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On Learning Discontinuous

Dependencies from Positive Data
Denis Béchet, Alexander Dikovsky, Annie Foret
and Erwan Moreau

Abstract This paper is concerned with learning in the model of Gold
the Categorial Dependency Grammars (CDG), which express discontin-
uous (non-projective) dependencies. We show that rigid and k-valued
CDG (without optional and iterative types) are learnable from strings.
In fact, we prove that the languages of dependency nets coding rigid
CDGs have finite elasticity, and we show a learning algorithm. As a
standard corollary, this result leads to the learnability of rigid or k-
valued CDGs (without optional and iterative types) from strings.

1.1 Introduction

Dependency grammars (DGs) are formal grammars assigning depen-
dency trees (DT) to generated sentences. A DT is a tree with words
as nodes and dependencies - i.e. named syntactic relations between
words - as arrows. Being very promising from the linguistic point of
view (see Mel’cuk (1988)), the DGs have various advantages as formal
grammars. Most important is that in terms of dependencies one can
naturally encode word order (WO) constraints independently of syn-
tagmatic relations. One of the most important WO constraints is that
of DT projectivity: projections of all words fill continuous 1 intervals.
It is widely believed that DTs are a by-product of head selection in

1So “discontinuous” corresponds to “non-projective” in dependency terms.
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constituents. This is evidently false for non-projective DTs because the
projections of the heads are always continuous. But even in the pro-
jective case the difference between the two syntactic structures is deep.
Even if sometimes the DTs defined from heads are isomorphous to the
DTs defined directly, the syntactic functions corresponding to individ-
ual dependencies (i.e. the corresponding primitive dependency types)
are different. The types of dependencies determine the distributivity
of a word in a given lexico-grammatical class in a specific role (as the
governor, as a subordinate, as the subject, as a direct object in the
post-position, pronominalized or not, etc.). This is why, the number of
primitive types is noticeably greater for dependency relations than for
syntagmatic relations. The lexical ambiguity is greater for DGs, which
is compensated by high self-descriptiveness of individual dependency
types. This explains the differences in traditional analyses of the same
constructions in syntagmatic terms (which are more or less based on
X-bar syntax) and in dependency terms.

Many DGs are projective, i.e. define only projective DTs (cf. Gaif-
man (1961), Sleator and Temperley (1993), Lombardo and Lesmo
(1996)). This property drastically lowers complexity of DGs. As it
concerns symbolic learning, positive results are known exclusively for
projective DGs: Moreau (2001), Besombes and Marion (2001), Bechet
(2003). In this paper we obtain the first result of symbolic learnability
of non-projective DGs from positive data. It holds for a reach class
of DGs introduced recently in Dikovsky (2004). At the same time, we
describe some cases of unlearnability from strings of such grammars
with optional or iterative types.

1.2 Categorial Dependency Grammars

1.2.1 Syntactic types

We extend the definition of types in Dikovsky (2004) to repetitive and
optional types as follows. C will denote a finite set of elementary cat-
egories. Elementary categories may be iterated and become optional.
C∗=df {C∗ | C ∈ C}, C+=df {C+ | C ∈ C}, C?=df {C? | C ∈ C},
will denote respectively the sets of iterative, repetitive and optional cat-
egories. Cω=df C∗ ∪C+ ∪C?. All categories in Cω are neutral. Besides
them there are polarized categories of one of four oriented polarities:
left and right positive ↖,↗ and left and right negative ↘,↙ . For
each polarity v, there is the unique “dual” polarity v̆: ↖̆ = ↙, ↙̆ =
↖, ↗̆ = ↘, ↘̆ =↗ . Intuitively, the positive categories can be seen
as valencies of the outgoing distant dependencies of governors, and the
negative categories as those of the incoming distant dependencies of
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subordinate words. So they correspond respectively to the beginnings
and the ends of distant dependencies. For instance, the positive valency
(↖pre−UPON−obj) marks the beginning of the distant dependency
pre−UPON−obj of a transitive verb governing a left-dislocated object
headed by the preposition ‘UPON’, whereas the end of this dependency:
UPON is marked by the dual negative valency (↙ pre−UPON−obj)
(cf. upon what dependency theory we rely).
↗C,↖C,↘C and↙C denote the corresponding sets of polarized

distant dependency categories. For instance, ↗C = {(↗ C) | C ∈ C}
is the set of right positive categories. V +(C) =↗C ∪ ↖C is the set
of positive distant dependency categories, V −(C) =↘C ∪ ↙C is the
set of those negative.

Defining distant dependencies, it is sometimes necessary to express
that the subordinate word is the first (last) in the sentence, in the
clause, etc., or it immediately precedes (follows) some word. E.g., in
French the negative dependency category ↙ clit−dobj of a cliticized
direct object must be anchored to the auxiliary verb or to the verb in
a non-analytic form. For that we will use specially marked anchored
negative categories: Anc(C)=df {#(α) | α ∈ V −(C)} - our name for
negative categories whose position is determined relative to some other
category - whereas the negative categories in V −(C) will be called loose.

Definition 1 The set Cat(C) of categories is the least set verifying the
conditions:

1. C ∪ V −(C) ∪ Anc(C) ⊂ Cat(C).

2. For C ∈ Cat(C), A1 ∈ (C ∪ Cω ∪ Anc(C) ∪ ↖C) and A2 ∈
(C ∪Cω ∪Anc(C) ∪ ↗C), the categories [A1\C] and [C/A2] also
belong to Cat(C).

We suppose that the constructors \, / are associative. So every com-
plex category α can be presented in the form:

α = [Lk\ . . . L1\C/R1 . . . /Rm].
For instance, [#(↙ clit dobj)\subj\S/auxPP ] is one of possible cat-
egories of an auxiliary verb, which defines it as the host word for a
cliticized direct object, requires the local subject dependency on its
left and, on its right, the local dependency auxPP with a subordinate.

1.2.2 Grammar definition

Definition 2 A categorial dependency grammar (CDG) is a system G =
(W,C, S, δ), where W is a finite set of words, C is a finite set of
elementary categories containing the selected root category S, and δ -
called lexicon - is a finite substitution on W such that δ(a) ⊂ Cat(C)
for each word a ∈W.
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Now we will extend to new types the definitions of the language and
DT language generated by a CDG. The language and DT language gen-
erated by a CDG are defined using a provability relation ` on strings
of categories. The core part of this definition are the rules of polar-
ized dependency valencies control. The idea behind these rules is that
in order to establish a distant dependency between two words with
dual dependency valencies, the negative valency must be loose. The
anchored negative valencies can serve only to anchor a distant subordi-
nate to a host word. As soon as the correct position of the subordinate
is identified, its valency becomes loose and so available to the governor.

In the definition below we suppose that to each occurrence of a cate-
gory Γ1CΓ2 corresponds a DT D of category C. r(D) denotes the root
of D. For space reasons, we present only the rules for left constructors.
The rules for right constructors are similar.

Definition 3 Provability relation `:
Local dependency rule:

L. Γ1C[C\α]Γ2 ` Γ1αΓ2. If C is the category of D1 and [C\α] is
that of D2, then α becomes the category of the new DT : D1 ∪ D2

∪ {r(D1)
C
←− r(D2)}.

ω-dependency rules:
I. Γ1C[C∗\α]Γ2 ` Γ1[C

∗\α]Γ2. If C is the category of D1 and
[C∗\α] is that of D2, then [C∗\α] in the consequence becomes the

category of the new DT : D1 ∪ D2 ∪ {r(D1)
C
←− r(D2)}.

R. Γ1C[C+\α]Γ2 ` Γ1[C
∗\α]Γ2. If C is the category of D1 and

[C+\α] is that of D2, then [C∗\α] becomes the category of the new

DT : D1 ∪ D2 ∪ {r(D1)
C
←− r(D2)}.

O. Γ1C[C?\α]Γ2 ` Γ1αΓ2. If C is the category of D1 and [C?\α]
is that of D2, then α in the consequence becomes the category of the

new DT : D1 ∪ D2 ∪ {r(D1)
C
←− r(D2)}.

Ω. Γ1[C\α]Γ2 ` Γ1αΓ2 for all C ∈ C∗ ∪C? 2.
Anchored dependency rule:

A. Γ1#(α)[#(α)\β]Γ2 ` Γ1αβΓ2, #(α) ∈ Anc(C).
Distant dependency rule:

D. Γ1(↙C)Γ2[(↖C)\α]Γ3 ` Γ1Γ2αΓ3.
The rule applies if there are no occurrences of subcategories ↙ C,
#(↙C) and↖C in Γ2. If↙C is the category of D1 and [(↖C)\α]
is that of D2, then α becomes the category of the new DT : D1 ∪

D2 ∪ {r(D1)
C
←− r(D2)}.

2The DTs rest unchanged when no instruction.
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`∗ denotes the reflexive-transitive closure of ` .

Definition 4 A DT D is assigned by a CDG G = (W,C, S, δ) to a
sentence w (denoted G(D, w)) if D is defined as DT of category S in
a proof Γ `∗ S for some Γ ∈ δ(w).
The DT-language generated by G is the set of DTs ∆(G) = {D | ∃w ∈
W+ G(D, w)}. The language generated by G is the set of sentences
L(G) = {w ∈ W+ | ∃D G(D, w)}.

Example 5 (PP-movement in English from Dikovsky (2004))

the person to whom you must refer is Smith

n-copulC5C4C3subjprep-whC2C1det

[subj/attr-rel]

#(↙pre-TO-obj)

[#(↙pre-TO-obj) \ attr-rel / inf-obj]

inf-obj

attr-rel

subj

[subj \ S]

S

~

n-copul

~
inf-obj

=
subjprep-wh

=

det

pre-TO-obj

=

subj

~

[attr-rel / inf-obj]

= w

attr-rel

This movement is expressed using the following categories:

C1 = [det\subj/attr−rel] ∈ δ(person),
C2 = [#(↙pre−TO−obj)/prep−wh] ∈ δ(to),
C3 = [subj\#(↙pre−TO−obj)\attr−rel/inf−obj] ∈ δ(must),
C4 = [(↖pre−TO−obj)\inf−obj] ∈ δ(refer),
C5 = [subj\S/n−copul] ∈ δ(is),
det ∈ δ(the), prep−wh ∈ δ(whom), subj ∈ δ(you), and n−copul ∈
δ(Smith).

The following example cited from Dikovsky (2004) shows that CDGs
can generate non-CF languages and are more expressive than depen-
dency grammars generating projective DTs.

Example 6 Let G0 = ({a, b, c, d1, d2, d3},C0, S, δ0), where δ0 is de-
fined by:
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6 / Denis Béchet, Alexander Dikovsky, Annie Foret and Erwan Moreau

a 7→ [β\α], [α\α],
b 7→ [α1\D/A],
c 7→ [D\A],

d1 7→ α,
d2 7→ [α\β1\S/D],
d3 7→ D,

where α = #(↙ B), α1 = (↖ B), β = #(↙ C) and β1 = (↖ C).
L(G0) = {d1a

nd2b
nd3c

n | n > 0}.
A proof of d1a

3d2b
3d3c

3 ∈ L(G0), in which α = #(↙B), α1 = (↖B),
β = #(↙C) and β1 = (↖C):

a a a d2 b b b c c

[D\A][D\A][D\A][α1\D/A][α1\D/A][α1\D/A][α\β1\S/D]

= ~= ~~

D

A

D

A

D

S

d3 c

D

+ j

A

d1

[α\α][α\α][β\α]β

+=/+

(↙B)

(↙B)

(↙B)

[β1\S/D]

1.2.3 Language of (untyped) dependency nets

A CDG connects the words of a sentence by oriented edges that cor-
respond to: local dependencies, anchored dependencies, discontinuous
dependencies. Thus, the parsing of a sentence can be summarized by a
dependency net built from nodes connected by dependencies.

Definition 7 An untyped node is a list of vertices called slots associ-
ated to a word. A node is an untyped node where each slot corresponds
to the elementary categories of one category of the word.

Here is the node corresponding to [G1\· · ·\Gn\F/Dm/ · · · /D1]:

A
A

AK

�
�
��

...........
...........
...........
...........
...........
.
O

........................................................W

........................................................� ...........
...........
...........
...........
...........
.
�

word

G1· · ·Gn F Dm· · ·D1

· · · · · ·

Definition 8 An (untyped) dependency net is a list of (untyped) nodes
connected by local (l), anchored (a) and distant (d) dependencies that
correspond to a parsing of the sentence.



On Learning Discontinuous Dependencies from Positive Data / 7

June 4, 2004

��
?

$'
? ?

��
?
��

?

$'
��

??
�� ��
?

$'
? ?

the person to youwhom must refer is Smith

l ll

l

al
d

ll

One of the slots is not connected and serves as the main conclusion
of the dependency net (i.e. the elementary category S). It appears on
the figure as an arrow without origin that ends on “is”. The depen-
dency tree (DT) corresponding to a dependency net is obtained by
erasing anchored dependencies and adding categories on local and dis-
tant dependencies (categories appear on nodes in dependency nets and
on edges in dependency trees).

Definition 9 An (untyped) dependency net N is assigned by a CDG
G if there exists a parsing of the list of words of N that corresponds to
the (untyped) nodes and the dependencies of N .
The language of dependency nets of G, denoted NL(G) is the set of
dependency nets assigned by G.
The language of untyped dependency nets of G, denoted UNL(G) is the
set of untyped dependency nets assigned by G.

Definition 10 CDGs that associate at most k nodes to each symbol
are called k-valued. 1-valued grammars are also called rigid.

1.3 Learnability, finite elasticity and limit points

A class of grammars G is learnable iff there exists a learning algorithm
φ from finite sets of words to G that converges, for any G ∈ G and for
any growing partial enumeration of L(G), to a grammar G′ ∈ G such
that L(G′) = L(G).

Learnability and unlearnability properties have been widely studied
from a theoretical point of view. A very useful property for our purpose
is the finite elasticity property of a class of languages. This term was
first introduced in Wright (1989), Motoki et al. (1991) and, in fact,
it implies learnability. A very nice presentation of this notion can be
found in Kanazawa (1998).

Definition 11 (Finite Elasticity) A class CL of languages has infi-
nite elasticity iff ∃(ei)i∈N an infinite sequence of sentences, ∃(Li)i∈N

an infinite sequence of languages of CL such that ∀i ∈ N : ei 6∈ Li and
{e0, . . . , ei−1} ⊆ Li. A class has finite elasticity iff it has not infinite
elasticity.

Theorem 12 [Wright 1989] A class that is not learnable has infinite
elasticity.
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Corollary 13 A class that has finite elasticity is learnable.

Finite elasticity is a very nice property because it can be extended
from a class to every class obtained by a finite-valued relation3. We use
here a version of the theorem that has been proved in Kanazawa (1998)
and is useful for various kinds of languages (strings, structures, nets)
that can be described by lists of elements over some alphabets.

Theorem 14 [Kanazawa 1998] LetM be a class of languages over Γ
that has finite elasticity, and let R ⊆ Σ∗×Γ∗ be a finite-valued relation.
Then the class of languages {R−1[M ] = {s ∈ Σ∗ | ∃u ∈ M ∧ (s, u) ∈
R} |M ∈M} has finite elasticity.

Definition 15 (Limit Points) A class CL of languages has a limit
point iff there exists an infinite sequence (Ln)n∈N of languages in CL
and a language L ∈ CL such that: L0⊆/ L1⊆/ · · · ⊆/ Ln⊆/ · · · and L =
⋃

n∈N Ln (L is a limit point of CL).

If the languages of the grammars in a class G have a limit point then
the class G is unlearnable.4

1.4 Limit points for CDGs with optional or iterative
categories

Limit point constructions.

Definition 16 (Gn, G′
n, G∗, G

′
∗) Let S, A, B be three elementary cat-

egories. We define by induction:
C0 = S C ′

0 = S
Cn+1 = (Cn/A?) C ′

n+1 = (C ′
n/A∗)/B∗

G0 = {a 7→ A, c 7→ C0} G′
0 = {a 7→ A, b 7→ B, c 7→ C ′

0}
Gn = {a 7→ A, c 7→ [Cn]} G′

n = {a 7→ A, b 7→ B, c 7→ [C ′
n]}

G∗ = {a 7→ [A/A?], c 7→ [S/A?]} G′
∗ = {a 7→ A, b 7→ A, c 7→ [S/A∗]}

These constructions yield two limit points as follows.

Theorem 17 We have:
L(Gn) = {cak | k ≤ n} and L(G∗) = c{a}∗

L(G′
n) = {c(b∗a∗)k | k ≤ n} and L(G′

∗) = c{b, a}∗

Corollary 18 They establish the non-learnability from strings for the
underlying classes of (rigid) grammars : those allowing optional cate-
gories (A?) and those allowing iterative categories (A∗).

3A relation R ⊆ Σ∗ × Γ∗ is finite-valued iff for every s ∈ Σ∗, there are at most
finitely many u ∈ Γ∗ such that (s, u) ∈ R.

4This implies that the class has infinite elasticity.
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Proof for optional categories: Only three rules apply to Gn, G∗

in this case : L. (local dependency rule), O. and Ω. (ω-dependency
rules). These rules enjoy the subformula property.

. L(G0) : (1) it clearly contains c (of category S) ; (2) since no rule
applies to the elementary categories {A, S}, it contains only c.

. L(Gn) (n > 0) : we consider cak and denote by ∆n,k its category
assigned by Gn. We have :

∆n,0 = [Cn] = [S/ A?/ . . . /A?

︸ ︷︷ ︸

n

] `∗ S (by Ω. rule, n times)

∆n,k = [S/ A?/ . . . /A?

︸ ︷︷ ︸

n

] A . . .A
︸ ︷︷ ︸

k

` [S/ A?/ . . . /A?

︸ ︷︷ ︸

n−1

] A . . . A
︸ ︷︷ ︸

k−1

(if k > 0,

by O. rule)
(1) By induction, for all k ≤ n, ∆n,k `∗ S, that is cak ∈ L(Gn)
when k ≤ n. (2) Let us consider w ∈ L(Gn) of a category ∆. w
cannot start with an a (a category A on the left of ∆ could not dis-
appear, due to the use of right constructors only); w cannot contain
several c, (no cancelation of S is possible since none occurs under
a constructor) ; thus w = cak for some k ≥ 0. If k > n, then after
one step ∆n,k necessarily leads to ∆n−1,k−1 or ∆n−1,k as above : by
induction starting from the case L(G0) k > n is thus not possible.
Therefore, w = cak with k ≤ n.

. L(G∗) : (1) it contains cak because of [S/A?] ` S , [S/A?][A/A?] `
[S/A?]A ` S and
[S/A?] . . . [A/A?][A/A?] ` [S/A?] . . . [A/A?]A ` [S/A?] . . . A
(2) w ∈ L(G∗) has exactly one c (at least one to provide S, and
no more as explained above); it cannot start with an a (otherwise a
type part would rest before S) ; therefore w = cak.

Proof for iterative categories: Only three rules apply to G′
n, G′

∗ :
L. (local dependency rule), I. and Ω. (ω-dependency rules),
all of them enjoying the subformula property.

. L(G′
0) : (1) it clearly contains c (category S) and (2) only c since no

rule applies to {A, B, S}.

. L(G′
n) (n > 0). We have D′

n = C ′
n−1/A

∗ and C ′
n = D′

n/B∗.
(1) For w ∈ {c(b∗a∗)k | k ≤ n} , we have w ∈ L(G′

n) by :
[C ′

n]B∆ ` [C ′
n]∆ and [D′

n]A∆ ` [D′
n]∆ (by I. rule) and [C ′

n] `
[D′

n] ` [C ′
n−1] (by Ω. rule)

(2) Let w′ ∈ L(G′
n). As above for Gn, w′ cannot start with an a or

a b (right constructors only); and w′ cannot contain several c (no S
under a constructor) ; thus w′ = cw′′, where w′′ ∈ {b, a}∗.
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w′ ∈ {c(b∗a∗)k | k ≤ n} follows by induction on n and on the
length of types Γ words w ∈ {b, a}∗ from the following assertion :

(i) if [C ′
n]Γ ` S, then w ∈ {(b∗a∗)k | k ≤ n} and (ii) if [D′

n+1]Γ ` S
then w ∈ {a∗(b∗a∗)k | k ≤ n}.

For n = 0, (i) is clear from L(G′
0) = {c}. For (ii), if Γ = BΓ′, we

get the first step with the only possibility of [D′
n+1]BΓ′ ` [C ′

n]BΓ′.
For (ii), if Γ = AΓ′, we have two possibilities [D′

n+1]AΓ′ ` [C ′
n]AΓ′

or [D′
n+1]AΓ′ ` [D′

n+1]Γ
′. For (i), if Γ = AΓ′, we get the first step

with the only possibility of [C ′
n]AΓ′ ` [D′

n]AΓ′. For (i), if Γ = BΓ′,
we have two possibilities [C ′

n]BΓ′ ` [D′
n]BΓ′ or [C ′

n]BΓ′ ` [C ′
n]Γ′.

This implies (i), (ii) by induction on n or a shorter type.
. L(G′

∗) : (1) it clearly contains c{b, a}∗ using [S/A∗]A∆ ` S∆ (I.
rule) and [S/A∗] ` S (Ω. rule)
(2) w′ ∈ L(G′

∗) has exactly one c (at least one to provide S, and no
more, as explained above for Gn); it cannot start with a (otherwise
a type part would rest before S). Therefore, w′ ∈ c{b, a}∗.

1.5 Finite elasticity of rigid UNL

This section is concerned with languages of untyped dependency nets
rather than grammars of strings. The following theorem is essential
because it implies that the corresponding class of rigid CDG (with-
out optional and iterative categories) has finite elasticity and thus is
learnable from strings. This result can also be extended to the class of
k-valued CDG for every k.

Theorem 19 Rigid CDGs define a class of languages of untyped de-
pendency nets that has finite elasticity.

Proof: We use a result of Shinohara Shinohara (1990, 1991) that
proves that formal systems that have finite thickness have also finite
elasticity. In Shinohara (1991) this result is applied to length-bounded
elementary formal system with at most k rules and also to context sen-
sitive languages that are definable by at most k rules. Formal systems
in Shinohara (1991) describe not only languages of strings but also lan-
guages of terms. They can be applied to typed or untyped dependency
nets which can be seen as well-bracketed strings (each dependency is
associated to an opening and a closing (typed) bracket). For the class of
rigid untyped dependency net grammars, a sketch of proof is as follows:

1. Definition. A CDG G1 = (W1,C, S, δ1) is included in a CDG
G2 = (W2,C, S, δ2) (notation G1 ⊆ G2) iff W1 ⊆ W2 and ∀x ∈
W1, δ1(x) ⊆ δ2(x).

2. Definition and lemma. The mapping UNL from CDG to un-
typed dependency net languages is monotonic: if G1 ⊆ G2 then
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UNL(G1) ⊆ UNL(G2).

3. Definition. A grammar G is reduced with respect to a set X of
untyped dependency nets iff X ⊆ UNL(G) and for each grammar
G′ ⊆ G, X 6⊆ UNL(G′). Intuitively, a grammar that is reduced
with respect to X covers all the structures of X and has no re-
dundant expressions.

4. Lemma. For each finite set X ⊆ UNL(G), there is a finite set
of rigid untyped dependency net languages that correspond to
the grammars that are reduced with respect to X . This is the
main part of the proof. In fact, if a rigid untyped dependency net
grammar G = (W,C, S, δ) using types Tp is reduced with respect
to X then each word that does not appear in one of the untyped
dependency net of X must be associated through δ to the empty
set. All other words must be associated to exactly one type of Tp
(the grammar is rigid). The left and right numbers of slots are
given by the occurrences of the word in the untyped dependency
nets and they must be the same for all the occurrences because
the language we try to learn corresponds to a rigid untyped de-
pendency net grammar. If the sum of the left and right arities of
each word in X is bound by m, and if n is the number of words
that appear in X , the number of equivalent grammars5 is bound
by the number of partitions of a set of n×m elements.

5. Definition. Monotonicity and the previous property define a sys-
tem that has bounded finite thickness.

6. Theorem. Shinohara proves in Shinohara (1991) that a formal
system that has bounded finite thickness has finite elasticity.

7. Corollary. Rigid untyped dependency net languages have finite
elasticity.

A learning algorithm for rigid untyped dependency net
grammars

The learning algorithm is based on Buszkowski’s original algorithm
for rigid (classical) categorial grammars Buszkowski and Penn (1989).
Since a rigid grammar G assigns only one type to each word, X ⊆
UNL(G) implies that all occurrences of a word w appearing in X must
be used with the same type t ∈ Tp. Thus G is reduced with respect to
X if it simply contains no useless word.

The algorithm φ1 takes an input sequence s = N1, . . . , Nl of untyped
dependency nets and returns a CDG that corresponds to the smallest

5Equivalent grammars are grammars that are associated to the same language.
A sufficient condition is the existence of a bijective relation between the primitive
types of both grammars.
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12 / Denis Béchet, Alexander Dikovsky, Annie Foret and Erwan Moreau

rigid untyped dependency net language compatible with s. It returns a
failure if the sequence corresponds to no rigid untyped dependency net
language 6. Here is the algorithm φ1 :

1. For each word w, collect in s its occurrences together with its left
and right arities. Fail if a word is used with different arities.

2. With each word w in s, associate n+m+1 variables correspond-
ing to its n left argument categories, its m right argument cat-
egories and its head type: Xw

−n, . . . , Xw
−1, X

w
0 , Xw

1 , . . . , Xw
m (Xw

0

corresponding to the head type).

3. Infer from s the equality constraints for the variables correspond-
ing to the beginnings and the ends of the same dependencies.
Respect the orientation: for each word w and each of its argu-
ment category, the corresponding dependency must be oriented
from w to a word with the corresponding head type. Return a
failure if this condition is not fulfilled.

4. Resolve the resulting equality system and associate an elementary
category with each variables’ equivalence class Xw

i .

5. Return the CDG Gs such that for each word w in s with associ-
ated variables Xw

−n, . . . , Xw
−1, X

w
0 , Xw

1 , . . . , Xw
m, the lexicon of Gs

assigns to w the category [Y w
−n\−n . . . \−2Y w

−1, \−1Y w
0 /1Y w

1 /2 . . .

/mY w
m ], in which:

.Y w
i is Xw

i if the corresponding dependency is local and every-
where in s there is exactly one incoming / outgoing dependency
in this slot. Besides this, \i is \ if i 6= 0 (respectively, /i is / in
the case of right argument).
.Otherwise, Y w

i = (Xw
i )? if there is at most one outgoing de-

pendency in this slot and at least one net with no outgoing de-
pendency in this slot in s, or Y w

i = (Xw
i )∗ if there is a net with

several outgoing dependencies and at least one net with no out-
going dependency in this slot, or finally, Y w

i = (Xw
i )+ if there is

always more than one outgoing dependency and there is at least
one net with several outgoing dependencies in this slot. Besides
this, \i is \ (respectively, /i is /).
.Y w

i is #(↙Xw
i ) (resp. #(↘Xw

i )) if the left (respectively, right)
slot is the end of an anchored dependency.
.Y w

i is↖Xw
i (respectively,↗Xw

i ) if the left (respectively, right)
slot is the beginning of a distant dependency.
.Y w

i is ↙Xw
i (respectively, ↘Xw

i ) if the slot is the end of a left
(respectively, right) loose distant dependency.

6I.e. when this sequence is not included in at least one of the rigid untyped
dependency net languages.
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Theorem 20 φ1 learns rigid untyped dependency net grammars.

Proof: φ1 is monotonic: if s1 ⊆ s2 then φ1(s2) returns a failure or
φ1(s1) and φ1(s2) succeeds and UNL(φ1(s1)) ⊆ UNL(φ1(s2)). This is
a consequence of the fact that the equality system corresponding to s1

is a subset of the equality system corresponding to s2. Let G be a rigid
CDG and (Ni)i∈N be an infinite sequence of untyped dependency nets
that enumerates UNL(G). For i ∈ N , φ1(N0, . . . , Ni) does not return a
failure because G is rigid so there exists a way to assign a unique type
to each word in the untyped dependency nets of UNL(G). Because φ1

is monotonic, (Gi = φ1(N0, . . . , Ni))i∈N defines an infinite sequence of
growing languages UNL(G0) ⊆ UNL(G1) ⊆ · · ·. The property of finite
elasticity implies that this sequence must converge to a language L∞

that must be (equal or) a superset of UNL(G) since the sequence enu-
merates UNL(G). In fact, for i ∈ N , G verifies the equality system used
by φ1 with N0, . . . , Ni as input, so UNL(φ1(N0, . . . , Ni)) ⊆ UNL(G).
Thus, we also have L∞ ⊆ UNL(G) and the sequence of languages con-
verges. Because if G1 and G2 are two grammars such that G1 ⊆ G2 and
UNL(G1) = UNL(G2) that are reduced with respect to UNL(G1) =
UNL(G2) then G1 = G2: the sequence of grammars converges.

1.6 k-valued CDGs without optional or iterative
category are learnable from strings

We can define a finite-valued relation between the set of untyped de-
pendency nets that are images of a k-valued CDG through L. The class
of rigid untyped dependency net languages having finite elasticity, we
can apply Theorem 14 and see that k-valued CDGs without optional
or iterative categories are learnable from strings. In fact, we define two
relations and use Theorem 14 twice: first time from rigid untyped de-
pendency net languages to rigid string languages, and the second time
from rigid string languages to k-valued string languages.

Lemma 21 String languages of rigid CDG without optional or itera-
tive categories have finite elasticity.

Proof: Given any string x = w1 . . . wn, the maximum number of de-
pendencies drawn over x is 2n − 2, because there is at most one local
or distant dependency and one anchored dependency coming in each
word (except the main word). Given any untyped dependency net and
any node in this dependency net, all slots are connected to at least one
dependency. Therefore there exists a finite number of untyped link de-
pendency nets corresponding to a string x. The class of rigid untyped
link dependency nets has finite elasticity, so by theorem 14 the class
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of rigid CDG string languages without optional or iterative categories
also has finite elasticity.

Lemma 22 k-valued CDGs without optional or iterative category have
finite elasticity.

Proof: This is very standard. The finite-valued relation associates k-
valued CDG over W and rigid CDG over W ×{1, . . . , k}. A rigid CDG
over W ×{1, . . . , k} corresponds to the k-valued CDG where the types
associated to (a, 1), . . . , (a, k) are merged into the same entry for a.

1.7 Conclusion and perspectives

We have proved that a class of rigid and k-valued non-projective DGs
has finite elasticity and so is learnable from strings and we have ob-
tained some unlearnability results, as summarized below.

Class
Learnable

from strings
Finite elasticity

on strings
Finite elasticity
on structures

Finite-valued
relation

A∗ no ⇒ no yes ⇒ no
A? no ⇒ no yes ⇒ no
A+ yes ⇐ yes ⇐ yes yes

The positive results may be compared to other learnability results in
the same domain in particular in the field of k-valued categorial gram-
mars. For instance, Kanazawa’s positive result on classical categorial
grammars corresponds to the learnability of the subclass of projective
CDGs. On the other hand, some more complex but rather close sys-
tems like rigid Lambek calculus or pregroups have been proved to be
not learnable from strings Foret and Le Nir (2002a,b). One of possible
reasons of this effect might be that - in contrast with the CDGs - in
these classes of grammars, reasoning from strings, one can not bound
the number of “interactions” (axiom links in terms of proof nets) be-
tween two words. This remark may lead to other learnable classes of
logical categorial grammars laying between classical categorial gram-
mars and Lambek calculus.
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