on the underlying databases. It has been
demonstrated in [126] that, after a given process time, a summary becomes very stable. As
more tuples are processed, the need to adapt the hierarchy decreases and hopefully, once
all existing attribute combinations have been processed, incorporating new tuple consists
only in sorting it in a tree. A summary modification may be detected by observing the
appearance/disappearance of descriptors in the summary intention.

Pull: Summary Update The summary service monitors the fraction of old
descriptions in GS, i.e. the number of ones in CL. We may consider that the peer that
has been delegated to store CL (by the KSR and UMS services) is in charge of performing
this task. Upon each push message sent to update a freshness value, the fraction of ones in
CL is checked. If it exceeds a threshold value α, the summary update mechanism will be
then triggered. Note that the threshold α is our parameter by which the freshness degree
of GS will be controlled. In order to update GS, all the partner peers will be pulled to
merge their current local summaries into a GS’s version. The algorithm is described as
follows.

A summary update message Sum Update is propagated from a partner to another.
This message contains a new summary NewGS (initially empty), and a list of peer
identifiers PeerIDs which initially contains the identifiers of all GS’s partners (provided
by CL). When a partner p receives the Sum Update message, it first merges NewGS
with its local summary and removes its identifier from PeerIDs. Then, it sends the
message to another partner chosen from PeerIDs. If p is the last visited peer (i.e.
PeerIDs is empty), it updates the summary data: GS is replaced by the new version
NewGS, and all the freshness values in CL are reset to zero. This strategy avoids
conflicts and guarantees a high availability of the summary data, since only one update
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operation is performed by the last visited partner.

Now suppose that a global summary GS1 has been discovered at peer p while
constructing a new global summary GS, as described in Section 3.2.3.1. We have
considered that GS1 is merged to GS, and the identifiers of all its partners are added
to the new cooperation list CL. However, we have not taken into account the freshness of
GS1’s descriptions. The fraction of ones in CL1 has been ignored since all the freshness
values in CL are initialized to zero. Obviously, this may delay the first execution of
the GS’s update mechanism. To address this problem, we consider that the Coop Resp
contains the cooperation list CL (initially empty), instead of the list of peer identifiers
PeerIDs. Thus, peer p makes the union of CL and CL1 rather than only extracting
the partner identifiers. For a common partner entry, the freshness value is the binary
OR of its freshness values in CL1 and CL. While for non-partner peers (i.e. peers that
participate for the first time to a global summary), new entries containing their identifiers
and freshness values of 0 are added.

3.2.3.3 Peer Dynamicity

In P2P systems, another crucial issue is to maintain the data indexes against network
changes. Besides the freshness of summary descriptions, the availability of the original
data sources should be also taken into account, given the dynamic behavior of peers.

Peer Arrival When a new peer p joins the system, it generally contacts some existing
peers to determine the set of its neighbors. If one of these neighbors, peer q, is a partner
relative to an existing global summary GS, p becomes a new partner. It gets the GS’s
key from peer q and adds a new element to the corresponding cooperation list CL. This
new element is composed of p’s identifier and a freshness value v equal to one. Recall that
the value 1 indicates the need of pulling peer p to get new data descriptions. In the case
where p connects between two partners that belong to two different summaries, it allows
merging them in a higher-coverage one, as discussed in Section 3.2.3.1.

Peer Departure When a partner peer p decides to leave the system, it first sets its
freshness value v to 2 in the cooperation list. This value reminds the participation of
the disconnected peer p to the corresponding global summary GS, but also indicates
the unavailability of the original data. There are two alternatives to deal with such a
freshness value. The first one consists in keeping the p’s data descriptions if they were
fresh before p leaves the system (i.e. v = 1). Thus, these descriptions may be exploited
while approximately answering a query. The second alternative consists in considering
the p’s data descriptions as expired, since the original data are not available. Thus, a
partner departure will accelerate the summary update initiating. In the rest of this paper,
we adopt the second alternative and consider only a 1-bit freshness value v: a value 0 to
indicate the freshness of data descriptions, and a value 1 to indicate either their expiration
or their unavailability.
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If peer p failed, however, it could not notify its partners by its departure. In that case,
its data descriptions will remain in the global summary until a new summary update
is executed. The update algorithm does not require the participation of a disconnected
peer. The global summary GS is reconstructed, and descriptions of unavailable data will
be then omitted.

3.2.4 Discussion

The first phase of our work has mainly studied the feasibility of integrating a data
summarization process into an existing P2P data management system. The summarization
process that has been adopted exhibits salient features such as robustness, intelligibility
and scalability. In the context of APPA, we have proposed solutions for summary
creation/maintenance, based on APPA’s services. Each peer maintains a local summary
of its database, and cooperates with other peers to maintain a global summary, which
covers an increasing number of available data sources. The summary update mechanism
is efficient since it optimizes the number of exchanged messages through combining both
push and pull techniques. Besides, the trade-off between the generated traffic overhead
and the freshness of summary descriptions can be tuned using a system parameter. The
performance evaluation of our proposal will be discussed later in this chapter.

However, here we indicate the following limitation of our summary model. The
summary construction mechanism we have considered is incremental: a global summary
is in continuous evolution in term of coverage. This might be impractical in large-scale
P2P systems and under bandwidth consumption constraints. The freshness of summary
descriptions may be sacrificed at the expense of reducing the number of exchanged
messages (i.e. allow a large fraction of ones in the cooperation list). Besides, this
incremental mechanism supposes that any contact between any two peers will result in
a cooperation between them. Thus, their respective global summaries are merged into a
higher-coverage one. However, such an assumption is not relevant when the number of
participants is high. Even when peer are working on related data in a given application,
they generally tend to work on groups (i.e. group locality [13]).

3.3 Summary Model for Hierarchical P2P Networks

In the previous summary model proposed for APPA, we have worked under the following
two assumptions:

• The Global Summary GS in Figure 3.5 is characterized by a continuous evolution
in terms of coverage.

• The APPA’s services provide a common storage in which the global summaries are
maintained.

In the second phase of our work, we relax these two assumptions for a closer study to
the problem of distributing summaries within the network. So, in this section, we discuss
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a new summary model and present appropriate summary management techniques.

3.3.1 Model Architecture

Data indexes are maintained in P2P systems using one of the following approaches. A
centralized approach maintains a global index over all the data shared in the network,
and thus provides a centralized-search facility. A hybrid decentralized approach distributes
indexes among some specialized nodes (e.g. supernodes), while a pure decentralized
approach distributes indexes among all the participants in the network (e.g. structured
DHTs, Routing Indices). Each of these approaches provides a different trade-off between
the cost of maintaining the indexes and the benefits obtained for queries. In our work, we
have adopted the second approach since it is the only one that exploits peer heterogeneity,
which is a central key to allow P2P systems scaling up without compromising their
decentralized nature [133]. Besides, some argue that the super-peer networks [35] are the
most suited for content-based search [68, 149] since their inherent hierarchical structure
allows to build a similar hierarchy over the shared data and metadata.

Let us examine the architecture of our summary model which is presented in Figure 3.7.
It is clear that the hierarchy among global summaries follows the hierarchical structure
of the underlying network (two summary levels). The network is organized into domains,
where a domain is defined as being the set of a supernode and its associated leaf nodes.
In a given domain, peers cooperate to maintain a global summary over their shared data.
The set of global materialized summaries and links between the corresponding domains,
provide an approximation of the summary GSc (Equation 3.1).

Obviously, an important issue here is how to organize the network into domains, i.e.
how the superpeers are selected and other peers are grouped around them in a fully
decentralized manner. The number and the size of domains have a direct impact on the
cost of summary maintenance. Thus, in the following, we first discuss the issue of network
self-organization. Then, we discuss summary management.
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3.3.2 Network Self-Organization

Intuitively, the term “self-organization” describes the ability of a P2P network to organize
its participants into a cooperative framework, without the need of external intervention
or control. For our purposes, we will understand self-organization as the capability of
partitioning the network into domains in order to optimally distribute data summaries,
without using global information or restricting peer autonomy. In this section, we first
give the rationale behind our solution, and then provide the algorithm for network self-
organization.

3.3.2.1 Rationale

In [108], the authors have addressed the problem of maintaining distributed indexes in
a P2P network. They have proposed a two-tier structure. Nodes are partitioned into
independent domains, and nodes within a domain build a global index over their shared
data. However, the authors have assumed that there exists a fixed number of domains
k, and a node is assigned to one of these domains at random. As a first issue, they have
studied the optimal number of domains in order to minimize the total cost of queries and
index maintenance. It has been shown that this number is a function of the the total
number of nodes in the network. Then, they have addressed an important issue which
is enabling a dynamic, self-tuning index that approaches the optimal index configuration
even as the number of nodes varies in the systems.

In our work, we do not suppose that nodes are assigned to domains at random. Instead,
we are interested in how domains are created and nodes are assigned to them. Several
works have proposed diverse solutions for network organization (also known by network
clustering). This will be discussed in chapter 3. Here, for the concreteness of our distributed
summaries proposal, we present a primitive function that enables to partition the network
around high-connectivity nodes.

A number of recent studies [133], [101] have shown that the existing complex networks
have common characteristics, including power law degree distributions, small diameter,
etc. In these networks, called power-law networks, most nodes have few links and a tiny
number of hubs have a large number of links. More specifically, the fraction of nodes with
k links is proportional to k−β, where β is called the exponent of the distribution.

Our solution for network organization is completely decentralized, and mainly exploits
the power-law distribution of node degrees. It does not rely on any global information,
however, it uses local information by considering that a node has only to know about
the entities and the connectedness of its neighbors. The key idea is that random walks
in power-law networks naturally gravitate toward the high-degree nodes. A random walk
is a technique proposed by [136] to replace flooding in unstructured P2P systems. At
each step, a query message is forwarded to a randomly chosen neighbor until sufficient
responses to the query are found. Although it makes better utilization of the P2P network
than flooding, a random walk is essentially a blind search in that it does not take into
account any indication of how likely it is the chosen node will have responses for the query.
Adamic et al. [81] addressed this problem and showed that a better scaling is achieved
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by intentionally choosing high degree nodes. We will refer to this routing technique as
“selective walk”.

In our work, we aim to identify the superpeers, which will be referred later as summary
peers, in a power law network with an exponent β and maximum degree kmax. Summary
peers are defined as being high degree peers, which will serve as centers of summary-
attraction. Using a selective walk which naturally and rapidly gravitates toward high
degree nodes, a peer p finds the nearest summary peer SP to which it sends a duplicate
of its local summary LS. The set of peers that discover the same summary peer SP are
grouped around it and form a domain. These peers become partners relative to a global
summary GS obtained by merging their local summaries. In [104], any node with degree k
is considered as a high-degree node if k ≥ kmax/2. However, kmax scales like O(N1/β) [145]
and is a global information. In the next section, we propose an is sumpeer function that
is executed locally at each peer to decide whether it is a summary peer or not, using
minimum local information.

3.3.2.2 Algorithm

For our purpose, we have extracted a general model of a high-degree node in a power
law network. To illustrate, consider the network of figure 3.8. The is sumpeer function
consists in matching this model with each node of the network. Algorithm 1 shows the
steps involved in making this matching. First, we check if the current peer p is among
the highest-degree peers in its neighborhood. In other words, we check if the degree
k of peer p is greater than the median value of the set of its neighbor’s degrees (i.e.
|subset inf | > |subset sup|). This first condition proposes as candidates peers p1, p2, p3,
p4, p5, p6, p7. Then, we verify if the local maximum degree kpmax in p’s neighborhood
does not exceed 2 · k. This condition allows to exclude peer p1 whose degree is slightly
greater than the median value, but significantly less (e.g. factor of less than 0.5) than
the maximum value of its neighbor’s degrees. Finally, we examine if k is larger than the
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mean value of neighbor’s degrees by a constant ct. This condition makes a difference in
the matching result when the neighbor’s degrees follow an asymmetric distribution with
a positive skew, i.e. there are a small number of very large degrees. In that case, the mean
value is greater than the median. The constant ct permits to tune the selectivity of the
matching function. Larger is ct, less is the total number of summary peers. For instance,
a value 1 of ct keeps peer p4 as candidate, while a value 2 excludes it. Indeed, peer p is
considered as a summary peer if the above three conditions are satisfied simultaneously.
In our example, the summary peers finally obtained (for ct = 2) are p2, p3, p5, p6, p7.

Algorithm 1 Is SumPeer

1: function Is SumPeer(k, NL)
2: k is the degree of the current peer p, and NL is the Neighboring List that contains the

identifiers of p’s neighbors and their degrees.
3: subset inf := pi ∀ 1 ≤ i ≤ |NL| such that ki < k
4: subset sup := pi ∀ 1 ≤ i ≤ |NL| such that ki > k
5: kpmax := max (ki), ∀ 1 ≤ i ≤ |NL|
6: kmean := mean (ki), ∀ 1 ≤ i ≤ |NL|
7: if (|subset inf | > |subset sup|) and (k > kpmax/2) and (k > ct · kmean) then
8: Is SumPeer := true
9: else Is SumPeer := false

10: end if
11: end function

Using the Brite topology generator [2], we simulate N -node P2P networks whose node
degrees follow a power law distribution with a mean value of 4. Figure 3.9 shows the
number of summary peers in function of the total number of peers N . We see that this
number is proportional to

√
n for network sizes smaller than 1024, and is proportional

to n for larger networks. Since our domains are formed around the summary peers,
thus figure 3.9 gives directly the number d of domains obtained in the network. The
shown results are similar to those found in [108]. It has been proved, theoretically and
by simulation, that the optimal number of domains is in O(

√
n) for total-lookup queries,

and in O(n) for partial-lookup queries. Recall that a total-lookup query requires all results
that are available in the system, whereas a partial-lookup query requires any m results, for
some constant m. Total-lookup query are very difficult and costly in large P2P networks,
and thus all queries, in practice, are processed as being partial-lookup queries.

We conclude that using our primitive degree-based function, the network can be
partitioned into an optimal number of domains: for total-lookup queries in small-sized
networks, and for partial-lookup queries in larger-sized networks. Certainly, this work is
not complete and requires further examination and discussion. But, it may be considered
as the initial phase of other works like [108]. In other terms, it constitutes the beforehand
organization of a P2P network, which should be then associated with efficient mechanisms
for maintaining such organization against dynamicity.
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Figure3.9: Number of summary peers vs. number of peers

3.3.3 Summary Management

As in our summary model for APPA, we assume that each global summary GS is
associated with a Cooperation List (CL) (see Section 3.2.3.1). Algorithm 2 shows the
messages exchanged between peers in order to build a global summary GS. A summary
peer SP broadcasts a sumpeer message that contains its identifier, to indicate its ability
to host summaries. Since SP is supposed to have high connectivity, a small value of TTL
(Time-To-Live) is sufficient to cover a large number of peers (e.g. TTL = 2). The message
contains also a hop value h, initialized to 0, which is used to compute the distances
between SP and the visited peers. A peer p who received a first sumpeer message,
maintains information about the corresponding summary peer SP (i.e. Line 16). Then, p
sends to SP a localsum message that contains its local summary LS, and thus becomes
a partner peer in the SP ’s domain. Upon receiving this last message, SP merges LS to
its current global summary GS, and adds a new element in the cooperation list.

However, a peer p who is already a partner may receive a new sumpeer message. In
such a case, only if the new summary peer is nearer than the old one (based on latency),
it chooses to drop its old partnership through a drop message (i.e. Line 14), and it
proceeds to participate to a new domain. We now suppose that a peer p does not belong
to any domain (i.e. p is not a partner peer), and wants to participate to a global summary
construction. Using a selective walk, it can rapidly find a summary peer SP (i.e. find

message). The information about SP , which is maintained at each of its partners, makes
the selective walk even shorter. Once a partner or a summary peer is reached, the find

message is stopped (i.e. Line 32).
The summary maintenance strategy is similar to that adopted in APPA

(Section 3.2.3.2). The main difference is that the summary peers will be now in charge of
storing the global summaries, and monitoring the freshness of their descriptions in order
to initiate the update mechanism whenever it is required.

3.3.4 Peer Dynamicity

According to our summary model, a peer may be either a summary peer or a partner
peer. The departure/arrival of a partner peer is treated as described in Section 3.2.3.3.
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Algorithm 2 Global Summary Construction

1: // Definition of different types of messages
2: sumpeer=〈sender〉 〈id, h, TTL〉; find=〈sender〉 〈h, TTL〉
3: localsum=〈sender〉 〈LS〉; Drop=〈sender〉 〈〉
4: // Treatment of messages
5: Switch msg.type
6: // Receiving information about a summary peer
7: Case (SumPeer):
8: msg.h++; msg.TTL−−

9: if (this.SumPeer=null) or (this.SumPeer.h¿msg.h) then
10: if (this.IsPartner) then
11: Send drop message to this.SumPeer.id
12: end if
13: this.SumPeer:= 〈msg.id, msg.h〉
14: localsum:= new msg (this.LS); Send localsum to msg.sender
15: IsPartner := True
16: end if
17: if msg.TTL > 0 then
18: Send msg to all neighbors
19: end if
20: end Case
21: // Searching for a summary peer
22: Case (Find):
23: msg.TTL−−; msg.h++

24: if (this.Is SumPeer) then
25: peersum:= new msg (this.id, msg.h, 1); Send peersum to msg.sender
26: else
27: if (this.SumPeer 6= null) then
28: peersum:= new msg (this.SumPeer.id, (msg.h + this.SumPeer.h), 1)
29: Send peersum to msg.sender
30: else
31: if (msg.TTL > 0) then
32: p′:= highest degree peer in N(p); Send msg to p′

33: end if
34: end if
35: end if
36: end Case
37: // arrival of a new partner
38: Case (LocalSum):
39: CoopList.add (msg.sender, 0); GlobalSum:= merge (GlobalSum, msg.LS)
40: end Case
41: // departure of a partner
42: Case (Drop):
43: CoopList.remove (msg.sender)
44: end Case



chapter 3. Summary Management in P2P Systems 66

Capacity level percentage of nodes
1x 20%
10x 45%
100x 30%
1000x 4.9%
10000x 0.1%

Table3.3: Gnutella-like node capacity distributions

However, here we discuss the effects of the dynamic behavior of summary peers.

In section 3.3.2, we have presented our is sumpeer function that is executed at each
peer to decide whether it is a summary peer or not. This function is based on node
connectivity, and thus variations of node degrees may incur modifications in the function
results. Hence, we can suppose that a peer periodically executes the is sumpeer function.

However, we believe that the results of the is sumpeer function do not change
frequently thanks to two characteristics of power law P2P networks. First, connections
tend to be formed preferentially since peers tend to discover high-degree nodes in the
network overlay [133]. Second, although the nodes join and leave the network with a high
rate, we suppose that each node leave is very probably accompanied by a new node join
such the the total number of nodes remains the same. Thus, the cases in which a summary
peer becomes an ordinary peer, or an ordinary peer is submitted to a significant degree
variation rarely occur. In the latter case, when a new highly-available peer attracts many
peer connections and becomes a summary peer, it simply diffuses this information as
described in section 3.3.3, and a new domain starts to appear around it.

Now, when a summary peer SP decides to leave the system, it sends a release message
to all its partners using the cooperation list. Upon receiving such a message, a partner p
makes a selective walk to find a new summary peer. However, if SP failed, it could not
notify its partners. A partner p who has tried to send push or query messages to SP will
detect its departure and thus search for a new one.

3.3.5 Capacity-based Summary Distribution

Thus far, we have considered a centralized approach for storing a global summary in a
given domain. Each summary peer SP is in charge of storing the global summary GS of
its domain. However, this implies that each query posed by a partner p will be sent to SP ,
which may be then overloaded. Here we give a simple solution to distribute GS, and thus
the query load, based on node capacity. In [155], capacities are assigned to nodes based
on a distribution that is derived from the measured bandwidth distributions for Gnutella,
as reported by Saroiu et al [133]. The capacity distribution has five levels of capacity,
each separated by an order of magnitude (Table 3.3). A node i is modeled as possessing a
capacity Ci, which represents the number of queries that it can process per unit time. In
addition to its capacity, each node i is assigned a query generation rate qi, which is the
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Figure3.10: capacity-based summary distribution

number of queries that it generates per unit time. Therefore, a node i is represented by:
i = (Ci, qi).

Now, we suppose that each summary peer SP delegates an Assistant Peer AP , which
is the highest-capacity neighbor that belongs to the same domain. The summary peer SP
accepts n1 peers as partners, among the nd peers of its domain d such that:

∑n1

i=1 qi < CSP .
If n1 is greater than nd, SP is considered as a high-capacity peer, and thus will host
the global summary of the entire domain. Otherwise, we adopt a deviation method to
distribute the charge between the summary peer and its assistant. When SP receives a
localsum message (see algorithm 2) and it cannot support the query generation rate of
the sender, it deviates the message to the assistant AP . In this case, the summary peer
SP serves as a “beacon”. Using a selective walk, a peer p rapidly finds SP , which will send
him to the assistant AP in order to handle a duplicate of its local summary. However,
the global summary GS of the domain d is divided into two summaries: GS1 and GS2,
maintained by SP and AP respectively. Thus, to allow each partner peer exploiting both
summaries, we replicate GS2 at SP and GS1 at AP , as shown by Figure 3.10.

We note that a modification of the network topology can improve our network
organization scheme. In the above solution, the capacity of a summary peer SP may
be less than the capacity of its assistant AP . In this case, a neighboring link to SP ,
on which a localsum message has been deviated, will be dropped and replaced by a
new link to AP . Therefore, the network topology will be adapted to ensure a congruence
between summary peers and high-capacity peers (i.e. after a given time, AP becomes
a high-degree peer in its locality). This is not a new idea: other works have addressed
this problem. For instance, in [155], the authors have proposed a topology adaptation
algorithm which ensures that well-connected peers have good capacities. Obviously, such
a topology adaptation allows reducing the number of deviated messages in a given domain.
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3.3.6 Discussion

This second phase of our work has proposed a model for managing summaries in
hierarchical P2P networks. The model provides two levels of materialized summaries.
Nodes are organized into domains (clusters). Each node maintains a local summary of its
database, and nodes within a domain cooperate to maintain a global summary over their
shared data. This model can be generalized to n-summary levels. However, this is different
from the model proposed for APPA in Section 3.2.2. In the latter, the construction of a
given global summary implies that all global summaries which have been merged to it, are
no longer materialized in the network. Hence, each peer only knows about one materialized
global summary whose network coverage is incrementally increased.

Here, by n-summary levels, we mean that a materialized hierarchy between global
summaries (of different coverages) is maintained in the network. For example, we may
consider that summary peers exchange their global summaries and maintain a third
summary level, which does not result in removing the underlying level from the model. The
first summary level allows to efficiently retrieve relevant tuples within peers’ databases.
The second summary level guides the query propagation within domains, while the third
one may assist the query while traveling from a domain to another.

3.4 Query Processing

We describe now how a query Q, posed at a peer p, is processed. Our approach consists
in querying at first the global summary GS that is available to peer p. In the APPA
summary model, the key of the global summary allows peer p to access GS. While in the
hierarchical model, peer p first sends Q to the summary peer SP of its domain, which
then proceeds to query the available global summary GS. the type of the query, precise
or flexible (when using linguistic terms), and the nature of the returned results allow to
distinguish four cases of summary querying. These cases are illustrated when presenting
the two phases of the summary querying mechanism: 1) query reformulation and 2) query
evaluation.

3.4.1 Query Reformulation

First, a precise query Q must be rewritten into a flexible query Q∗ in order to be handled
by the summary querying process. For instance, consider the following query Q on the
Patient relation in Table 3.1:

select age from Patient where sex = ‘‘female’’

and BMI < 19 and disease = ‘‘anorexia’’

This phase replaces the original value of each selection predicate by the corresponding
descriptors defined in the Background Knowledge (BK). Therefore, the above query is
transformed to Q∗:
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select age from Patient where sex = ‘‘female’’ and

BMI in {underweight,normal} and disease = ‘‘anorexia’’

The mechanism that assists this query rewriting phase is already defined and used in the
mapping service of the summarization process.

Let QS (resp.QS∗) be the Query Scope of query Q (resp.Q∗) in the domain, that is, the
set of peers that should be visited to answer the query. Obviously, the query reformulation
phase may induce false positives in query results. To illustrate, a patient having a BMI
value of 20 could be returned as an answer to the query Q∗, while the selection predicate
on the attribute BMI of the original query Q is not satisfied. However, false negatives
cannot occur, which is expressed by the following inclusion: QS ⊆ QS∗.

In the rest of this paper, we suppose that a user query is directly formulated using
descriptors defined in the BK (i.e. Q = Q∗). As we discussed in the introduction of
this work, a doctor that participates to a given medical collaboration, may ask queries
like “the age of female patients diagnosed with anorexia and having an underweight or
normal BMI”. Thus, we eliminate potential false positives that may result from query
rewriting. Note that an interface has been defined to allow users to formulate their queries,
using linguistic terms, without having knowledge of the pseudo-code language used in
the querying mechanism. To illustrate the formulation of queries, recall the following
notations:

• R: the schema of the summarized relation

• A: the set of attributes of relation R (|A| = n)

• Ai: The ith attribute of relation R

• t: a tuple of the relation R

• z: a summary node of the summary hierarchy S built over the relation R

In the query Q, we distinguish the set X of attributes whose values x are specified by the
query predicates, from the set Y of attributes on which the query is projected. In other
terms, the general form of query Q is given by: Select Y from R where X = x.

For each attribute Ai ∈ X, a “required characteristic” is defined as being a linguistic
term that appears in the query for attribute Ai. The set Ci of these required characteristics
is given by: Ci = {d1

i , d
2
i , . . . , d

m
i }. By extension, the characterization of query Q is the

set of k characterizations defined on the attributes of set X: C = {C1, . . . , Ck}, where
k = |X|. In our example: X = {sex, BMI, disease}, Y = {age}, Csex = {female},
CBMI = {underweight, normal}, Cdisease = {anorexia}, and C = {Csex, CBMI , Cdisease}.

Finally, a logical proposition P is associated to a query characterization such that:

P =
k∧

i=1

(

mi∨

j=1

dj
i )
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Intuitively, the presence of multiple required characteristics on a given attribute
denotes an alternative, and thus the intra-attribute logical connector is disjunctive (i.e.
Ci =

∨mi

j=1 dj
i ). However, the presence of simultaneous characterizations of different

attributes implies that the inter-attribute connector is conjunctive (i.e. P =
∧k

i=1(Ci)).
In our example, the query Q is transformed to the proposition P= (female) AND
(underweight OR normal) AND (anorexia). In fact, the proposition P represents the
canonical form of the query, which will be evaluated by the summary querying process.

3.4.2 Query Evaluation

First of all, to eliminate any ambiguity, it is worthy to recall that all along our work, we
designate by (local/global) summary a hierarchy of summary nodes whose structure has
been described in Section 3.1.4.

This phase deals with matching the set of summary nodes organized in the hierarchy S,
against the query Q. A valuation function has been defined to valuate the corresponding
proposition P in the context of a summary node z, and thus to determine if z is considered
as a result. Then, a selection algorithm performs a fast exploration of the hierarchy and
returns the set ZQ of most abstract summary nodes that satisfy the query. For more
details see [146].

Once ZQ determined, the evaluation process is able to achieve two distinct tasks: 1)
Summary answering, and 2) Peer localization.

3.4.2.1 Approximate Answering

A distinctive feature of our approach is that a query can be processed entirely in the
summary domain. An approximate answer can be provided from summary descriptions,
without having to access original database records.

In the result set ZQ, distinct summary nodes may answer the query in different
manners. For instance, the set ZQ contains summary nodes in which the attribute
BMI is described either by underweight, or normal, or even by the both descriptors.
A classification task has been defined in order to regroup the summary nodes in ZQ

according to their characteristics vis-a-vis the query: summary nodes that have the same
required characteristics on all predicates (e.g. sex, BMI and disease) form a class. The
aggregation in a given class is a union of descriptors: for each attribute in the selection
set Y (i.e. age), the querying process supplies a set of descriptors which characterize the
summary nodes that answer the query through the same interpretation [146]. For example,
according to Table 3.2, the output set obtained for the different classes found in zQ is:

• {female, underweight, anorexia} ⇒ age = {adolescent, young adult}

• {female, normal, anorexia} ⇒ age = {adolescent}

In other words, all female patients diagnosed with anorexia and having an underweight
or normal BMI are adolescent or young girls. Moreover, the information provided by the
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tuple count columns may further indicate that almost all of these girls are adolescent (i.e.
a value of 2.5 for adolescent, and a value of 0.5 for young adult).

3.4.2.2 Peer Localization

In centralized environments, returning exact answers to the flexible query Q is simply
an extension of the mechanism of returning approximate answers. The extent Rz of a
summary node z (see Definition 1) provides the original records that are described by
that summary intent. Thus, such a functionality only requires to connect to the underlying
database in order to retrieve data.

However, in P2P systems, a summary node may describe tuples that are highly
distributed in the network. Therefore, the query Q should be first forwarded to the relevant
peers whose databases contain the result tuples. In Definition 3, we have added the Peer-
extent dimension to a summary node structure, in order to provide the set of peers Pz

having data described by its intent.

Here, we can assume that in a given local summary, the extents of its summary nodes
are maintained to be able to retrieve raw data from the underlying database. While in
a global summary this information is omitted and only the Peer-extents of its summary
nodes are maintained to be able to reach the relevant peers in the distributed network.

Based on the Peer-extents of summary nodes in the set ZQ, we can define the set PQ

of relevant peers as follows: PQ = {∪z∈ZQ
Pz}. The query Q is directly propagated to these

relevant peers. However, the efficiency of this query routing depends on the completeness
and the freshness of summaries, since stale answers may occur in query results. We define
a False Positive as the case in which a peer p belongs to PQ and there is actually no data
in the p source that satisfies Q (i.e. p /∈ QS). A False Negative is the reverse case in which
a p does not belong to PQ, whereas there exists at least one tuple in the p data source
that satisfies Q (i.e. p ∈ QS).

In the case where exact answers are required, suppose now that processing a query Q
in a given domain di returns Ci results, while the user requires Ct results. We note that,
if Ct is less than the total number of results available in the network, Q is said to be a
partial-lookup query. Otherwise, it is a total-lookup query. Obviously, when Ci is less than
Ct, the query should be propagated to other domains. To this end, we adopt the following
variation of the flooding mechanism.

Let Pi the subset of peers that have answered the query Q in the domain di: |Pi| =
(1 − FP ) · |PQ|, where FP is the fraction of false positives in query results. The query
hit in the domain is given by: (|Pi| / |di|). As shown by many studies, the existing P2P
networks have small-world features [13]. In such a context, users tend to work in groups.
A group of users, although not always located in geographical proximity, tends to use the
same set of resources (i.e. group locality property). Thus, we assume that the probability
of finding answers to query Q in the neighborhood of a relevant peer in Pi, is very high
since results are supposed to be nearby. This probability is also high in the neighborhood
of the originator peer p since some of its neighbors may be interested in the same data,
and thus have cached answers to similar queries. Such assumptions are even more relevant
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in the context of interest-based clustered networks. Therefore, the summary peer SPi of
domain di sends a flooding request to each peer in Pi as well as to peer p. Upon receiving
this request, each of those peers sends the query to its neighbors that do not belong to
its domain, with a limited value of TTL. Once a new domain is reached or TTL becomes
zero, the query is stopped. Besides, the summary peer SP sends the request to the set
of summary peers it knows in the system. This will accelerate covering a large number
of domains. In each visited domain, the query is processed as described above. When the
number of query results becomes sufficient (i.e. larger than Ct), or the network is entirely
covered, the query routing is terminated.

3.5 Performance evaluation

In this section, we devise a simple model for the summary management cost. Then, we
evaluate our model by simulation using the BRITE topology generator and SimJava.

3.5.1 Cost Model

A critical issue in summary management is to trade off the summary updating cost against
the benefits obtained for queries.

3.5.1.1 Summary Update Cost

Here, our first undertaking is to optimize the update cost while taking into account query
accuracy. In the next section, we discuss query accuracy which is measured in terms of
the percentage of false positives and false negatives in query results. The cost of updating
summaries is divided into: usage of peer resources, i.e. time cost and storage cost, and the
traffic overhead generated in the network.

Time Cost A unique feature of SaintEtiQ is that the changes in the database
are reflected through an incremental maintenance of the summary hierarchy. The time
complexity of the summarization process is in O(K) where K is the number of cells to be
incorporated in that hierarchy [126]. For a global summary update, we are concerned with
the complexity of merging summaries. The Merging method that has been proposed is
based on the SaintEtiQ engine. This method consists in incorporating the leaves Lz of
a given summary hierarchy S1 into an another S2, using the same algorithm described by
the SaintEtiQ summarization service (referenced in Section 3.1.3.2). It has been proved
that the complexity CM12 of the Merging(S1, S2) process is constant w.r.t the number
of tuples [94]. More precisely, CM12 depends on the maximum number of leaves of S1 to
incorporate into S2. However, the number of leaves in a summary hierarchy is not an
issue because it can be adjusted by the user according to the desired precision. A detailed
Background Knowledge (BK) will lead to a greater precision in summary description, with
the natural consequence of a larger summary. Moreover, the hierarchy is constructed in a
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top-down approach and it is possible to set the summarization process so that the leaves
have any desired precision.

Storage Cost We denote by k the average size of a summary node z. In the average-
case assumption, there are

∑d
i=0 Bi = (Bd+1 − 1)/(B − 1) nodes in a B-arity tree with

d, the average depth of the hierarchy. Thus the average space requirement is given by:
Cm = k.(Bd+1−1)/(B−1). Based on real tests, k = 512 bytes gives a rough estimation of
the space required for each summary. An important issue is that the size of the hierarchy
is quite related to its stabilization (i.e. B and d). As more cells are processed, the need
to adapt the hierarchy decreases and incorporating a new cell may consist only in sorting
a tree. Hence, the structure of the hierarchy remains stable and no additional space is
required. On the other hand, when we merge two hierarchies S1 and S2 having sizes of
Cm1 and Cm2 respectively, the size of the resultant hierarchy is always in the order of the
max (Cm1, Cm2). However, the size of a summary hierarchy is limited to a maximum value
which corresponds to a maximum number of leaves that cover all the possible combinations
of the BK descriptors. Thus, storing the global summary at the summary peer is not a
strength constraint.

According to the above discussion, the usage of peer resources is optimized by the
summarization process itself, and the distribution of summary merging while updating a
global summary. Thus, we restrict now our focus to the traffic overhead generated in the
P2P network.

Network Traffic Recall that there are two types of exchanged messages: push and
update messages. Let local summaries have an average lifetime of L seconds in a given
global summary. Once L expired, the node sends a (push) message to update its freshness
value v in the cooperation list CL. The summary update algorithm is then initiated
whenever the following condition is satisfied:

∑

v∈CL

v/|CL| ≥ α

where α is a threshold that represents the ratio of old descriptions tolerated in the global
summary. While updating, only one message is propagated among all partner peers until
the new global summary version is stored at the summary peer SP . Let Frec be the
reconciliation frequency. The update cost is:

Cup = 1/L + Frecmessages per node per second (3.2)

In this expression, 1/L represents the number of push messages which depends either on
the modification rate issued on local summaries or the connection/disconnection rate of
peers in the system. Higher is the rate, lower is the lifetime L, and thus a large number of
push messages are entailed in the system. Frec represents the number of update messages
which depends on the value of α. This threshold is our system parameter that provides
a trade-off between the cost of summary updating and query accuracy. If α is large, the
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update cost is low since a low frequency of update is required, but query results may be
less accurate due both to false positives stemming from the descriptions of non existent
data, and to false negatives due to the loss of relevant data descriptions whereas they
are available in the system. If α is small, the update cost is high but there are few query
results that refer to data no longer in the system, and nearly all available results are
returned by the query.

3.5.1.2 Query Cost

When a query Q is posed at a peer p, it is first matched against the global summary
available at the summary peer SP of its domain, to determine the set of relevant peers
PQ. Then, Q is directly propagated to those peers. The query cost in a domain d is given
by:

Cd = (1 + |PQ| + (1 − FP ) · |PQ|) messages,

where (1 − FP ) · |PQ| represents the query responses messages (i.e. query hit in the
domain).

Here we note that, the cooperation list CL associated with a global summary
provides information about the relevance of each database description. Thus, it gives more
flexibility in tuning the recall/precision trade-off of the query answers in domain d. The set
of all partner peers PH in CL can be divided into two subsets: Pold = {p ∈ PH | p.v = 1},
the set of peers whose descriptions are considered old, and Pfresh = {p ∈ PH | p.v = 0}
the set of peers whose descriptions are considered fresh according to their current data
instances. Thus, if a query Q is propagated only to the set V = PQ∩Pfresh, then precision
is maximum since all visited peers are certainly matching peers (no false positives), but
recall depends on the fraction of false negatives in query results that could be returned
by the set of excluded peers PQ\Pfresh. On the contrary, if the query Q is propagated to
the extended set V = PQ ∪ Pold, the recall value is maximum since all matching peers
are visited (no false negatives), but precision depends on the fraction of false positives in
query results that are returned by the set of peers Pold.

Now we consider that the selectivity of query Q is very high, such that each relevant
peer has only one result tuple. Thus, when a user requires Ct tuples, we have to visit Ct

relevant peers. The cost of inter-domain query flooding is given by:

Cf = ((1 − FP ) · |PQ| + 2) ·
TTL∑

i=1

ki messages,

where k is the average degree value (e.g. average degree of 3.5, similar to Gnutella-type
graphs). Remember that, the set of relevant peers who have answered the query (i.e.
(1 − FP ) · |PQ|), the originator and the summary peers participate to query flooding. In
this expression, we consider that a summary peer has on average k long-range links to k
summary peers. As a consequence, the total cost of a query is:

CQ = Cd · Ct

(1−FP )·|PQ| + Cf · (1 − Ct

(1−FP )·|PQ|) (3.3)
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Parameter value
Network configuration

local summary lifetime L skewed distribution,

Mean=3h, Median=1h

number of peers n 16–5000
Workload configuration

number of queries q 200
matching nodes/query hits 10%

System parameter
freshness threshold α 0.1–0.8

Table3.4: Simulation Parameters

In this expression, the term Ct/((1− FP ) · |PQ|) represents the number of domains that
should be visited. For example, when Ct = ((1−FP ) · |PQ|), one domain is sufficient and
no query flooding is required.

3.5.2 Simulation

We evaluated the performance of our solutions through simulation, based on the above
cost model. First, we describe the simulation setup. Then we present simulation results to
evaluate various performance dimensions and parameters: scale up, query accuracy, effect
of the freshness threshold α.

3.5.2.1 Simulation Setup

We used the SimJava package [50] and the BRITE universal topology generator [2] to
simulate a power law P2P network, with an average degree of 4. The simulation parameters
are shown in Table 3.4. In large-scale P2P file-sharing systems, a user connects mainly to
download some data and may then leave the system without any constraint. As reported
in [133], these systems are highly dynamic and node lifetimes are measured in hours. As
such, data indexes should be mainly maintained against network changes. In collaborative
database applications, however, the P2P system is supposed to be more stable. Here, the
data indexes should be mainly maintained against data changes, since the shared data
may be submitted to a significant modification rate.

As stated before, our work targets collaborative applications sharing semantically
rich data. In our tests, we have used synthetic data since it was difficult to obtain/use
real, highly distributed P2P databases. Future works aim to employ our proposal in the
context of astronomical applications, which seem to be attractive because of the huge
amount of information stored into the databases. Thus, to provide meaningful results,
we have evaluated the performance of our solutions in worst contexts where the data
are highly updated. We have considered that local summary lifetimes follow a skewed
distribution with a mean lifetime of 3 hours, and a median lifetime of 60 minutes. Note



chapter 3. Summary Management in P2P Systems 76

Figure3.11: Stale answers vs. domain size

that summary lifetimes of hours means that the underlying data is submitted to a very
high modification rate, since the summaries are supposed to be more stable than original
data (as discussed in Section 3.2.3.2). Besides, such lifetime values allow to predict the
performance of PeerSum in large-scale data sharing P2P systems where the rate of node
departure/arrival dominates the global summary update initiating. In our tests, we work
with moderated-size P2P networks, i.e. the number of peers varies between 16 and 5000.
In our query workload, the query rate is 0.00083 queries per node per second (one query
per node per 20 minutes) as suggested in [35]. Each query is matched by 10% of the total
number of peers. Finally, our system parameter α varies between 0.1 and 0.8.

3.5.2.2 Update Cost

In this set of experiments, we quantify the trade-off between query accuracy and the cost
of updating a global summary in a given domain. Figure 3.11 depicts the fraction of stale
answers in query results for different values of the threshold α. Here, we illustrate the
worst case. For each partner peer p having a freshness value equal to 1, if it is selected
in the set PQ then it is considered as false positive. Otherwise, it is considered as false
negative. However, this is not the real case. Though it has a freshness value equal to 1,
the peer p does not incur stale answers unless its database is changed relative to the posed
query Q. Thus, Figure 3.11 shows the worst, but very reasonable values. For instance, the
fraction of stale answers is limited to 11% for a network of 500 peers when the threshold
α is set to 0.3 (30% of the peers are tolerated to have old/non existent descriptions).

As mentioned in Section 3.5.1.2, if we choose to propagate the query only to the set
V = PQ ∩ Pfresh we eliminate the possible false positives in query results. However, this
may lead to additional false negatives. Figure 3.12 shows the fraction of false negatives
in function of the domain size. Here we take into account the probability of the database
modification relative to the query, for a peer having a freshness value equal to 1. We see
that the fraction of false negatives is limited to 3% for a domain size less than 2000 (i.e.
network size less than 8000). The real estimation of stale answers shows a reduction by a
factor of 4.5 with respect to the preceded values.

Figure 3.13 depicts the update cost in function of the domain size, and this for two
threshold values. The total number of messages increases with the domain size, but not
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Figure3.12: False negative vs. domain size

Figure3.13: number of messages vs. domain size

surprisingly, the number of messages per node remains almost the same. In the update
cost equation 3.5.1.1, the number of push messages for a given peer is independent of
domain size. More interestingly, when the threshold value decreases (from 0.8 to 0.3) we
notice a little cost increasing of 1.2 on average. For a domain of 1000 peers, the update cost
increases from 0.01056 to 0.01296 messages per node per minute (not shown in figure).
However, a small value of the threshold α allows to reduce significantly the fraction of
stale answers in query results, as seen in Figure 3.11. We conclude therefore that tuning
our system parameter, i.e. the threshold α, do not incur additional traffic overhead, while
improving query accuracy.

3.5.2.3 Query Cost

In this set of experiments, we compare our algorithm for query processing against
centralized-index and pure non-index/flooding algorithms. A centralized-index approach
is very efficient since a single message allows locating relevant data. However, a central
index is vulnerable to attack and it is difficult to keep it up-to-date. Flooding algorithms
are very used in real life, due to their simplicity and the lack of complex state information
at each peer. A pure flooding algorithm consists in broadcasting the query in the network
till a stop condition is satisfied, which may lead to a very high query execution cost. Here,
we limit the flooding by a value 3 of TTL (Time-To-Live).



chapter 3. Summary Management in P2P Systems 78

Figure3.14: Query cost vs. number of peers

According to Table 3.4, the query hit is 10% of the total number of peers. For our query
processing approach, which is mainly based on summary querying (SQ), we consider that
each visited domain provides 10% of the number of relevant peers (i.e. 1% of the network
size). In other words, we should visit 10 domains for each query Q. From equation 3.5.1.2,
we obtain: CQ = (10 ·Cd + 9 ·Cf) messages. Figure 3.14 depicts the number of exchanged
messages to process a query Q, in function of the total number of peers. The centralized-
index algorithm shows the best results that can be expected from any query processing
algorithm, when the index is complete and consistent, i.e. the index covers the totality
of data available in the system, and there are no stale answers in query results. In that
case, the query cost is: CQ = 1+2 · ((0.1) ·n) messages, which includes the query message
sent to the index, the query messages sent to the relevant peers and the query response
messages returned to the originator peer p.

In Figure 3.14, we observe that our algorithm SQ shows good results by significantly
reducing the number of exchanged messages, in comparison with a pure query flooding
algorithm. For instance, the query cost is reduced by a factor of 3.5 for a network of 2000
peers, and this reduction becomes more important with a larger-sized network. We note
that in our tests, we have considered the worst case of our algorithm, in which the fraction
of stale answers of Figure 3.11 occurs in query results (for α = 0.3).

3.6 Conclusion

This chapter proposed a solution for managing data summaries in P2P systems. Our
approach for data summarization is based on SaintEtiQ [126]: an online linguistic
approach for summarizing databases. The innovation of our proposal relies on the double
exploitation of the employed summaries. First, as semantic indexes, they support locating
relevant nodes based on their data descriptions. Second, due to their intelligibility, they
can be directly queried to approximately answer user queries, without the need for
exploring original data.

The first part of this work studied the integration of our summarization technique into
the APPA system. Thus, we defined a peersum service which manages data summaries
relying on services provided by the APPA’s architecture. Then, the second part proposed



79 3.6. Conclusion

a solution for managing data summaries in hierarchical P2P networks. In both contexts,
we first defined an appropriate summary model which describes the different levels of
summaries materialized in the network. Second, we proposed efficient solutions for building
summaries and updating their intentional descriptions against both data and network
changes. Then, we defined a query processing mechanism which relies on querying the
available summaries. This mechanism is able to perform two distinct tasks, according
to user/application requirements. It may determine the set of relevant nodes to which
the query should be sent in order to get precise answers (i.e. peer localization). It may
also directly return approximate answers from the intentional descriptions of the queried
summary (i.e. approximate answering). We evaluated the performance of our proposals
through a cost model and a simulation model. We showed that the use of summaries in
P2P systems allows to reduce the query cost, without incurring high costs of summary
update.
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Chapter 4

CBST for Unstructured P2P
Systems

As discussed before, the techniques that have been proposed to improve the performance
of P2P systems fall into four main categories. Data indexing and network clustering
techniques mainly aim to reduce the response time and the bandwidth consumption while
locating relevant data. Caching and replication techniques mainly address the consistency
and the availability of the shared data. Mediation techniques tend to remedy the problem
of integrating heterogeneous data.

In the previous chapter, we have proposed a data indexing technique that allows for
efficient data discovery in advanced P2P applications. However, this technique also belongs
to the newly arising data summarization category, which allows for an approximate query
answering through providing intelligible data descriptions.

In this chapter, we address the problem of reducing network traffic in unstructured P2P
systems, based on network clustering schemes. To this end, we propose CBST , a Cluster-
Based Search Technique for P2P systems, which is implemented over a connectivity-
based clustering protocol. The objective of CBST is to reduce the total number of
messages generated per query. Ideally, each generated message has to be useful to the
query propagation mechanism, i.e. to enlarge the coverage of query propagation through
reaching a new peer. In the following, we discuss the motivation behind this work, describe
our contribution, and present the chapter organization.

4.1 Motivation

While structured systems are well-studied in the P2P research community, unstructured
systems are still the most deployed systems in today’s internet. Unstructured systems
are attractive because of their simplicity and their high robustness. However, the high
bandwidth consumption in these networks remains a pertinent issue for both users
and internet-service providers. For the end users, the most faced problem is that the
participation into the network swamps all the available bandwidth and thus renders the
link ineffective for any other use. For internet-service providers and network operators,
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the P2P traffic tends to be inefficient and costly while transiting on the physical network
layer.

The amount of traffic generated on a P2P network is dependent on two factors: the
nature of application and the way in which the messages are forwarded. The application
operating on the network directly impacts the amount of traffic. For instance, bittorent [1]
would generate significant traffic since it is especially designed for the use of downloading
large files. This first factor is application-dependent and thus uncontrollable by P2P
network designers. The research effort has been mainly put on providing efficient message
routing protocols. This second factor is in fact reflective of the properties of different types
of P2P network topologies (i.e. their degrees of structuring and decentralization).

In unstructured networks, there is no control on either the overlay topology or the data
placement, and thus queries are non-deterministically routed. Basically, the fundamental
routing mechanism is flooding, in which a peer sends a message to its neighbors, which
in turn forward the message to all their neighbors except the message sender. A query
message is associated with a Time-To-Live (TTL) value, which is decreased by one when
it travels across one hop. At a given peer, the message comes to its end if it becomes
redundant (i.e. no further neighbors) or the TTL value becomes zero. This mechanism is
simple, highly reliable and allows to reach a large number of peers in the system (i.e. high
coverage). Despite of these advantages, there are two major concerns with flooding.

1. Blindness: a peer forwards a query message, whether self-initiated or received,
to its neighbors without any information on how these neighbors may contribute
to query results. To overcome this problem, many techniques have exploited data
semantics at the application layer, to assist query routing with information about
the location or the direction toward relevant data.

2. Message Redundancy: a peer may receive the same query message multiple times.
This is due to the ad hoc nature of P2P connections, i.e. the neighbor selection
process is random and non-discriminant.

In our work, we address the second issue, based on connectivity-based clustering
schemes. Such clustering schemes are considered as a way to discover inherent structural
patterns from the overlay topology. The network is partitioned into clusters based on node
connectivity, such that nodes within clusters are highly connected, while nodes between
clusters are loosely connected. In the literature, two main protocols have been proposed,
i.e. the Connectivity-based Distributed node Clustering (CDC) [121], and the SCM-based
Distributed Clustering (SDC) [86]. These works have been introduced by arguing the
benefits of such a clustering from the search performance point of view. However, none
of them has proposed an appropriate routing protocol, or provided analytical models or
experimental results on how their clustering schemes contribute to reduce the bandwidth
consumption. The main focus was on the clustering scheme accuracy, i.e. using the Scale
Coverage Measure (SCM), and its maintenance against node dynamicity.

This chapter proposes CBST , a cluster-based search technique (CBST ) for
unstructured P2P systems. This proposal leverages the idea of exploiting the clustering
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global link

local link

Figure4.1: Local and global links in a clustered network

features of the overlay topology, in order to reduce the network traffic by eliminating
redundant query messages.

4.2 Contribution

We consider an unstructured P2P network that is clustered based on node connectivity,
as presented in Figure 4.1. Each node belongs to, at most, one cluster and maintains two
types of connections: local links that connects to nodes within its cluster (intra-cluster),
and global links that connects to nodes in other clusters. Consequently, nodes can perform
two types of broadcasts, local and global, along the two types of links. Note that an orphan
node, which has not joined any other cluster in the network, is considered as a separate
cluster on its own. All along this work, we assume that the network is index-free, i.e. nodes
do not maintain any global distributed indexes.

Now suppose that a query Q is posed at node no, with a given value of TTL. We define
the query scope QS as being the subgraph that contains no, and all other nodes locating
at a maximum distance of TTL from no. Remember that, in the previous chapter, the
query scope has been defined as the set of nodes that should be visited to answer the
query. However, because of the flooding blindness, each node that could be reachable
based on the TTL value, should be visited since it may contribute to the query results.
All nodes may equi-probably answer the query.

The performance of query flooding is generally quantified by the pair (M, P ). M is
the number of generated query messages, and P is the number of visited peers. As said
before, the flooding mechanism provides a highest coverage (i.e. P = |QS|). But, the
main issue is the number of redundant messages, which is obtained by M −P . Therefore,
our objective is to define a search technique that improves the flooding performance by
eliminating the redundancy in query messages (i.e. reducing the M value), while keeping
a good coverage (i.e. P slightly less than QS). To illustrate the above problem, let us
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think of the graph corresponding to the P2P network as the road map of a given city.
The roads are the edges of the graph, and the intersection of two or more roads are the
nodes of the graph. Suppose that a group of salespersons is in charge of selling the same
merchandise in that city, and each one is paid for the number of articles he could sold.
The salespersons do not have any information about the probability of finding a client
interested in their merchandise (i.e. absence of data indexes). Thus, their mission is to
visit the largest number of clients with minimum traveling. In other words, each road
should be traversed only once.

In our work, we propose CBST , a search technique that relies on structural
information provided by the underlying connectivity-based clustering protocol. The
CBST technique works as follows. Based on a local knowledge about the network
clustering in its neighborhood, each node maintains information about the local links
within its cluster (intra-cluster information), as well as about global links connecting its
cluster to other reachable clusters (inter-cluster information). The intra-cluster routing
information could be represented by a spanning tree, rooted at that node and covering
all its partners (i.e. the nodes that belong to its cluster). These information are efficiently
gathered and maintained in a cluster-based routing table.

The benefits in query routing are two folds. First, the query Q is efficiently
disseminated in a given cluster, without any redundant messages, using the spanning tree
of the first node contacted in that cluster. Second, the query messages between clusters
are restricted to those traversing the global links specified by the routing table of the
querying node no. Extensive simulations have demonstrated the efficiency of the CBST
technique compared to the pure flooding and random walk routing techniques.

Therefore, this chapter makes the following contributions:

1. Definition of cluster-based routing tables on top of connectivity-based clustering
scheme: application to SDC.

2. Specification of a cluster-based query propagation protocol.

3. Presentation of the missing proof of the cluster-based search techniques efficiency
(by extensive simulation and experimental results).

The rest of this chapter is organized as follows. Section 2 discusses related works.
Section 3 gives an overview over the connectivity-based clustering schemes. In section 4,
we describe our cluster-based search technique CBST . Section 5 discusses the trade-off
between search accuracy and bandwidth consumption that can be achieved by CBST .
Section 6 presents the performance evaluation through simulation. Section 7 concludes.

4.3 Related Work

In this section, we first briefly reconsider some works that have been discussed in the first
chapter, and which are related to the issue addressed here. Then, we present a general
taxonomy of the network clustering schemes.
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In the literature, much work has been done to improve the performance of unstructured
P2P systems, through refining the network topologies and their message routing protocols.

Early works on the Gnutella system have adopted to build a hierarchical overlay
topology. The idea is that node heterogeneity could be exploited by introducing
asymmetry in node functionalities (i.e. heterogeneity-aware topologies). More capable
nodes are dynamically designated as supernodes. A supernode groups a set of leaf nodes,
and broadcasts messages on their behalf. This allows to reduce the network traffic and to
optimize the usage of network resources. However, the asymmetry in node roles should
not incur load balancing or fault tolerance problems.

Later, structured P2P systems have been proposed to remedy the problem of
randomness and non-deterministic query routing, while keeping a complete symmetry
in node roles. The principle behind is that the overlay topology and data placement are
tightly controlled in order to achieve an efficient, deterministic lookup. However, this
solution compromises node autonomy, and may restrict the query expressiveness since
processing complex queries in structured systems remains an open issue.

Parallel works have focused on improving the performance of unstructured systems
through proposing refined variations of the original flooding algorithm (e.g. [136], [143]).
They mainly attempt to reduce the total number of messages generated per query. A
representative example is the random walk algorithm [136]. The querying node first sends
the query message to a given number k of its neighbors. Then, at each forwarding step,
an intermediate node sends the query to a randomly chosen neighbor. Obviously, this
approach significantly reduces the number of query messages. However, it has a much
lower network coverage compared to the original flooding algorithm, i.e. the number of
visited nodes may be also significantly reduced. Indeed, the main issue with these works
is that they tend to alleviate the shortcoming of flooding, without exercising much care
to retain its merit (i.e. good network coverage).

To address the blindness problem of flooding-based approaches, many works have
employed data indexing techniques (e.g. [9], [34]) which have been discussed in the first
chapter of this thesis. P2P data indexes should be small in size, efficiently updated against
both data and network changes. Besides, to support sharing semantically rich data, data
indexes should also refer to data content (i.e. semantic indexes). Unlike DHTs, such
semantic indexes allow to efficiently guide the query propagation mechanism, without
restricting search expressiveness.

Another research axis has focused on network clustering which consists in organizing
the nodes into clusters, based on a given criterion. A clustering criterion could be a
physical network metric (e.g. bandwidth, latency), some peer property/behavior (e.g. node
connectivity/stability), or even defined at the application layer (e.g. similar interests).

4.3.1 Clustering at the physical network layer

Works such as [90], [130], [148] perform network clustering based on physical proximity,
which can be defined by measuring latencies between nodes. These clustering schemes
address the problem of mismatching between the logical P2P network and the underlying
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physical network: two neighbors in the physical overlay are not necessarily neighbors in
the P2P overlay. This network mismatching increases the network traffic since a logical
hop may amount to an unnecessarily large number of physical hops. While it might at
best be considered inefficient in stationary networks, this problem could prove critical in
the context of mobile adhoc networks (MANETs) [157]. In a recent trend, more research
effort is directed toward the deployment of P2P systems in the context of wireless adhoc
networks, which are bound by physical constraints (e.g. coverage area of transmission
signals) [32], [76]. Besides, there are many contexts where it is desirable to have physical
proximity between network entities, including multicasting. Narada [39], an end system
multicast, first constructs a rich connected graph on which to further construct shortest
path spanning trees. Each tree rooted at the corresponding source using well-known
routing algorithms. This approach introduces large overhead of forming the graph and
trees in a large scope, and does not consider the dynamic joining and leaving characteristics
of peers. The overhead of Narada is proportional to the multicast group size. In P2P
systems, the main approach used for clustering nodes based on physical proximity consists
in measuring latencies between each peer and multiple stable internet servers called
“landmarks”. This approach allows to estimate the latency between nodes. However, it is
usually performed in the global network, which might impact the measurements accuracy.

4.3.2 Clustering at the application layer

Works such as [10], [132] perform network clustering at the application layer, based
on semantic proximity or interest-based proximity. Semantic proximity between peers is
defined as the similarities between their cache contents or download patterns [57]. These
clustering schemes tend to overcome the flooding blindness by connecting semantically
related peers in the P2P network. In [10], the authors assume global knowledge of the
semantic grouping of the shared documents, according to a predefined classification.
Accordingly, they build multiple overlays, each of which corresponding to a separate
semantic relationship. The main issue with this approach is that it is difficult to
obtain a precise classification, and to maintain the resultant overlays against changes
in nodes preferences. In [132], the concept of shortcut is proposed, allowing peers to
form direct connections to peers of similar interests. The similarity of interests are
captured implicitly based on recent downloads and accordingly, interest-based shortcuts
are dynamically created in the network. In the original network, these shortcuts are
discovered progressively through flooding. Besides, the search is first done on interest-
based shortcuts. However, when shortcuts fail, peers resort to using the underlying
Gnutella overlay and its original flooding mechanism. So a low-cost flooding is also
essential in this clustering scheme.

4.3.3 Clustering at the logical network layer

Works such as [86], [121] perform network clustering at the P2P network layer, based on
node connectivity. Connectivity-based clustering schemes have wide ranging applications
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such in mobile adhoc and P2P sensor networks. These clustering schemes partition the
network into non-overlapping sub-networks (clusters) with bounded diameter. A cluster
diameter is defined as the maximum length of the shortest paths among all pairs of nodes in
that cluster. One approach consists in designating cluster heads which form a dominating
set of the network. These cluster heads will coordinate their one-hop neighbors [100], [151]
(e.g. control channel access, power measurements, routing responsibilities, etc.). Certainly,
this approach requires efficient load balancing strategies [18]. Another approach adopts
a more symmetric topology by proposing fully decentralized clustering without the
designation of cluster heads [79], [49]. This sort of clustering infrastructure serves to create
a dynamic backbone of a network for the purpose of improving the quality of service of the
application operating on the network. For instance, efficient routing protocols could be
defined by taking advantage of the clustering features of the underlying network [98], [49].
Another example is that the characterization of the inherent clustering features can be
very critical in network modeling [33].

In this chapter, we are dealing with connectivity-based clustering schemes when
proposing a cluster-based search technique for P2P systems. We are not working at the
application layer where clustering is based on semantic relations and addresses the issue
of blind searches, from the data placement point of view. We are not dealing either with
topologically-aware clustering which is a separate issue on its own. In fact, our work simply
consists in exploiting the characteristics of a P2P network topology, to draw a kind of
network map at each node. Such a map allows message to travel in the network while
distinguishing between short and long routes, and being aware of impasses.

4.4 Connectivity-based clustering schemes

A connectivity-based clustering protocol should fulfill the following requirements in order
to be considered as appropriate for P2P systems.

• A natural requirement is that it should organize the network such that nodes are
highly connected in the same clusters and less connected between clusters.

• It should well control the cluster size (or cluster diameter). Due to the lack of
knowledge about network structure, it is expensive to maintain expanded clusters
in large P2P networks.

• It should be fully distributed. Nodes should form clusters automatically without the
knowledge of the complete network topology.

• It should recover from node dynamics, with small overhead in term of the number
of messages exchanged between nodes.

Centralized clustering algorithms, like MCL (Markov Cluster) [129], can achieve high
clustering accuracy, i.e. the first requirement is well satisfied. However, such algorithms
assume that the complete network topology is available at a central point, and thus cannot



chapter 4. CBST for Unstructured P2P Systems 88

be used in P2P networks. The CDC scheme [91] is a distributed approach that discovers
connectivity-based clusters in P2P networks. A set of nodes are selected as “originators”
and clusters are formed around them using flow simulation. The quality of the clustering
scheme depends on how well the “originators” are distributed in the network. Furthermore,
the main issue with the CDC algorithm is that it cannot handle node dynamicity in a
decent way. The whole network has to be re-clustered at each node join or leave, which
incurs a large traffic overhead.

The SCM-based Distributed Clustering (SDC) protocol [86] proposes to satisfy all the
design criteria discussed above. The protocol performs in a fully distributed way, which is
briefly described in Section 4.4.2. The clustering accuracy is dynamically adjusted using
the Scaled Coverage Measure (SCM), a practical clustering accuracy measure, which
is presented in Section 4.4.1. Besides, the cluster size is well controlled, and the node
arrival/departure is locally handled with a small number of messages, while keeping a
good quality of clustering.

4.4.1 SCM: Accuracy Measure for Graph Clustering

The Scaled Coverage Measure (SCM) has been proposed by S.Van Dangon [129] to
evaluate the accuracy of a clustering scheme. The key idea behind this performance
measure is that an optimal clustering of a given graph should minimize both the number of
inter-cluster edges and the number of non-neighbor vertices in each cluster. Let G = (V, E)
be a graph, where V is the set of nodes corresponding to the set of peers in a P2P system,
and E is the set of links, which are the logical connections between peers. We assume that
C = {C1, C2, . . . , Cl} is a given clustering on graph G. Each cluster Ci is a non-empty
subset of V , and ∪l

i=1Ci = V . Given a node ni ∈ V , we have the following notations:

• Nbr(ni): the set of neighbors of node ni;

• Clust(ni): the set of nodes in the same cluster as node ni (excluding ni);

• FalsePos(ni): the set of nodes in the same cluster as ni but not neighbors of ni;

• FalseNeg(ni): the set of neighbors of ni but not in the same cluster as ni.

Then the Scaled Coverage Measure of node ni with respect to the clustering C,
SCM(ni), is defined as:

SCM(ni) = 1 − |FalsePos(ni)| + |FalseNeg(ni)|
|Nbr(ni) ∪ Clust(ni)|

(4.1)

The SCM value of the graph G, SCM(G), is defined as the average of the SCM values of
all of the nodes: SCM(G) =

∑
ni

SCM(ni)/N , where N is the network size (i.e. |V | = N).
It is easy to see that this value, which lies in [0, 1], reflects the accuracy of clustering. The
higher the SCM value, the smaller the connectivity between clusters and the higher the
connectivity within clusters. Note that the SCM value of an orphan node is 0. Thus,
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an additional requirement for a good clustering C is that it should result in a minimum
number of orphan nodes, since they reduce its accuracy.

For any graph, there exists a highest SCM value that depends on the inherent network
structure. To illustrate, this value is equal to 1 for a graph containing only isolated, fully
connected components. The SCM measure allows to quantify, and thus to compare the
accuracy of different clustering schemes. However, in the context of P2P systems, the
comparison of two clustering schemes should not be restricted to the comparison of the
optimal SCM values they can achieve on the network. As we discussed earlier in this
section, a “good” clustering scheme should be also fully distributed, and should handle
peer dynamicity in a very efficient way.

4.4.2 The SDC Protocol

Given a network, each node no is initialized as an orphan node with its own clust id (any
unique id is sufficient) and clust size (1 in this case). For SCM computation, node no

maintains two variables ao and bo such that:

ao = |Nbr(no) ∪ Clust(no)| , bo = |FalsePos(no, C)| + |FalseNeg(no, C)|

Initially, ao = bo = |Nbr(no)|, and according to Equation 4.1:

SCM = 1 − bo

ao
(4.2)

When running the SDC protocol, all nodes start to exchange messages with their
neighbors, conduct some simple computation, and form clusters in a greedy manner. After
a number of rounds of communication, the clustering procedure becomes stable without
further message exchange and the network is finally clustered.

In order to be clustered, a node no executes the clustering procedure, which may
involve the following clustering messages.

• Clust Probe. Node no sends this message to its neighbors to discover the “neighbor
clusters”, i.e. clusters that exist in its neighborhood. Upon receiving this message,
each neighbor will send its clust id and clust size back to no.

• Clust Request. Node no issues a Clust Request message, which will be flooded
in each neighbor cluster Ci (i.e. request for joining Ci) and no’s current cluster
Clust(no) (i.e. request for leaving Clust(no)). To control the number of exchanged
messages, as well as to control the cluster diameter, a Time-To-Live (TTL) value
is associated to this message. In the rest of this chapter, this TTL value will be
referred as diameter (D), to distinguish it from the TTL value associated to a user
query.

• Clust Reply. Upon receiving the Clust Request message, a node nj in Ci computes
the gain ∆SCM(nj) assuming that node no joins Ci. Note that this computation
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only requires the information of whether no is a nj ’s neighbor or not. According to
equation 4.2, if no ∈ Nbr(nj),

∆SCM(nj) = 1/anj
.

Otherwise, the gain in SCM is given by,

∆SCM(nj) = bnj
/anj

− (bnj
+ 1)/(anj

+ 1).

Similarly, each node in Clust(no) has to compute its gain as if no leaves its current
cluster. After gain computation, node nj sends back a Clust Reply message carrying
∆SCM(nj) and nj ’s clust id back to node no.

• Clust Reject. Based on the diameter value D in Clust Request, a node nj in Ci

can determine whether or not the cluster diameter will be excedeed due to the joining
of node no. In this case, nj stops forwarding Clust Request and a Clust Reject
message is sent back to node no. Once receiving such a message, node no will remove
Ci from the list of neighbor clusters which it attempts to join.

• Clust Update. Upon receiving Clust Reply messages from all the nodes in its
cluster and the neighbor cluster Ci (in the case where no Clust Reject is received
from the latter), node no computes the overall gain ∆SCM(G) assuming it leaves
its original cluster and joins Ci. If ∆SCM(G) > 0, no should join Ci. There might
be multiple clusters of which ∆SCM are positive, no should join the one with the
maximum SCM gain. Once no determines which cluster to join, a Clust Update
message containing its clust id is flooded in its original cluster and the new cluster it
will join. Then, no and each node receiving this message will update their clustering
information.

• Clust Wait. This message is used in the case where multiple nodes try to join
the same cluster simultaneously. Only one node can be served, and other nodes are
“locked” until this node achieves its clustering procedure. A node that receives a
Clust Wait message has to wait a predefined period of time before its next clustering
attempt.

After node no joins the new cluster, its neighbors in the original cluster are affected
and should check whether they should join other clusters, in the same way as node no has
done. The whole procedure will end if no node can join any cluster based on ∆SCM(G)
and the cluster diameter control.

4.4.2.1 Performance in static systems

The SDC protocol provides good clustering accuracy. Moreover, it performs much better
than the existing decentralized connectivity-based clustering protocol (i.e. the CDC
protocol), yielding much smaller message overhead, especially for power-law topologies.
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Another observation is that for the same network size, power-law topologies have smaller
overhead than pure random topologies, in which nodes have the same probability of being
connected with each others. This is because, the message overhead in power-law topologies
is mainly incurred by the clustering of a small number of high degree nodes.

4.4.2.2 Performance in dynamic systems

Compared to the CDC protocol, it has been demonstrated that the SDC protocol can
maintain a higher clustering accuracy after each node join or leave, while only much
smaller overhead is introduced. This is due to the very efficient mechanism adopted by
SDC to handle node dynamicity. In fact, with node arrival and departure, the network
structure is changed and the existing clusters are affected. Re-doing the whole clustering
procedure, as suggested by CDC, may keep good clustering accuracy. However, this is very
inefficient and the procedure may never stabilize if the network is highly dynamic. The
key idea behind the solution adopted by SDC, is that node entry and exit are localized
events and only few nodes are affected and thus need to be re-clustered.

4.4.2.3 Cluster Size Control

In [86], simulation results have shown that the average cluster size obtained from both
SDC and CDC protocols are very stable, for topologies with different scales. Intuitively,
as long as the overall topology structure is not changed, the cluster size should follow the
same pattern even if the topology scale is changed significantly. In addition, the SDC
protocol can maintain stricter bounds for the cluster size i.e. the cluster size distribution
does not spread as in CDC. Another observation is that SDC can effectively eliminate
orphan nodes.

4.5 CBST for unstructured P2P systems

In our work, we aim at defining a cluster-based search technique on the top of a
connectivity-based clustering protocol (i.e. the SDC protocol). This technique takes
advantage of the clustering information in order to improve the performance of query
routing in unstructured P2P networks.

In this section, we first define a mechanism for building cluster-based routing tables,
and updating their entries against node dynamicity. Second, we propose a routing
mechanism that allows a query to travel across clusters such that a maximum number
of nodes is visited (for a given value of TTL), and redundant query messages are quasi-
eliminated.

4.5.1 Cluster-based Routing Table

Let G = (V, E) be the graph corresponding to an unstructured P2P network, and C the
clustering obtained from running the SDC protocol on that graph. Suppose that node
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Neighbor Cost(nb of hops) Destination
Partner entries

n1 h11 p1

n2 h22 p2

· · · · · · · · ·
nn hnk pk

Cluster entries
n1 h11 C1

n2 h22 C2

. . . . . . . . .
nm hml Cl

Table4.1: Routing table of node no

no ∈ V belongs to the cluster Co ∈ C. According to the notations in 4.4.1, Nbr(no) is the
set of no’s neighbors, and Clust(no) is the set of no’s partners, i.e. the set of nodes that
belong to the same cluster Co. Note that Co = Clust(no) ∪ {no}.

4.5.1.1 Routing Table Description

Table 4.1 describes the routing table maintained at node no. We distinguish between intra-
cluster routing information, which is represented by the first set of partner entries, and
inter-cluster routing information, which is represented by the second set of cluster entries.
The former provides information about paths to each partner p ∈ Clust(no), while the
latter provides information about paths to a subset of reachable clusters.

A partner entry ep ( respectively cluster entry ec) in Table 4.1 is read as follows.
Going through neighbor ni, node no can reach a partner pj ( respectively a new cluster
Cj), with a minimal number of hops hij . Thus, the set of partner entries is equivalent
to a spanning tree of the subgraph Co, rooted at node no. The number of these entries
is limited to the cluster size, which is well controlled by the clustering protocol. On the
other hand, to control the number of cluster entries, node no chooses to keep information
only about clusters that contain, at least, one node locating at a maximum distance of
D. Before presenting how the routing table RT at node no is maintained, we list the set
of properties that should be satisfied in order to keep RT staleness.

Property 1 Pa = Clust(no), where Pa is the set of destinations (peers) of partner
entries in the no’s RT (Pa := {ni ∈ V/∃ep ∈ RT, ep.destination = ni}).

Property 2 ∀ep ∈ RT , ep.cost = min(distance(no, ni)) over all the intra-cluster paths
(no, ni), where ni = ep.destination.

These two first properties guarantee that the set of partner entries in no’s RT represents
the spanning tree of the subgraph Co, rooted at node no itself.
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Figure4.2: States of node no

Property 3 ∀ec ∈ RT , ∃ni ∈ D-Nbr(no) such that ni.clust id = ec.destination, where
D-Nbr(no) is the D-neighborhood of node no (D-Nbr(no) = {ni ∈ V/distance(no, ni) ≤
D}).

This property guarantees that each cluster referred by a cluster entry in no’s RT is still
existing in the network, and contains at least one node belonging to the D-neighborhood
of node no.

Property 4 ∀e ∈ RT , e.dist ≤ D.

This final property guarantees that the cost values in no’s RT are all bounded by the
predefined threshold D, which is used by the SDC protocol to control the cluster diameter.

4.5.1.2 Table Maintenance vs. Clustering Scheme Changes

For our purpose, we distinguish four node states in a given P2P network (Figure 4.2).

• Once connected to the network, a node no becomes “on”, and thus able to
participate to the clustering scheme.

• Through running the clustering protocol, node no joins the cluster which provides
him an optimal SCM value. Thus, node no becomes in a “clustered” state.

• Using the mechanism described in this section, no is supported with a cluster-based
routing table RT . Here, node no is said to be “clustered with valid rt”. By
valid we mean that the RT satisfies all the properties listed in the previous section.

• Obviously, node no could leave the system at any moment, and thus returns to an
“off” state.

In this section, we assume that all nodes are on, and we describe how their routing
tables are created/updated while the clustering scheme is changing. The problem of
updating these routing tables against node dynamicity will be treated in Section 4.5.1.3.
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Figure4.3: A network example: node 7 attempts to join a new cluster

Our objective is to allow a node no to make the two transitions {clustering, rt

maintenance} simultaneously. In other words, we aim to exploit the clustering messages
exchanged between nodes in order to create/maintain our routing tables. Hence, node
no, which is moving from cluster Cold to cluster Cnew, should have a valid RT at the
end of the clustering procedure, without the need for exchanging additional messages.
Certainly, the routing tables of nodes that are affected by this clustering change should
also be appropriately maintained. For illustration, consider the network of Figure 4.3,
which contains 8 nodes and 4 different clusters (the orphan node 7 is considered as a
separate cluster). All nodes maintain their initial routing tables, which are in a valid
state, when node 7 attempts to join a new cluster. we assume that node 7 will execute
the clustering procedure for the first time, so its initial routing table is empty.

a) Table of node no:

According to SDC, node no first probes its neighborhood to find candidate clusters
to which it could join. Each neighbor sends its cluster clust id back to no. Thus, upon
receiving the return messages, node no updates its routing table RT by adding a cluster
entry for each candidate cluster Ci, if such an entry does not already exist. Note that, if
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node no is not executing the clustering procedure for the first time, its initial table RT
is not empty and may already contain an entry for a given candidate cluster. Thus, only
for new discovered clusters, entries in the following form are added: ec = 〈ni, 1, Ci〉. Node
ni is a neighbor that belongs to cluster Ci. In our example, Table 4.2 shows the initial
table of node 7 who has discovered the three clusters A, B and C.

Neighbor Cost(hops) Destination
Partner entries
Cluster entries

node 0 1 Cluster A
node 1 1 Cluster B
node 2 1 Cluster C

Table4.2: Initial routing table of node 7

Neighbor Cost(hops) Destination
Partner entries

node 1 1 node 1
node 5 1 node 5

Cluster entries
node 0 1 Cluster A
node 2 1 Cluster C

Table4.3: Final routing table of node 7

After message exchange and SCM gain computation (as described in Section 4.4.2),
node no may either stay in its old cluster Cold or join a new cluster cluster Cnew. In the
first case, the initial RT of node no becomes its final table. In the second case, the initial
routing table is updated as follows.

• The cluster entry that corresponds to the newly joined cluster Cnew is removed.
In our example, node 7 joins cluster B and thus, the second entry of Table 4.2 is
removed from its final table Table 4.3.

• According to the size of the old cluster (Cold Size), we distinguish two cases. If
Cold Size > 2, then node no has not been orphan and has had entries for its old
partners in Cold. In this case, no chooses (randomly) a node np in |Pa ∩ Nbr(no)|
and adds the following cluster entry: ec = 〈np, 1, Cold〉1. Note that clustering based
on the SCM measure guarantees that the set Pa contains at least one neighbor
(i.e. |Pa(no) ∩ Nbr(no)| 6= Φ). For instance, if node 2 left cluster C, it should
remove the partner entries of nodes 3 and 6. But, it should add the following entry:
〈node 3, 1, Cluster C〉 to remind the existence of cluster C in its neighborhood.
If Cold Size ≤ 2, the old cluster will disappear with no’s departure, and thus a
corresponding cluster entry should not be added to RT .

• Entries that describe paths to new partners are added, e.g. two partner entries for
nodes 1 and 5 are added to Table 4.3. A new partner is identified thanks to the
Clust Reply message it has sent to node no.

b) Table of an affected node nj:

The clustering change made by node no will certainly incur some modifications

1Recall that Pa is the set of old partners provided by the destination column in RT .
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on other nodes’ routing tables. In the following, we describe how these modifications are
made in order to keep all routing tables in a valid state.

According to SDC, node no sends a Clust Update message to be flooded in both old (if
still exist) and new clusters (e.g. cluster B). This message allows old and new partners to
update their clustering information, i.e. the cluster size and SCM values. Such a message
can be also used to update the routing tables of visited nodes. To this end, we assume that
it is flooded in all candidate clusters, and is associated with the routing table of its sender.
Hence, the Clust Update message forwarded by node ni has the following structure.

Clust Update = 〈ni.clust id, RTi, TTLi〉 ,

where ni.clust id is the identifier of the ni’s current cluster, and RTi is its current routing
table. The TTL value is initialized by node no to D, and is decremented by one after each
message hop.

Suppose now that node nj receives the Clust Update message from node ni.
Algorithm 4.5.1.2 shows the steps involved in updating its routing table RTj. Routing table
modifications are illustrated through comparing the initial routing tables in Figure 4.3
and the final ones which are presented in the final network in Figure 4.4.
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Figure4.4: Final routing tables

First, each cluster entry that supposes that node no belongs to the old cluster Cold

should be removed. This entry deletion starts at no’s neighbors (Lines 5− 7), and is then
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Algorithm 3 Routing Table Update

1: RTi (respect RTj): Routing table of the sender node ni (respect current node nj)
2: Ci (respect Cj): Cluster of the sender node ni (respect current node nj)
3: // 1.Remove entries referring to clusters which are not reached anymore through ni

4: For each (ec in RTj such that ec.neighbor = ni)
5: if (ec.cost = 1) and (Ci 6= ec.destination) then
6: RTj.remove(ec)
7: end if
8: if (ec.cost > 1) and (∄e′c in RTi such that ec.destination = e′c.destination) then
9: RTj.remove(ec)

10: end if
11: end For each
12: // 2.Remove partner entries referring to nodes which do not belong anymore to Cj

13: For each (ep in RTj such that ep.neighbor = ni)
14: if (Ci 6= Cj) then
15: RTj.remove(ep)
16: else if (∄e′p in RTi such that ep.destination = e′p.destination) then
17: RTj.remove(ep)
18: end if
19: if the set of partner entries is empty then
20: Cj := nj id
21: end if
22: end For each
23: // 3.Add new entries, and update common entries based on cost values
24: For each e in RTi

25: if (e is a cluster entry) or ((e is a partner entry) and (Ci = Cj)) then
26: if (∄e′ in RTj such that e′.destination = e.destination) then
27: entry = new Entry (ni, (e.cost + 1), e.destination); RTj.add(entry)
28: else if e′.cost > (e.cost + 1) then
29: e′.cost := (e.cost + 1); e′.neighbor := ni

30: else if (ni is partner) and (e′.neighbor is not partner) then
31: e′.neighbor := ni

32: end if
33: end if
34: end For each
35: // 4.Add an entry referring to Ci, if such an entry does not exist
36: if Ci 6= Cj then
37: if (∄ec in RTj such that ec.destination = Ci) then
38: entry = new Entry (ni, 1, Ci); RTj .add(entry)
39: end if
40: // 5.Add an entry referring to ni, if such an entry does not exist at a partner node
41: else if (∄ep in RTj such that ep.destination = ni) then
42: entry = new Entry (ni, 1, ni); RTj .add(entry)
43: end if
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propagated from a node to another (Lines 8 − 10). For instance, the third entry in the
initial table of node 6 which refers to the orphan node 7 is removed from its final table.

Second, each partner entry that wrongly supposes that the next hop node (i.e.
neighbor field) belongs to the same cluster as the current node should be removed. This
allows to delete the partner entry referring to node no at its old partners. Similarly, this
entry deletion starts at neighbor partners (i.e. Lines 14 − 15) and then, is propagated
from a node to another (Lines 16 − 17).

Third, the clustering change by node no may:

• introduce a new cluster into the D-neighborhood of a given node. Thus, a new
corresponding entry should be added (Lines 26 − 27).

• provide a shorter path to a cluster that already overlaps the D-neighborhood of a
given node. Thus, the corresponding entry should be appropriately updated (Lines
28−29). For instance, the last entry in the initial table of node 6, which describes the
path to cluster B, is replaced by the fourth entry in its final table, since it provides
a smaller cost value. In the case where an alternative path to a given cluster is
provided with a same cost, then the current node chooses the path in which the
next hop node is a partner (Lines 30 − 31). For instance, in the routing table of
node 1, the last cluster entry describes the path to cluster A via node 2, with a cost
of 2 hops. This entry in the final table by an entry that describes another path,
which goes through the new partner 7 with a same cost.The benefit of such a choice
is discussed while presenting our query propagation mechanism.

Fourth, if node no has joined another orphan node, then a new cluster Cnew has been
created. In this case, a corresponding entry does not exist at any node in the network.
However, such an entry can not be added as described for other cluster entries (Lines
26 − 27), since node no does not maintain an entry referring to its own cluster (i.e. this
new entry is completely absent from the first propagated table RTo). To this end, checking
the condition defined at Lines 36 − 37 allows to add an entry for Cnew at neighbor nodes
(Line 38). Then, this entry is propagated to other nodes (Lines 26 − 29).

Similarly, node no does not maintain a partner entry referring to itself. Thus, checking
the condition defined at Lines 41 allows to add an entry for no at neighbor partners (Line
42), e.g. at nodes 1 and 5. Then, this entry is propagated to other partners (Lines 26−29).

Finally, we note that node no could have only one partner in its old cluster Cold.
Upon receiving the Clust Update message, this old partner removes the partner entry
and becomes again orphan (i.e. Lines 19 − 20). Remind that the old neighbor partners
of node no are (negatively) affected by its clustering change, and thus re-execute at their
turn the clustering procedure in order to determine whether they should also move or not.

4.5.1.3 Table Maintenance vs. Network Changes

So far, we have described how the routing tables are maintained against the modifications
issued on the clustering scheme, mainly when nodes move from a cluster to another.
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Figure4.5: Network around node no

However, once the clustering scheme is established (i.e. all nodes have executed
the clustering procedure and found their final clusters), and the routing tables are
in a valid state, the only events that can disturb this network stability is node
connection/disconnection.

Suppose now that node no enters/leaves the P2P system. Figure 4.5 shows the
decomposition of the network into subgraphs according to the relative position to node
no. Here, Co is the cluster of node no before its leaves, or the new cluster it joins upon
its arrival into the network. The diameter d of cluster Co is bounded by the predefined
threshold D.

First, consider a node ni which is out of the D-neighborhood of node no (i.e. ni /∈ D-
Nbr(no)). Its routing table RTi is not affected and remains in its valid state. In fact,
according to Property 4, each entry e in RTi describes a path to a given destination such
that e.cost ≤ D. Hence, each node nj locating on this path should satisfy the following
condition: distance(ni, nj) ≤ D. Since distance(ni, no) > D, node no does not affect any
path information maintained in RTi. Therefore, a first conclusion is that the node
arrival/departure are localized events and their impacts on routing tables are
limited to the D-neighborhood of the arriving/leaving node (i.e. the gray zone
in Figure 4.5).

When node no leaves or enters the P2P network, the topology structure in its
neighborhood is changed, and thus existing clusters may be affected. In [86], the SDC
protocol handles node dynamics in a very efficient way. It ensures a good clustering
accuracy, with a low cost in term of the number of exchanged messages. Once again, we
aim here at exploiting the clustering messages in order to update our cluster-based routing
tables in D-Nbr(no).

According to SDC, before leaving the network, node no sends a leave message that
contains its identifier to all nodes in Nbr(no), as well as in Co through flooding. As such,
each affected node in Nbr(no) ∪ Co can update its clustering information, i.e. cluster
size and SCM value. Concerning the routing tables, all stale entries that describe paths
traversing node no should be removed. To this end, we assume in our work that the leave
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message sent by a node ni has the following structure:

leave = 〈no, SEi, TTLi〉

where SEi is the set of stale entries in its routing table RTi, relative to node no’s exit.
While the TTLi value controls the message flooding, and is dynamically adjusted at node
ni. In the following, we describe how SEi and TTLi are determined.

a) Set of Stale Entries SE:

At a neighbor node ni in Nbr(no), the set SEi of stale entries is given by:

SEi = {e ∈ RTi | e.neighbor = no}

For instance, if we consider that node 0 is leaving from the network of figure 4.4, the sets
of stale entries at nodes 4 and 7 are: SE4 = {ep1}, and SE7 = {ec1}.

At a non-neighbor node nj which has received the leave message from a neighbor ni,
the set SEj of stale entries is given by:

SEj = {e ∈ RTj | ∃e′ ∈ SEi; (e.neighbor = ni) and (e.destination = e′.destination)}

In our example, the set of stale entries at node 5 which receives the message from node 7
is: SE5 = {ec1}.

b) Dynamic TTL value:

In order to reach all the stale entries in D-Nbr(no), a solution could be to flood
the leave message with a TTL value, initialized by no to D, and decremented by one
after each message hop. However, to reduce the number of exchanged messages, we adopt
an alternative in which each node ni locally adjusts the TTL value.

First, if the set SEi of stale entries is empty at node ni, the TTL value is set to 0
and the leave message is stopped. Otherwise, the TTL value is set as follows. Let e be
a stale entry found at node ni. This entry describes the path to a given destination dest.
Suppose now that there is a node nj who is reaching the same destination dest through
node ni. Hence, there is a stale entry e′ that should be also removed from the routing
table of node nj. However, according to Property 4:

e′.cost ≤ D

⇒ distance(nj , ni) + e.cost ≤ D

⇒ distance(nj , ni) ≤ D − e.cost (4.3)

The value of TTLi should be greater than distance(nj , ni) in order to reach nj and remove
its stale entry e′. According to 4.3, TTLi could be set to D − e.cost. By applying this
condition to all stale entries at node ni, we conclude that the TTL value is given by:
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TTLi = (D − mine∈SEi
(e.cost))

This alternative allows to remove all the stale entries at affected nodes in D-Nbr(no),
with a minimal number of leave messages.

Node arrival is treated in a similar way as node departure. We do not give the details
of the proposed solution. As stated before, the key idea is to limit the strategy of routing
table updates to the affected regions, with a dynamically controlled flooding.

4.5.2 Query Propagation

We describe now how a query Q is propagated in the network, using cluster-based routing
tables. The query message is in the following form.

Q Msg = 〈Q id, cluster id, TTL, dest List〉

• Q id: the query identifier. It mainly allows to avoid processing the same query
multiple times.

• cluster id: the cluster identifier of the node sending the query. It mainly allows to
avoid serving the same query within the same cluster multiple times.

• TTL: the TTL value which is the maximum number of hops a query Q can make
in the network.

• dest List: the destination list which contains routing information provided by the
routing tables of visited nodes. It is the key field that allows to avoid redundant
query messages within clusters, as well as between clusters.

Recall that our routing tables do not provide information about the requested objects.
The destination list dest List serves as a memory that keeps trace of the query all along
its path. Thus, at each forwarding step, the query is able to remember all the routes
it has already traversed. In other terms, the query propagation mechanism is still blind
from a data location point of view, but is supported with memory which allows avoiding
unnecessary messages.

An dest List’s element is represented by: 〈neighbor, dest〉, where neighbor identifies
which neighbor of the current node should be chosen for the next query hop, in order to
reach destination dest with a minimal cost. A neighbor field value of −1 indicates that
the corresponding destination is either reached or targeted by another path that doest
not include the current node. To illustrate the query propagation mechanism, suppose
that node 0 in our network example issues a query Q0 (Figure 4.6).

Upon receiving the query message, a node n first decrements the TTL value. If TTL >
0, it proceeds to update the query message and forward it as described by Algorithm 4.
Otherwise, the query forwarding is stopped and no further nodes are visited via node n.

To update dest List, node n calls three different methods.
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Algorithm 4 Query Message Treatment at node n
1: Q Msg = 〈Q id, cluster id, TTL, dest List〉
2: RT= the routing table of node n
3: Treat(Q Msg)
4: // 0.Checking the TTL value
5: −− Q Msg.TTL
6: if (Q Msg.TTL > 0) then
7: // 1.Updating the query destination list
8: addNewPartnerElts to Q Msg.dest List
9: setElts of Q Msg.dest List

10: addNewClusterElts to Q Msg.dest List
11: // 2.Forwarding the query message
12: Q Msg = new query message (〈Q id, this.cluster id, TTL, dest List〉)
13: For each elt in Q Msg.dest List
14: if (elt.neighbor 6= −1) then
15: send Q Msg to elt.neighbor
16: end if
17: end For each
18: end if
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a) Adding new partner entries:
The first method, i.e. addNewPartnerElts at Line 10, verifies if n is the first visited

node in its cluster. In that case, n adds new partner elements, each of which provides
information about the path to a given partner. In other terms, the query will be
disseminated in a given cluster according to the spanning tree rooted at the first visited
node. For instance, node 7 and node 2, which are the first visited nodes in their clusters B
and C (Figure 4.6), are in charge of adding new elements corresponding to their partners.

b) Setting entries:
A second method, i.e. setAllElts at Line 11, consists in updating each element e in

dest List as follows. If n = e.neighbor which means that node n locates on the path
described by element e, then n has to precise the next query hop based on its routing
table. Otherwise, the neighbor field value is set to −1 to indicate that all paths that
traverse node n are not supposed to reach the corresponding destination.

c) Adding new cluster entries:
A third method, i.e. addNewClusterElts at Line 12, checks if the routing table of

node n contains information about additional clusters that do not figure in dest List.
If such cluster entries exist then corresponding elements, which are extracted from n’s
routing table, are added to dest List.

The algorithms of these three methods are detailed in the Appendix. However, to
illustrate the destination list update, consider dest List4 of query Q0 in Figure 4.6. Node
4 belongs to the same cluster as the query sender, which is node 0. The last element in
dest List4 indicates that through node 2 the query can reach cluster C. The two first
entries indicate that node 4, as well as its own cluster A, have been already visited. The
third entry informs node 4 that it does not locate on the path leading to cluster B. This
allows avoiding redundant messages since node 4 could also send a message to cluster B
via its neighbor node 7.

Once dest List updated, node n forwards the query message to each neighbor in
dest List (Line 17). For example, node 4 sends the query only to node 2. Note that if
node n does not belong to the same cluster as the query message sender, it sets the cluster
identifier cluster id of the query to its cluster identifier before forwarding it (Line 14).

Now let us examine the cost of propagating query Q0 in Figure 4.6. Our cluster-based
propagation mechanism requires only 7 messages to cover the entire network (i.e. the
continuous arrows). In comparison, a flooding mechanism would result in 4 additional,
unnecessary messages (i.e. dashed arrows). Obviously, this propagation efficiency may
be compromised by a smaller value of query accuracy, which is quantified by the total
number of visited nodes for a given value of TTL. For example, node 6 could be reached
with a TTL value of 2 using the flooding technique, while a TTL value of 3 is required
for our cluster-based technique. In fact, this trade-off between query accuracy and query
propagation cost, which has been highlighted in the introduction of this chapter, will be
discussed later.
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4.6 Discussion

Search techniques in P2P networks can be evaluated according to the following metrics.

• Efficiency in object discovery. A search is successful if it discovers at least one replica
of the requested object. The search efficiency could be quantified by the success rate
(or accuracy), which is the ratio of successful to total searches made.

• Bandwidth consumption. Minimizing message production always represents a high-
priority goal for all distributed systems.

• Adaptation to changing topologies. A search technique should adapt to the dynamic
nature of P2P systems. In such systems, nodes can enter and leave without any
constraint.

4.6.1 Search Accuracy vs. Bandwidth Consumption

As introduced in this chapter, the performance of flooded-based search techniques is
quantified by the pair (M, P ), where M is the total number of exchanged messages, and
P is the total number of visited nodes.

The search accuracy of blind techniques depends on the number of visited nodes P .
To increase the probability of finding a replica of the requested object, these techniques
tend to propagate the query to a large number of nodes, since they do not dispose of
any information related to object locations. However, the main issue is to achieve a good
trade-off between search accuracy and bandwidth consumption. In other terms, increasing
the number of visited nodes P should not result in increasing the number of redundant
messages M − P , which unnecessarily overload the network.

a) Intra-cluster messages:
In our approach, a query is disseminated inside a given cluster based on the spanning

tree rooted at the first visited node in that cluster. Thus, the intra-cluster query
propagation guarantees that all partner nodes falling into the query scope are
visited only once, through the shortest intra-cluster paths. In the case where
the cluster diameter d ≤ TTL, the cluster will be entirely covered.

b) Inter-cluster messages:
Now suppose that node n maintains information about l clusters in its routing table. If

TTL ≤ D, then the set of clusters visited by the query is included among those l clusters.
Otherwise, i.e. if the TTL value permits to go beyond the D-Nbr(n), additional clusters
could be visited by the query. Here, two different nodes locating on two different query
routes might have information about a same new cluster. Thus, the latter will be reached
twice, which may incur redundant messages.

Another issue is that, a cluster entry maintained in n’s routing table describes the
shortest path to a first contacted node in that cluster. However, it does not guarantee
that all the nodes visited in the new cluster are reached with a minimal number of hops.
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4.6.2 Clustering Scheme Accuracy vs. Bandwidth Consumption

Besides studying the benefits obtained for query processing, the cost of maintaining an
accurate clustering scheme should be taken into account, especially in the context of
P2P systems. In [86], simulation results show that the cost of recovering from a given
node arrival/departure is very limited, and quasi-independent of the network size. This
interesting result is due to the very efficient solution adopted by SDC to handle node
dynamicity. This cost is limited to 50 messages (the cost of node joining is slightly less
than the cost of node leaving), and this for a network size ranging from 1000 to 5000.

In our work, we have mainly used the clustering messages in order to update the
cluster-based routing tables. However, we require some additional messages to make all
the necessary modifications to all affected tables (Sections 4.5.1.2 and 4.5.1.3).

According to SDC, the Clust Update message has only to be flooded in the old and
new clusters of the moving node no. While the Leave message should be flooded in Nbr(no)
and the old cluster Co of the leaving node no.

For our CBST purposes, however, the Clust Update and the Leave messages should
be flooded in all neighboring clusters of node no. However, this incurs a very limited
number of messages, and this because of the two following reasons:

• The number of neighbor clusters of node no is supposed to be very small since the
clustering metric is node connectivity. Nodes that are neighbors are preferred to be
partners in the same cluster, which is taken into consideration by the SCM gain
computation.

• The SDC protocol has a stable performance in term of controlling the cluster size.
Thus the flooding within a given cluster is well controlled. Besides, the solution we
have proposed for dynamically adjusting the TTL value of the leave message reduces
at maximum the number of induced messages.

4.7 Experimental Results

We validated CBST through event-driven simulations, which are commonly used to
evaluate the performance of large scale P2P systems. Simulations allow controlling system
parameters, and thus studying their impact on overall system performance. Furthermore,
our performance evaluation consists mainly in quantifying the trade-off between search
accuracy and bandwidth consumption. The first is measured in terms of the number of
visited nodes, while the second is measured in terms of the number of exchanged messages
in the system. Network parameters such as latency and bandwidth do not interfere with
these measurements. Thus, simulation results are supposed to give a rough estimation of
real values that might be obtained from real implementations.
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Figure4.7: Query cost vs. network size

4.7.1 Simulation Setup

We used the SimJava package [50] and the BRITE universal topology generator [2] to
generate power law P2P networks, with an average node degree of 4. Note that the SDC
protocol has been tested over both random and power-law topologies. However, the latter
yield better performance regarding the overhead traffic, which is required for maintaining
good clustering accuracy, and the cluster size control. On the other hand, recent studies
(e.g. [133], [101]) have shown that many real-life networks (e.g. social networks, P2P
networks) have common characteristics, including power law degree distributions.

In our experiments, we first generate network topologies with sizes varying between
100 and 3000. Then, we run the SDC protocol to establish a connectivity-based clustering
scheme over the generated networks. The value of D, which is used to control the cluster
size is set to 3, as considered in [86]. Finally, we implement our search technique over
these clustered networks in both static and dynamic settings.

4.7.2 Perfomance in Static Systems

In this set of experiments, we assume that all nodes remain connected to the system,
the clustering scheme is stable, and all routing tables are in a valid state. Under
these assumptions, we quantify the trade-off between search accuracy and bandwidth
consumption. We compare CBST against flooding and random walk [136] techniques.
The comparison to flooding techniques is very relevant for evaluating search accuracy,
since they provide the highest accuracy values (for a given TTL). However, they produce
a huge traffic overhead in the network. Thus, we choose to compare CBST to the random
walk technique, which is a good representant of the blind techniques that have been
proposed to overcome the problem of bandwidth consumption. In these experiments, a
query Q is associated with a TTL value of 3.

4.7.2.1 Search accuracy vs. Bandwidth Consumption

Figure 4.7 depicts the total number of messages exchanged for propagating a query Q,
while Figure 4.8 depicts the number of visited nodes, in function of the network size.
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Figure4.8: Number of visited nodes vs. network size

We can observe that the random walk approach reduces very significantly the number of
exchanged messages. In fact, a requesting node n sends out k query messages to an equal
number of randomly chosen neighbors. Each of these messages is forwarded to a randomly
chosen neighbor at each step. In our experiments, we use a high value of k such that a
query originator sends the query message to all its neighbors. However, as we can see in
Figure 4.8, the search accuracy is also very reduced. A very limited number of nodes are
visited by the query Q.

For our CBST technique, Figure 4.7 shows that the number of exchanged messages
per query is significantly reduced. For instance, this query cost is reduced by a factor
of 2 for a network of 200 nodes. However, in return, CBST incurs a small decrease in
search accuracy compared to flooding (Figure 4.8). This result is due to the fact that
our approach focuses on eliminating redundant messages, which optimizes the usage of
network resources without affecting search accuracy.

4.7.2.2 Influence of TTL

In this set of experiments, we fix the network size to 100 and we vary the value of TTL
between 2 and 5. Figure 4.9 gives the number of redundant messages for both flooding
and CBST techniques. We can see that, as long as TTL is less than the maximum value
of cluster diameter D, the CBST produces a very limited number of redundant message.
Moreover, we note that in our approach, a redundant message may not be discarded,
and thus may contribute to improve search accuracy. To illustrate, a given node may
receive a first query message as being a partner in a cluster, and another message (for the
same query) as being a node locating on the path leading to a new cluster. Once TTL
exceeds the cluster diameter, the number of CBST redundant messages increases slightly.
However, this number is much smaller than the one produced by flooding. For instance,
the number of redundant messages is limited to 3, 3 for a TTL value of 5.

4.7.3 Performance in Dynamic Systems

The previous results have shown that CBST achieves a very good trade-off between
search accuracy and bandwidth consumption. However, it is very important to study the
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Figure4.9: Influence of TTL

Figure4.10: Number of visited nodes vs. network size

performance of CBST in dynamic P2P systems. In order to propagate a query Q, CBST
uses the cluster-based routing tables which may be in an invalid state while recovering
from a node arrival/departure.

We assume that 10% of the network size are initially disconnected (i.e. off state).
Then, nodes start to leave the system at a rate τ . We consider that each node departure
is followed by the arrival of another node, such that the total number of nodes remains
constant in the system. Simultaneously, users issue queries with a uniform query rate Qr.

In a first set of experiments, we set the rate τ of node connection/disconnection and
the query rate Qr to 0.1, i.e. 1 event (connection/disconnection or query) per 10 minute.
Current file-sharing P2P systems are well characterized by such rate values, as well as by
the ratio τ/Qr value of 1.

Figure 4.10 depicts the number of visited nodes in function of the network size, in
both static and dynamic settings. We can observe that node dynamicity results in small
degradation of the search accuracy of CBST . This degradation is due to the stale entries in
routing tables used while propagating a query Q. However, as discussed in Section 4.5.1.2,
the node arrival/departure are localized events, and thus only queries that are issued in
the same locality are affected. Because of that, we can see also that the number of visited
nodes is reduced by a constant factor, which is independent of the network size.

Since the rate ratio Qr/τ is quited related to the nature of P2P applications, we choose
to study the search accuracy of CBST while varying the value of that ratio. Here, the
network size is fixed to 100 nodes. Figure 4.11 shows that, for a given query rate, the
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Figure4.11: Number of visited nodes vs. rate ratio

more stable is the network, the higher is the search accuracy. For instance, CBST can
improve the search efficiency of database P2P applications, which are characterized by a
higher stability.

4.8 Conclusion

In this chapter, we studied how the search efficiency can be improved by clustering a
P2P network based on node connectivity. Our solution does not impose a specific network
structure or require indexes over the shared data. Instead, it simply relies on inherent
clustering patterns that can be extracted from the underlying topologies.

We proposed a Cluster-Based Search Technique (CBST), which is implemented over a
connectivity-based clustering protocol. A connectivity-based clustering protocol aims to
discover the natural organization of nodes, based on their connectivity. Thus, it delimits
the boundaries of sub-graphs (i.e. clusters) which are loosely connected and in which
nodes are highly connected.

The CBST technique works as follows. Based on a local knowledge about the network
clustering in its neighborhood, each node maintains information about the local links to
nodes in its cluster (intra-cluster information), as well as about global links connecting its
cluster to other reachable clusters (inter-cluster information). The intra-cluster routing
information is equivalent to a spanning tree, rooted at that node and covering its partners
(i.e. the nodes that belong to its cluster). These information are efficiently gathered and
maintained in a cluster-based routing table. The benefits in query routing are two folds.
First, a query Q is efficiently disseminated in a given cluster, using the spanning tree of
the first node contacted in that cluster. Second, the query messages between clusters are
restricted to those traversing the global links specified by the querying node.

Extensive simulations demonstrated the efficiency of the CBST technique compared
to pure flooding and random walk routing techniques. In fact, the performance of such
blind search techniques is generally quantified by the pair (M, P ), where M is the total
number of exchanged messages, and P is the total number of visited nodes. The search
accuracy of these techniques depends on the number of visited nodes P . To increase the
probability of finding a replica of the requested object, these techniques tend to propagate
the query to a large number of nodes, since they do not dispose of any information related
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to object locations. However, the main issue is to achieve a good trade-off between search
accuracy and bandwidth consumption. Interesting simulation results showed that the
CBST technique allows to eliminate the number of redundant messages M − P , which
unnecessarily overload the system. In return, only a small decrease in the number of visited
nodes per query is incurred. The performance of CBST has been studied in both static and
dynamic settings. The effect of the nature of P2P applications, which is characterized by
the ratio of node connection/disconnection rate to query generation rate, is also discussed.



Chapter 5

Conclusion

In this chapter, we summarize our main contributions. We also discuss some future
directions of research for data sharing in P2P systems.

5.1 Main Contributions

In this thesis, we have addressed the issue of supporting advanced P2P applications with
both data localization and summarization techniques. Our contributions are the following.

First, we surveyed data sharing P2P systems. We mainly focused on the evolution
from simple file-sharing systems, with limited functionalities, to Peer Data Management
Systems (PDMS) that support advanced applications with more sophisticated data
management techniques. Advanced P2P applications are dealing with semantically rich
data (e.g. XML documents, relational tables), using a high-level SQL-like query language.
We started our survey with an overview over the existing P2P network architectures.
Then, we presented the data indexing and schema management techniques that have
been proposed in the P2P literature. We concluded by discussing the techniques proposed
for processing complex queries (i.e. range and join queries). Complex query facilities are
necessary to support advanced applications with a high level of search expressiveness. This
last part pointed out the lack of querying techniques that allow to approximately answer
a query based on data descriptions. These techniques, however, are very interesting for
collaborative and decision-support applications.

Second, we proposed a solution for integrating a data summarization technique into
P2P systems. Our approach for data summarization is based on SaintEtQ: an online
linguistic approach for database summarization [51], [126], [94]. SaintEtiQ has been
extensively studied in centralized environments, and exhibits many salient features such as
robustness and scalability. The produced summaries are synthetic, multidimensional views
over relational database. The novelty of our proposal relies on the double exploitation of
these summaries in distributed P2P systems. First, as semantic indexes, they support
locating relevant nodes based on data descriptions. Second, due to their intelligibility,
they can be directly queried and approximately answer a query without the need for
exploring original data.
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In the first part of this contribution, we worked in the context of APPA (Atlas Peer-
to-Peer Architecture), a P2P data management system which has been developed by
our team been building over the last 5 years [120], [93]. The main objective of APPA
is to provide high level services for advanced applications. To deal with semantically
rich data, APPA supports decentralized schema management and uses novel solutions for
query processing, persistent data management with updates, and data replication with
semantic-based reconciliation.

In our work, we proposed PeerSum, a new service for managing data
summaries [58], [63]. First, we defined a summary model that deals with the dynamic
and autonomous nature of P2P systems. This model architecture is characterized by an
incremental mechanism of summary construction. Each peer maintains a local summary
LS of its own database. Then, peers which are willing to cooperate will exchange and
merge summaries, in order to build a Global Summary GS over their shared data. The
latter is characterized by a continuous evolution in term of coverage, i.e. the cooperation
between two sets of peers, each having constructed a global summary, will result in a
higher-coverage one. Second, we defined efficient techniques for global summary creation
and maintenance, based on APPA’s services. In particular, we assumed that a common
storage for global summaries is provided by APPA.

The second part has been done in hierarchical P2P networks [60]. Here, we studied how
summaries can be efficiently distributed in P2P systems, which has been abstracted when
relying on APPA’s services. The idea is to exploit the node heterogeneity in hierarchical
(superpeer) networks. Hence, the architecture of our summary model is characterized by
2-summary levels. The first level is provided by the set of local summaries maintained
at different peers. The second is obtained by materializing a set of global summaries as
follows. The network is organized into domains, where a domain is defined as being the
set of a supernode and its associated leaf nodes. In a given domain, peers cooperate to
maintain a global summary over their shared data, which is stored at the corresponding
superpeer. The issue of organizing the network into domains, i.e. how the superpeers are
selected and other peers are grouped around them in a fully decentralized manner, is
discussed [59], [61]. Then, we presented efficient algorithms for managing summaries in a
given domain.

Finally, we proposed a query processing mechanism which relies on the interrogation of
available summaries. Our performance is evaluated through a cost model and a simulation
model. The simulation results have shown that our solutions allow to significantly reduce
the query cost, without incurring high costs of summary update.

At the P2P network layer, we exploited the characteristics of the overlay topology,
namely its clustering features, in order to reduce the traffic overhead. This allows to
improve the performance of P2P systems, irrespective of the employment of techniques
relying on data semantics at the application layer. In fact, the efficiency of such techniques
depends on the application and the nature of exchanged data. Besides, they generally
have direct implications on the underlying network, such in data indexing schemes, or
additional requirements for maintaining a new overlay built on top of the P2P network,
as in semantic clustering schemes. A semantic clustering may propose the creation of
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new overlays in which semantically related peers are connected to each others. In other
terms, such a clustering strives to introduce structure, which is different from discovering
inherent structure of the P2P overlay, as we are considering in our work. On the other
hand, in the context where such techniques are not employed, or their efficiency degrades
(depending on the application), the solution is to resort to flooding-based techniques. In
reality, the flooding approach is still a fundamental building block of unstructured P2P
systems. It represents the natural way for exchanging messages between nodes which are
connected in an ad hoc fashion.

In our work, we proposed a search technique, which is implemented over a connectivity-
based clustering protocol, in order to reduce the number of query messages generated
by flooding-based algorithms. A connectivity-based clustering protocol aims to discover
the natural organization of nodes, based on their connectivity. Thus, it delimits the
boundaries of sub-graphs (i.e. clusters) which are loosely connected, and in which nodes
are highly connected. In the P2P literature, two main protocols have been proposed, i.e.
the Connectivity-based Distributed node Clustering (CDC) [121], and the SCM-based
Distributed Clustering (SDC) [86]. These works have been introduced by arguing the
benefits of such a clustering from the search performance point of view. However, none
of them has proposed an appropriate routing protocol, or provided analytical models or
experimental results on how their clustering schemes contribute to reduce the bandwidth
consumption. The main focus was on the clustering scheme accuracy, i.e. using the Scale
Coverage Measure (SCM), and its maintenance against node dynamicity.

Our Cluster-Based Search Technique (CBST) works as follows. Based on a local
knowledge about the network clustering in its neighborhood, each node maintains
information about local links to nodes in its cluster, as well as about global links connecting
its cluster to other reachable clusters. The intra-cluster routing information is equivalent
to a spanning tree, rooted at that node and covering its partners (i.e. the nodes that
belong to its cluster). These information are efficiently gathered and maintained in a
cluster-based routing table.

The benefits in query routing are two folds. First, a query Q is efficiently disseminated
in a given cluster, using the spanning tree of the first node contacted in that cluster.
Second, the query messages between clusters are restricted to those traversing the
global links specified by the querying node. Extensive simulations have demonstrated the
efficiency of the CBST technique compared to pure flooding and random walk routing
techniques.

5.2 Future Work

In this thesis, we have proposed new techniques for an efficient data sharing in P2P
systems, as well as for sharing synthesized information which is disseminated within
the ever increasing amount of available data. First, we have proposed a novel semantic
indexing technique that relies on linguistic data summarization. Second, we have provided
the missing proof of the efficiency of cluster-based search technique. By simply exploiting
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the clustering features of the P2P network layer, the network traffic can be significantly
reduced. At the end of this work, we present a list of directions we plan to pursue in the
near future.

Using linguistic summaries for anonymized data sharing. As discussed in
Chapter 2, the linguistic summaries maintained in a P2P system allow to locate relevant
nodes based on their data descriptions. Besides, these summaries are intelligible data
representations whose structure respect the original data schema. So, they can be
directly queried to return approximate answers which are provided from their intentional
descriptions. However, more interestingly, one can notice that these summaries can serve
data anonymization purposes. To illustrate, a given hospital which is participating to
a medical collaborative application may first perform an obfuscation of its database
through the generation of a local summary. Then, the different participants exchange and
share such intelligible summaries, represented in a higher abstraction level. This allow to
learn the “essential” from a given database without revealing personal information about
patients. As future work, we intend to study how these summaries can be also used to
make a data source anonymization. In fact, due to the peer-extent information, a peer
may reveal the source providing a given summary while executing the summary update
algorithm. In some cases, participants may also prefer hiding the characterization of their
data. Hence, a given participant can exploit data summaries of other participants without
being able to precise which source is providing a specified summary.

Introducing semantic clustering to our indexing scheme. In our summary model
for hierarchical P2P networks, we have assumed that peers are grouped around high-
connectivity nodes. However, to better exploit the data locality property of most of current
P2P systems, we intend to study the organization of nodes based on similarity between
their summaries. Ongoing works on the SaintEtiQ model aim to define a similarity
distance between summaries. However, such a proposal requires a complete study of the
obtained clustering scheme, i.e. the number of clusters, the cluster sizes, the stability
against node dynamics.

Introducing indexing to our clustering scheme. In our cluster-based search
technique for unstructured P2P systems, we have considered that a given node maintains a
spanning tree over its own cluster and information about paths to other reachable clusters.
We have demonstrated that the redundancy in query messages is completely eliminated
within clusters, but a very limited number of redundant messages are still encountered
between clusters. While discussing the search accuracy, we have implicitly supposed that
data are uniformly distributed in the P2P system. More studies and comparison to related
works should be made to evaluate our proposal in the context of other non-uniform
data distributions. Besides, as future work, we plan to elaborate more efficient inter-
cluster routing techniques. As an immediate proposal, we may think to weight the global
(inter-cluster) links according to their contribution to successful searches. Data indexing
schemes can also be employed (DHTs or semantic-based indexes) to ensure an efficient



115 5.2. Future Work

deterministic search. For instance, consider that each cluster is represented by a node
in a given DHT. Thus, the DHT lookup protocol ensures that each cluster containing
relevant data according to a user query will be visited. Then, the CBST technique allows
to efficiently propagate the query within visited clusters, with a minimum number of
messages.
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