
Partial Learning Using Link Grammars Data

Erwan Moreau

To cite this version:

Erwan Moreau. Partial Learning Using Link Grammars Data. G. Paliouras and Y. Sakakibara.
Grammatical Inference: Algorithms and applications. 7th International Colloquium: ICGI
2004, Oct 2004, Athens, Greece. Springer, 3264, pp.211–222, 2004. <hal-00487059>

HAL Id: hal-00487059

https://hal.archives-ouvertes.fr/hal-00487059

Submitted on 27 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53013587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00487059


Partial Learning Using Link Grammars Data

Erwan Moreau

LINA - FRE CNRS 2729 - Université de Nantes
2 rue de la Houssinière - BP 92208 - 44322 Nantes cedex 3

Erwan.Moreau@lina.univ-nantes.fr

Abstract. Kanazawa has shown that several non-trivial classes of cate-
gorial grammars are learnable in Gold’s model. We propose in this article
to adapt this kind of symbolic learning to natural languages. In order
to compensate the combinatorial explosion of the learning algorithm, we
suppose that a small part of the grammar to be learned is given as in-
put. That is why we need some initial data to test the feasibility of the
approach: link grammars are closely related to categorial grammars, and
we use the English lexicon which exists in this formalism.

1 Introduction

In [1], Buszkowski has proposed an algorithm that learns rigid categorial gram-
mars from structures. Kanazawa extended this result, and showed that several
non-trivial classes of categorial grammars are learnable in Gold’s model of iden-
tification in the limit [2]. Since these works, several results have been obtained,
concerning learnability or unlearnability (in Gold’s model) of some classes of
categorial grammars (e.g. [3]). This kind of learning is symbolic, and relies on
some properties of categorial grammars, in particular their total lexicalization.

In this article we propose to apply this learning method to natural language
data. Such an application faces the problem of efficiency, due to the obviously big
complexity of any natural language: actually, the fact that a class of grammars
is learnable in Gold’s model does not implie that learning can be done in a
reasonable time. That is why we propose to learn in the framework of partial
learning, where it is supposed that a part of the grammar to be learned is already
known. This permits both to learn in a quite reasonable time, and without
needing other information (like structures).

This idea is rather close from the one presented in [4], where semantic types
are used, instead of structures, to learn efficiently. In a different framework,
Hockenmaier has obtained good results in acquiring a natural language grammar
from structures, using the Penn treebank [5].

Link grammars, introduced in [6], are close to categorial grammars. Thus it is
possible to adapt learning algorithms to this formalism, as it has been shown in
[7]. Furthermore, the authors Sleator and Temperley have built a link grammars
lexicon which covers an important subset of the English language. This data will
be very useful, since we need an initial grammar in our framework.



It should be emphasized that the problem is not simple, because the con-
straints imposed by symbolic learning and the fact that existing algorithms are
exponential make it hard to obtain good results with a natural language. For
this reason, we only study in this article the efficiency of the partial learning
method, which is only one part of the problem. We will also discuss several
problems appearing when using symbolic learning with complex data.

2 Link Grammars

Link grammars are defined by Sleator and Temperley in [6]. This is a rather
simple formalism which is able to represent in a reliable way natural languages.
This can be seen in the modelization that the authors provided for English in this
sytem: their grammar deals with most of the linguistic phenomena in English,
as it can be verified using their link grammar parser [8]. Their work is very
interesting for our objectives for the following reasons:

– There exists a close relation between link grammars and categorial gram-
mars: both are totally lexicalized and based on some kind of dependency
notion.

– It is possible to express the link grammars model as a small set of rules using
unification. This point is essential because several categorial grammars for-
malisms share this property, and it seems that this point plays an important
role in learning algorithms based on Buszkowski’s one.

Informally, a sentence is correct in link grammars if it is possible to link all
words according to the links needed by each word, defined in the lexicon. Links
represent syntactic relations between words.

A link grammar G is a tuple 〈Σ, C, .〉, where Σ is the set of words, C is the
set of connectors. A disjunct is a pair of lists denoted d(L,R), where L and R
are lists of connectors, and . is the relation assigning disjuncts to words: w . d
means that the disjunct d can be used with the word w.

Given a sentence w1, .., wn, a linkage is a set of links drawn above the sen-
tence, each link connecting two words and being labelled with a connector. A
linkage is valid if it satisfies the following conditions:

– Planarity: all links can be drawn above the words without crossing.
– Connectivity: given any couple of words (wi, wj) there exists a path of links

between them.
– Ordering: for each word wi there exists a disjunct di such that wi . di and

di is satisfied. A disjunct di = d([L1,..,Ll], [R1,..,Rr]) is satisfied if for each
connector Lj (resp. Rj) there is a link labelled with the name of the connector
coming to wi from the left (resp. the right), and for any couple of connectors
Lj , Lk (resp. Rj , Rk) with j < k, the words wj′ , wk′ respectively connected
to them verify j′ > k′ (resp. j′ < k′)1.

1 In other words when j < k the word wj′ is closer to wi than wk′ . Remark: in the
original definition the right list is written [Rr,...,R1]. We choose the reverse order to
be coherent with the cons(c,L)/nil notation presented in section 2.1.



– Exclusion: No two links may connect the same pair of words.

These conditions are called the meta-rules of link grammars. It is shown in
[6] that link grammars are equivalent to context-free grammars.

Example 1. With the following lexicon, the linkage below is valid:

a,the . d([],[D])

cat, snake . d([D],[S]), d([O,D],[])
chased . d([S],[O])

D D

OS

the cat chased a snake

2.1 Categorial Link Grammars

Link grammars are closely related to categorial grammars: both formalisms are
totally lexicalized, and share the property to link words or constituents through
a binary relation of dependency. However this dependency relation is different
in the two systems. In link grammars, dependencies are not directed and apply
only to words, contrary to categorial grammars where dependencies are directed
and may apply to constituents of the sentence.

Classical categorial grammars. AB grammars (or classical categorial gram-
mars) are the most simple formalism in categorial grammars. An AB grammar
G is a tuple 〈Σ, Pr, .〉 where Σ is the set of words and Pr the set of primitive
types. The set of types Tp is defined as the smallest set such that Pr ⊆ Tp and
A/B, A\B ∈ Tp for all A, B ∈ Tp. The relation . ⊆ Σ×Tp assigns one or several
types to each word. The relation → is defined with the following universal rules:

A/B, B → A (for any A, B ∈ Tp)
B, B\A → A (for any A, B ∈ Tp)

Let ⇒ be the relation defined by αt1t2β ⇒ αt0β if and only if t1t2 → t0, and
let ⇒∗ be the reflexive and transitive closure of ⇒. A sentence x = w1w2...wn is
correct for G (denoted x ∈ L(G)) if there is a sequence of types 〈t1t2...tn〉 such
that wi . ti for all i and t1t2...tn ⇒∗ s.

CLG: Definition. In order to emphasize the correspondence between link
grammars and categorial grammars, we will use an intermediate formalism called
categorial link grammars (CLG), where dependencies are directed and apply to
constituents. This will permit to apply learning methods used with categorial
grammars [2] to link grammars in a straightforward way. Actually, the CLG for-
malism is simply a different interpretation of (usual) link grammars rules. It is
shown in [9] that CLG and basic link grammars rules are equivalent under the
following restriction : each valid sentence must have a cycle-free linkage.



The CLG formalism takes exactly the same definition for grammars as the one
presented above. But the rules governing derivations of sentences are expressed
as the rewriting of a sequence of terms into another, like in classical categorial
grammars. In order to emphasize that disjuncts are simple terms, we reformulate
their definition in the following way: the set of connectors lists CL is defined as
the smallest set such that nil ∈ CL and for all L’ ∈ CL and C ∈ C, cons(C, L’) ∈
CL. The set of disjuncts, now called types, is defined as Tp = {d(L,R) | L, R ∈ CL}.2

Derivations with CLG. The two reduction rules between two types are

d(L, cons(c, R)), d(cons(c, nil), nil) → d(L,R) (with c ∈ C and L, R ∈ CL)
d(nil, cons(c, nil)), d(cons(c, L), R) → d(L,R) (with c ∈ C and L, R ∈ CL)

Let ⇒ be the relation defined by αt1t2β ⇒ αt0β if and only if t1t2 → t0,
with α, β ∈ Tp∗ and t1, t2, t0 ∈ Tp. ⇒∗ is defined as the reflexive and transitive
closure of ⇒. Let G = 〈Σ, C, .〉 be a grammar. A sentence x = w1w2...wn is
correct for G (denoted x ∈ L(G)) if there is a sequence of types 〈t1, t2, ..., tn〉
such that wi . ti for all i and t1t2...tn ⇒∗ d(nil, nil).

Example 2. With the lexicon defined in example 1, the sentence “The cat chased
a snake” can be derived in the following way3 :

the cat chased a snake
d([],[D]), d([D],[S]), d([S],[O]), d([],[D]), d([D,O],[])

⇒ d([],[S]), d([S],[O]), d([],[D]), d([D,O],[])
⇒ d([],[S]), d([S],[O]), d([O],[])

⇒ d([],[S]), d([S],[])

⇒ d([],[])

One can notice that a given linkage in basic link grammars can have several
equivalent derivation trees in CLG. These ambiguities appear because links are
not directed, and no order is required between connectors. The relation between
CLG and AB grammars is detailed in [9].

2.2 The Link Grammars English Lexicon

One of the main reasons why link grammars are interesting is that the authors
Sleator and Temperley have built such a grammar for English. The lexicon they
provide contains approximately 59000 words, distributed into 1350 entries, each
entry corresponding to a set of types. The grammar deals with an important
number of linguistic phenomena in English, “indicating that the approach may
have practical uses as well as linguistic significance” [6]. Furthermore, the link
parser provided by the authors includes a file containing 928 sentences, labelled
as correct or incorrect.

2 One can see that this definition is coherent with the first one.
3

Remark: in the following we will keep the notation [c1,c2,..,cn] for connectors lists,
easier to read than cons(c1,cons(c2,..cons(cn,nil)..)). Nevertheless it is important to
notice that there is no associativity in these terms.



In this section we outline how the link grammars lexicon for English is con-
verted into the formalism of CLG. This transformation must take into account
several complex features added to the basis of link grammars by their authors.

Multi-connectors. Iterations are represented using multi-connectors: Any con-
nector C in a connectors list may be preceded by the operator @, meaning that
this connector @C can be connected to several links C. For example, nouns can be
given the type d([@A,D],[S]), allowing them to be preceded by any number of
adjectives. This feature is included in the same way in CLG, by replacing the
“basic rules” with these new ones (where [@] means that @ is optionnal):

d(L, cons([@]c, R)) , d(cons([@]c, nil), nil) → d(L,R)

d(nil, cons([@]c, nil)) , d(cons([@]c, L), R) → d(L,R)

d(L, cons(@c, R)) , d(cons([@]c, nil), nil) → d(L,cons(@c, R))

d(nil, cons([@]c, nil)) , d(cons(@c, L), R) → d(cons(@c, L),R)

Subscripts. Subscripts are used to specialize connectors, in a similar way than
feature structures in unification grammars. They are used to make the grammar
easier to read and understand. For example, the subscripts s and p are assigned
to nouns (and pronouns, determiners, etc.) to distinguish between singular and
plural ones. In order to maintain the simplicity of the reduction rules, subscripts
are converted into types that do not contain subscripts. This is achieved through
a program that classifies all existing connectors (with their subscripts) in such a
way that all connectors in a same class match the same set of connectors. When
it is possible two classes are merged together, in order to minimize their number.
Finally a new type is created for each such class.

The CLG parser. The correctness of the conversion has been tested by com-
paring results of parsing the example file using the converted grammar to the
ones obtained using the original link parser. The CLG parser is a standard CYK-
like parser running in o(n3), applying the binary reduction rules defined above.
The file 4.0.batch provided with the original link parser contains 928 sentences,
in which 572 are correct and 356 are not. We extensively used this set of examples
as a benchmark to test the CLG parser soundness and completness.

The CLG parser does not handle some “high-level” features of the original
parser. Our objective being to provide a simple system based on a little set of
rules, we did not translate these abilities into the CLG parser, and consequently
modified the set of examples. Therefore sentences needing these features (con-
jonctions, post-processing rules, cost system and unknown words) have been
removed from the example file : after this process, a set of 771 sentences is ob-
tained, in which 221 are incorrect. Another important simplification concerns
the problem of cycles. In the experiments detailed in this article, we consider
a cycle-free version of the grammar which is simpler than the original one, but
does not correctly handle all incorrect sentences : 38 incorrect sentences from
the example file are parsed as correct, corresponding to an error rate of 4.9%.
More details about the problem of cycles can be found in [9].



Example 3. Here are several sentences taken from the example file (incorrect
ones are preceded with an asterisk):

What did John say he thought you should do
*What did John say did he think you should do
To pretend that our program is usable in its current form would be silly
*Is that our program will be accepted likely
The man there was an attempt to kill died

3 Partial Learning

3.1 Background

Buszkowski has proposed in [1] an algorithm, called RG, that learns rigid clas-
sical categorial grammars from functor-argument structures in Gold’s model. A
grammar is said rigid if every word in its lexicon is defined by only one type :
this is of course a strong constraint on learnable languages. In particular, any
slightly complex subset of any natural language does not fit into this definition.
A functor-argument structure for a given sentence is some kind of parse tree for
this sentence, where nodes are only labelled with FA or BA (identifiers for the
two universal rules). Thus the nodes indicate which branch (i.e. constituant)
should be used as functor (e.g. the left one, A/B, in the FA case) and which
should be used as argument (e.g. the right one in the FA case). The fact that
RG needs fa-structures as input is also an important drawback, because such
structures are very precise, and therefore hardly available for applications.

Kanazawa has explored several extensions of this algorithm in [2], and has
proved learnability in Gold’s model of various classes of grammars obtained from
these extensions. In particular, Kanazawa proposed an algorithm that learns k-
valued4 AB grammars from strings, and proved its convergence. Clearly, this
extension avoids the two main constraints of the original algorithm. However,
the problem of learning grammars (even rigid) without structures, as well as the
one of learning k-valued grammars (even with structures) are shown by Costa-
Florêncio to be NP-hard [10].

3.2 Partial Learning : Idea and Interest

As a consequence, it seems hard to apply this learning method to natural lan-
guages: the first algorithm is efficient but needs a lot of information as input
and learns only a small class of grammars, and the other one is more general
but unefficient. As a compromise between these two cases, We propose what we
call partial learning: the algorithm takes flat strings as input, but it is also sup-
posed that a part of the grammar to be learned, called the initial grammar, is
already known (i.e. one knows the types assigned to some words in the lexicon).
This information is intended to help building some part of the parse tree for

4 A grammar is k-valued if each word in the lexicon is defined by at most k types.



the sentence given as input, thus replacing (to a certain extent) the information
previously given in the structure. This information is important to avoid that
too many possible trees make the algorithm unefficient.

Several arguments tend to make this hypothese rather plausible and well
suited for natural languages applications:

– The total lexicalization of categorial grammars (or link grammars) was al-
ready an advantage for this kind of learning algorithms. Furthermore, it per-
mits to consider that some words are known and other are unknown without
any difficulty, since there can be no other kind of grammar rules.

– In the viewpoint of applications, the hypothese that a certain subset of the
lexicon can be defined by advance seems more realistic than the hypothese
that some complex information, like fa-structures, will be available with each
sentence given to the algorithm.

– Finally, the efficiency (and the accuracy) of the algorithm in this framework
mainly depends on the initial grammar: if there is a large number of known
words in the examples, there are less possible parse trees and therefore the
process goes faster. Applied to natural languages, Zipf’s law says that, among
the set of all words in a text, a little number of words covers a big part of
the text (counting the number of occurences). Partial learning can benefit
from this property in the following way: one has to build the initial grammar
with this little set of frequent words, corresponding more or less to gram-
matical words (determiners, prepositions, etc.). This task is feasible because
these words are not too numerous, and above all their number is bounded:
for example, there may be new nouns or adjectives appearing in a natural
language, but not a new determiner. Thanks to Zipf’s law, these words are
frequent, so knowing types for these words may be sufficiant to bound the
number of possible parse trees for the sentences provided as input to the
learning algorithm.

3.3 Algorithm

The fact that AB grammars and link grammars (when expressed in the CLG
formalism) depend only on a small set of rules, and that these rules are based on
unification is crucial in learning algorithms based on RG. This point is empha-
sized in the algorithm that we present here. The naive partial learning algorithm
would consist in computing all possible parse trees for a sentence, and then see
what among them are compatible with the types provided by the known words.
Instead, the algorithm can benefit from the unification process by behaving like
a parser: in the initialization step, distinct variables are assigned to unknown
words. Then the incremental (CYK-like) parser computes, as usual, all possible
types for each constituent, taking care of applying all substitutions that allow a
reduction to the variables. At the end of the process, analyzing the set of applied
substitutions provides all possible types for the unknown words.

The PL (Partial Learning) algorithm takes as input a sentence w1, .., wn and
an initial grammar G0. This grammar contains rules of the form w .t, where t is



a type that can be used with word w. The algorithm returns the set of general
form grammars : this means that any other grammar that accept the sentence
according to the initial grammar G0 is an instance of one of these grammars.

PL(G0, [w1, w2, .., wn])
Lex← {(W,T ) | (W . T ) ∈ G0}
create an empty matrix M [1..n, 1..n] % Initialization
for i← 1 to n do

if ∃T such that (wi . T ) ∈ G0 then
M [i, i]← {(T, Id) | (wi . T ) ∈ G0}

else
create a fresh variable V

Lex← Lex ∪ {(wi, V )}
M [i, i]← {(V, Id)}

end if
end for
for i← 2 to n do % Partial learning process (incremental parsing)

for j ← i− 1 to 1 do
for k ← j to i− 1 do

for each (Tl, σl) ∈M [j, k] do
for each (Tr, σr) ∈M [k + 1, i] do

let σu = mgu(σl, σr)
for each rule R ∈ R do

let R = A1A2 → A0 % (where variables in all Ai are fresh)
if ∃σR = mgu({{σu(Tl), A1}, {σu(Tr), A2}}) then

M [j, i]←M [j, i] ∪ {(σR(A0), σR ◦ σu ◦ σl}
end if

end for
end for

end for
end for

end for
end for
Res← ∅ % Apply possible substitutions
for each (T, σ) ∈M [1, n] do

if ∃τ such that τ (T ) = S then
Res← Res ∪ {(τ ◦ σ)(Lex)}

end if
end for
return Res

End PL

– Id is the identity substitution. ◦ is the composition of two substitutions.

– A unifier for a family of sets A is a substitution σ such that for every Ai ∈ A
and every couple of types t, t′ ∈ Ai: σ(t) = σ(t′). The most general unifier
(mgu) is the (unique) unifier σu such that for any other unifier σ there exists
a substitution τ such that σ = τ ◦ σu.

– Since σu is defined as the MGU of σl and σr, we have (σu ◦ σl) = (σu ◦ σr).



– R is the set of universal rules: in the case of AB grammars, one will obtain
for example A/B = A1, B = A2 and A = A0 for the first rule, FA (variables
are A and B). In the case of CLG, one would have d(L, cons(c, R)) = A1,
d(cons(c, nil), nil)= A2 and d(L,R) = A0 for the first rule (with variables
L, R, c). This algorithm works for both formalisms.

The “CYK-like” form of this algorithm should not hide that the algorithm
remains exponential in the general case. This algorithm describes the process
only for one sentence: the question to know what should be done with the whole
set of general form grammars is discussed in section 4.3.

4 Experiments and Discussion

In this section we explore feasibility of partial learning using link grammars data.
A prototype has been implemented (coded in SWI Prolog), and some tests have
been realized. The only part of the problem explored here is the possibility to
“parse with variables” in a reasonable time.

4.1 The CLG Partial Learning Prototype: Parsing with Variables

The CLG partial learning prototype is based on the CLG parser presented in
2.2. Clearly, the Prolog language is well suited to deal with terms containing
variables during the parsing: actually, substitutions are not stored in a data
structure like this is presented in the algorithm above, but simply obtained by
Prolog unification. The process remains deterministic however: types are copied
whenever necesary in order to build lists of types in the matrix, and thus avoiding
backtrack through the matrix.

Apart from some non essential optimization, the program has an important
feature that avoids a large part of the combinatorial explosion. This feature
consists in factorizing types that are “structurally equivalent”: two types t1 and
t2 are structurally equivalent if there exists two substitution σ1 and σ2 such that
σ1(t1) = t2 and σ2(t2) = t1 (i.e. there is only a renaming of variables between
the two types). The case where several structurally equivalent types belong to
the same cell of the matrix is frequent, so this saves a lot of time and space.
But this mechanism also requires that the composition of substitutions be no
longer computed along the whole process, otherwise the next level would have
to re-develop the types. That is why only the substitution used to transform a
type at one level (one reduction) is stored: in order to obtain the composition
(which gives what types are possible for unknown words), the program makes a
second pass after the incremental parsing.

Some tests have been done using the example file provided with the link
grammar parser [8]. First the set of examples has been filtered in order to keep
only correct sentences. The tests consist in removing a certain set of words from
the lexicon, so that these words will be considered as unknown.



4.2 Results

The sample used contains 537 sentences and 4765 words (size of the sample),
but only 1064 different words (size of the lexicon). The most frequent words are
the (270), I (155), is (122), to (121). In these tests we compare times taken for
partial learning for different rates of unknown words in the lexicon and sample.

In this first test5 we remove randomly a set of words from the lexicon. Results
are shown in table 1: one can see that the rate of unknown words in the sample
is similar to the rate of unknown (removed) words in the lexicon.

“UW” stands for “unknown words”: the second column (lexicon) indicates
the number of UW within the set of words, whereas the third one (sample)
indicates the number of occurencies of UW in the sentences.

UW UW Total UW per sentence time per sentence
(lexicon) (sample) time (min ; avg ; max) (min ; avg ; max) (sec)

0 (0%) 0 (0%) 27 min 0 ; 0 ; 0 0.1 ; 3.1 ; 14.7
106 (10%) 407 (8.5%) 75 min 0 ; 0.7 ; 4 0.1 ; 8.3 ; 333
211 (20%) 870 (18.2%) 3.5 h 0 ; 1.5 ; 6 0.1 ; 24 ; 1985
264 (25%) 1106 (23.2%) 3.8 h 0 ; 1.8 ; 7 0.1 ; 24.9 ; 1115
317 (30%) 1481 (31.1%) Failure (out of memory)

Table 1.

In order to simulate the idea that the initial grammar should be built using a
small set of frequent words, in this second test we remove only the less frequent
words from the lexicon. Therefore, Zipf’s law permits to remove a large part of
the lexicon without having too many unknown words in the sample (table 2).

UW UW Total UW per sentence time per sentence
(lexicon) (sample) time (min ; avg ; max) (min ; avg ; max) (sec)

0 (0%) 0 (0%) 27 min 0 ; 0 ; 0 0.1 ; 3.1 ; 14.7
211 (20%) 211 (4.4%) 45 min 0 ; 0.3 ; 4 0.1 ; 5.0 ; 173
422 (40%) 422 (8.8%) 78 min 0 ; 0.6 ; 5 0.1 ; 8.7 ; 620
634 (60%) 727 (15.2%) 2.6 h 0 ; 1.1 ; 7 0.1 ; 17.3 ; 1844
845 (80%) 1302 (27.3%) 5.1 h 0 ; 2.0 ; 9 0.1 ; 34.1 ; 1893

Table 2.

These tests show that the partial learning process can run in an almost rea-
sonable time (and without overloading memory) with up to 25 to 30% unknown
words in the sample. It is interesting to see that we only need around 20% of
the words defined in the lexicon to obtain such a rate, thanks to Zipf’s law.

Of course, the data is a bit too small to consider that these tests guarantee
that the algorithm works in any situation with a certain rate of unknown words.

5 These tests were done on a PIII 1GHz.



However, link grammars data for English are a good approximation of a natural
language, and were not intended to serve for this kind of application. So these
tests tend to show that the partial learning method can be a realistic approach
to apply symbolic learning to natural languages.

4.3 Problems and Future Work

Although the partial learning part seems to work quite well, we do not have yet
“real” learning results to present in this paper. Actually, several problems make
hard the adaptation of symbolic learning algorithms to “almost real” applications
to natural languages. In a practical viewpoint, the main question is: what do we
want to obtain as a result ? Indeed, the algorithm can return a set of grammars,
but this set may be too big in complex cases (and therefore take too much time
to be computed). It would also be possible to use a different representation for
the types, like in the original link grammar where types are logical formulas
using some operators (and, or, etc.). But symbolic learning requires that types
be in a normal form, in order to be able to recognize two identical types.

Another (more theoretical) important problem concerns the constraints in
Gold’s model. Actually, Gold’s model require that only one hypothese (grammar)
be proposed for any set of examples. Kanazawa has explored this problem for
categorial grammars, in a rather theoretical perspective [2]. In the case of AB
grammars, as soon as one is interested in learning k-valued grammars with k > 1
or in learning without full fa-structures there are (generally) more than one
grammar solution. Kanazawa shows that it is possible to compute a minimal
grammar, and this is why the classes observed are learnable in Gold’s model.
But again the algorithm is exponential and unusable in any complex case. In
the perspective of application to natural language, one can not use this solution.
That is why the algorithm we propose does not really learn, in the sense of Gold.
However, the reason of this constraint in Gold’s model is that it would be too
easy for an algorithm to learn if it was allowed to make an infinitely growing
number of hypotheses.

We propose the following solution to bound the number of solutions without
restricting too much the generative power of the learnable classes of grammars
in this framework. Following the hypothese that it is rather easy to build an
initial grammar containing most possible types but only a small set of words,
it is possible to consider that a set of syntactic classes is defined: each class
contains a set of fixed types, and the role of the learning algorithm would be to
correctly assign a class to each word. This method is already used in part-of-
speech taggers (like [11]). As the link grammar lexicon is made of 1350 entries,
each containing a set of types corresponding to a set of words, one can hope that
this method can be adapted in the CLG framework.

5 Conclusion

In conclusion, several important problems must be solved before considering ob-
taining useful results for a natural language: the form of the data, the formalism



itself, the size of the initial grammar are some very important parameters. Also,
solutions should be found for some simplifications made in this experiment, for
the problem of cycles (due to link grammars formalism) and the one of conjonc-
tions.

Actually, nothing ensures that this learning method will be able to provide
valuable results. Nevertheless, this first experiment shows that this hypothese
could hold: it seems that a “good” initial grammar, together with Zipf’s law,
can compensate for the lack of efficiency of existing theoretical algorithms. Fur-
thermore, the fact that this algorithm does not need important information (like
fa-structures) in input makes it more suited to real applications. But the main
interest in symbolic learning is the accuracy: probably this kind of learning can
not be very efficient, but the fact that the correctness of the answer always hold
can be an interesting feature for some applications.

References

1. Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data
by unification. Technical Report TR-89-05, Department of Computer Science,
University of Chicago (1989)

2. Kanazawa, M.: Learnable classes of categorial grammars. Cambridge University
Press (1998)

3. Bonato, R., Retoré, C.: Learning rigid lambek grammars and minimalist grammars
from structured sentences. In Popeĺınský, L., Nepil, M., eds.: Proceedings of the
3d Workshop on Learning Language in Logic, Strasbourg, France (2001) 23–34

4. Sofronie, D.D., Tellier, I., Tommasi, M.: A tool for language learning based on
categorial grammars and semantic information. In Adriaans, P., Fernau, H., van
Zaanen, M., eds.: Grammatical Inference: Algorithms and Applications; 6th Inter-
national Colloquium, ICGI 2002. Volume 2484 of LNCS/LNAI., Springer (2002)
303–305

5. Hockenmaier, J.: Data and models for statistical parsing with Combinatory Cate-
gorial Grammar. PhD thesis, School of Informatics, The University of Edinburgh
(2003)

6. Sleator, D.D.K., Temperley, D.: Parsing english with a link grammar. Technical
Report CMU-CS-TR-91-126, Carnegie Mellon University, Pittsburgh, PA (1991)

7. Béchet, D.: k-valued link grammars are learnable from strings. In: Proceedings
Formal Grammars 2003. (2003) 9–18

8. Temperley, D., Sleator, D., Lafferty, J.: Link grammar.
http://hyper.link.cs.cmu.edu/link/ (1991)

9. Moreau, E.: From link grammars to categorial grammars. In: Proceedings of
Categorial Grammars 2004, Montpellier, France. (2004) 31–45

10. Costa Florêncio, C.: Consistent Identification in the Limit of Rigid Grammars from
Strings is NP-hard. In Adriaans, P., Fernau, H., van Zaanen, M., eds.: Grammatical
Inference: Algorithms and Applications 6th International Colloquium: ICGI 2002.
Volume 2484 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2002)
49–62

11. Brill, E.: A Corpus-Based Approach to Language Learning. PhD thesis, Computer
and Information Science, University of Pennsylvania (1993)


