
Intelligent Splitting for Disjunctive Numerical CSPs

Thomas Douillard, Christophe Jermann, Frédéric Benhamou

To cite this version:

Thomas Douillard, Christophe Jermann, Frédéric Benhamou. Intelligent Splitting for Disjunc-
tive Numerical CSPs. Third international workshop on interval analysis, constraint propagation
and applications (IntCP), 2006, France. pp.33–37, 2006. <hal-00481596>

HAL Id: hal-00481596

https://hal.archives-ouvertes.fr/hal-00481596

Submitted on 6 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53013906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00481596


Intelligent Splitting for Disjunctive Numerical
CSPs

Thomas Douillard, Christophe Jermann, and Frédéric Benhamou

LINA (CNRS FRE 2729) - University of Nantes
2 rue de la Houssinière, F-44300 Nantes

<first-name>.<last-name>@univ-nantes.fr

Abstract. Disjunctions in numerical CSPs appear in applications such
as Design, Biology or Control. Generalized solving techniques have been
proposed to handle these disjunctions in a Branch&Prune fashion. How-
ever, they focus essentially on the pruning operation. In this paper, we
present experimental evidences that significant performance gains can be
expected by exploiting the disjunctions in the branching operation.

1 First-order numerical CSPs

A numerical CSP (NCSP) is composed of variables whose domains are subsets
of R (typically intervals) and constraints expressed as equations and inequalities
on these variables. A solution to a NCSP is an assignment of real values (in
practice, small intervals) to the variables that satisfies the constraints, i.e. they
are considered in conjunction. However, in applications like Design, Biology or
Control [8], it is not rare that constraints are considered in disjunction.

Consider the design of an industrial mixer [2]. The mixer M is composed of
a vessel V and an agitator A; the agitator is itself composed of an engine E,
an impeller I and a shaft S, while the vessel can optionally include a cooler C
and a condenser D. The dimensioning of each component can be expressed as a
NCSP. Hence, the mixer consists of 7 NCSPs (each denoted by the same letter
as the corresponding component) linked together by the compositional structure
of the mixer: M = (A ∧ (E ∧ I ∧ S)) ∧ (V ∧ (C ∨D ∨ True)).

Formalisms derived from CSP have been proposed to handle this kind of prob-
lems [5, 9, 2]. However, it is often possible to handle them directly as first-order
NCSPs, i.e. first-order logical formulas whose atoms are numerical constraints.
Ratschan proposed a generalized framework for solving first-order NCSPs [6, 7]
which we will use as a basis for our work. This framework defines first-order
consistency as a generalization of classical numerical consistency and proposes a
general Branch&Prune algorithm for solving first-order NCSPs. The main con-
tribution is centered on the pruning operation, and more specifically on handling
the logical quantifiers in first-order NCSPs.

In this paper, building upon the idea of constructive disjunction [3] much
exploited in finite domains CSPs [4], we propose a general principle for intelligent
splitting in disjunctive, a subset of first-order NCSPs without quantifiers, and we
present experimental evidences that much can be gained following this principle.



34 Thomas douillard and al.

2 Solving disjunctive NCSPs

In finite domains CSPs, constructive disjunction has been used to perform effi-
cient pruning of disjunctions of constraints [4]. Intuitively, the consistent domain
of a variable in a disjunction is the union of its consistent domains for all the
alternatives in the disjunction. This can be efficiently computed by exploiting
two properties : first if in a disjunction a variable is not constrained in all the
alternatives, then its domain can not be pruned; second if a value in a domain is
supported in one alternative, there is no need to search a support for this value
in the other alternatives.

Ratschan has defined a general solving framework following a Branch&Prune
approach for first-order NCSPs [6, 7]. We will not detail the complete framework
but suffice it to say that pruning disjunctions is done in a similar way, taking
the hull of the alternatives consistent domains. See Fig. 1 for an example.

f1

f2 f3

y

x

x1
x2 x3

x1 U x2 U x3

Fig. 1. A formula f1∨f2∨f3; the consistent domain xi of variable x for each alternative
fi; the consistent domain Hull(x1 ∪ x2 ∪ x3) of the disjunctive formula

Our contribution is based on the following two remarks:

1. The holes corresponding to incompatible alternatives are not exploited
2. The formula is not simplified during branching

This is due to taking the hull of the alternatives as the domain of a dis-
junction. The reason for taking the hull is well-known: handling the union of
disjoint intervals as the domain of a single variable is too computationally ex-
pensive. However, when performing the branching operation in a Branch&Prune
algorithm, it is possible to exploit these disjunctions.

3 Disjunctive multi-split principle

We propose to overcome these two weaknesses by defining interesting splitting
points so that the holes are exploited and the formula is simplified. These inter-
esting splitting points are defined by the bounds of each individual alternative



Intelligent Splitting for Disjunctive Numerical CSPs 35

projection : each bound is a splitting point. Hence, the domain of a variable is
split into at most 2× k subdomains if the disjunction contains k alternatives. In
our example (see Fig. 1), this splitting results in 4 subdomains for x: x2, x3−x1,
x1 ∩ x3, x1−x3. The hole is eliminated. Moreover, in each of these subdomains,
the problem can be simplified: in x2, the problem is reduced to formula f2; in
x3−x1 to f3; in x1∩x3 to f1∨f3; and in x1−x3 to f1. Hence, in this example, the
disjunction has been completely eliminated in 3 of the 4 produced subdomains.

Selecting the variable domain to split and the disjunction to use for this op-
eration is certainly the key problem to obtain good results using this disjunctive
multi-split principle. For this reason, we propose as a first approximation to
consider the conjunctive normal form (CNF) of a formula1, i.e. a conjunction of
disjunctions of numerical constraints. Hence, to apply the disjunctive multi-split
principle, we have to select a clause (a disjunction) and a variable in this clause.

4 Experimental results

To assess the merits of the disjunctive multi-split principle, we have implemented
a generator of first-order NCSPs in CNF. Indeed, not much first-order NCSPs
benchmarks are available, and most of the available ones involve only very few
disjunctions [8]. We suspect this is due to the lack of disjunction handling tech-
niques that yield people to model otherwise naturally disjunctive problems in a
purely conjunctive way2.

Our generator produces only satisfiable problems composed of polynomial
equations. Without detailing, it is based on algebraic principles and the use of
ideals which are the prescribed solutions. The generator takes as parameters
the number of variables, their domains, the number of solutions, the number of
clauses and the number of constraints per clause. In our benchmarks, we have
used only problems with initial domains [−50; 50], hence a class of problem is
fully defined by a quadruple (s, v, c, d) where s is the number of solutions, v is
the number of variables, c is the number of constraints per clause and d is the
number of clauses.

We have implemented the pruning operation as described in Ratschan’s
framework, and integrated it with three different branching operations: bisec-
tion, trisection and disjunctive multi-split. Bisection, the classical branching op-
eration, is used in a round-robin strategy. Trisection has been implemented to
testify that the gains observed using the disjunctive multi-split do not come
solely from the fact that the produced subdomains are smaller; it is also used
in a round-robin strategy. Finally, the multi-split principle is used in a random
selection mode, i.e., the clause and the variable are selected at random. Indeed,
it is not so trivial to define a round-robin strategy for the disjunctive multi-
split since not all variables may occur in all clauses. The results are depicted in

1 Since any (quantifier-free) first-order logical formula can be rewritten in CNF, the
principle however applies to any first-order NCSP.

2 Expressing the disjunctions as integer or boolean variables for instance.



36 Thomas douillard and al.

Tab. 1 where each case contains the average of five run on different problems in
the same class.

(s, v, c, d) bisection trisection multi-split multi-split2

(3, 5, 3, 10) TO TO 44 99
(3, 7, 3, 30) TO TO 205 TO
(5, 5, 5, 30) TO TO 39 139
(10, 3, 10, 30) 33 119 2 3
(10, 5, 10, 30) 126 TO 126 TO

Table 1. times in second for the complete solving on an Intel Pentium 2.80GHz with
1024 Mb ram, TO stands for computation times interrupted after 10 minutes

The results show that the disjunctive multi-split principle pays-off in average:
the computation times are reduced by a factor of 10 or more in many cases. This
gain is not due solely to the smaller size of the subdomains since trisection is
often worse than bisection.

The last columns in Tab. 1, entitled multi-split2, correspond to the use of
a heuristic that selects the clause and the variable maximizing the cumulated
width of the eliminated holes. This heuristic does not fare better than selecting
the clause and variable randomly. This indicates that the exploitation of the
holes does not dominate the importance of simplifying the formula. This is in
line with related work that tried to exploit holes in conjunctive NCSPs [1].

Heuristics that allow to select accurately a good pair (clause, variable) are
still to be defined. We expect that classical variable selection heuristics may
not be applicable straight-forward due to the disjunctive nature of the problem.
Putting the principle in practice, and not only for CNF formulas, is our next
objective.

References

1. H. Batnini, C. Michel, and M. Rueher. Mind the gaps: A new splitting strategy for
consistency techniques. In CP, 2005.

2. Esther Gelle and Boi Faltings. Solving mixed and conditional constraint satisfaction
problems. Constraints, 8(2):107–141, April 2003.

3. P. Van Hentenryck. Constraint satisfaction in logic programming. MIT Press, 1989.
4. Olivier Lhomme. An efficient filtering algorithm for disjunction of constraints. In

CP, pages 904–908, 2003.
5. S. Mittal and B. Falkenhaimer. Dynamic constraint satisfaction problems. In AAAI,

pages 25–32, 1990.
6. Stefan Ratschan. Continuous first-order constraint satisfaction. In Artificial Intel-

ligence, Automated Reasoning, and Symbolic Computation, number 2385 in LNCS.
Springer, 2002.

7. Stefan Ratschan. Continuous first-order constraint satisfaction with equality and
disequality constraints. In Pascal van Hentenryck, editor, Proc. 8th International
Conference on Principles and Practice of Constraint Programming, number 2470 in
LNCS, pages 680–685. Springer, 2002.



Intelligent Splitting for Disjunctive Numerical CSPs 37

8. Stefan Ratschan. Applications of quantified constraint solving - bibliography and
benchmark problems, 2006.

9. D. Sabin and E. Freuder. Configuration as composite constraint satisfaction. In
Artificial Intelligence and Manufacturing Research Planning Workshop, pages 153–
161, 1996.


