
STORM: a Simulation Tool for Real-time

Multiprocessor Scheduling Evaluation

Richard Urunuela, Anne Marie Delaplanche, Yvon Trinquet

To cite this version:

Richard Urunuela, Anne Marie Delaplanche, Yvon Trinquet. STORM: a Simulation Tool for
Real-time Multiprocessor Scheduling Evaluation. gdr soc sip 2009, 2009, pp.1. <hal-00495747>

HAL Id: hal-00495747

https://hal.archives-ouvertes.fr/hal-00495747

Submitted on 28 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53013339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00495747


STORM: a Simulation Tool for Real-time
Multiprocessor Scheduling Evaluation

Richard Urunuela, Anne-Marie Dplanche, Yvon Trinquet
IRCCyN, UMR CNRS 6597

University of Nantes
1 rue de la Noe, BP 92101, 44321 Nantes cedex 3, France

{richard.urunuela — anne-marie.deplanche — yvon.trinquet}@irccyn.ec-nantes.fr

Abstract

The increasing complexity of the hardware multipro-
cessor architectures as well as of the real-time applica-
tions they support makes very difficult even impossible
to apply the theoretical real-time multiprocessor schedul-
ing results currently available. Thus, so as to be able to
evaluate and compare real-time multiprocessor schedul-
ing strategies on their schedulability performance as well
as energy efficiency, we have preferred a simulation ap-
proach and are developing an open and flexible mul-
tiprocessor scheduling simulation and evaluation plat-
form called STORM. This paper presents the simulator
on which STORM relies and that is able to simulate ac-
curately the behaviour of those (hardware and software)
elements that act upon the performances of such systems.

1. Introduction

Multiprocessor architectures are becoming more and
more attractive. From single-core designs with heat and
thermal problems, chip makers are now shifting to multi-
core technologies. While making them decreasingly ex-
pensive, they are making very powerful platforms avail-
able. Such platforms are desirable for embedded system
applications with high computational workloads such as
robot controls, image processing, or streaming audio. The
additional characteristic of such applications is to meet
some real-time constraints; consequently they require pre-
dictable performance guarantees from the underlying op-
erating system. This has led to renewed interest in mul-
tiprocessor real-time scheduling: scheduling algorithms
together with schedulability analysis. So many theoreti-
cal results are available but mainly based on simple hard-
ware and software architecture models [2]. These results
are difficult to exploit if the assumptions are not satisfied
which is the case for modern hardware and software ar-
chitectures (processor heterogeneity, cache management,
inter-processor communications, complex software be-
haviours, system overheads, etc.).Furthermore, due to the

specific application fields where energy efficiency is crit-
ical (battery-based embedded systems), power manage-
ment techniques (Dynamic Voltage and Frequency Scal-
ing or Dynamic Power Management) are inescapable and
must be taken into account. Indeed, in such a context, it
is very difficult to evaluate and compare scheduling algo-
rithms on their schedulability performance as well as en-
ergy efficiency. So we think that a more global approach is
needed in order to explore the adequacy between schedul-
ing policies and (hardware and software) architectures. It
is not for us a matter of implementing scheduling algo-
rithms on true multiprocessor platform(s) but rather of de-
signing an open and flexible framework able to simulate
accurately the behaviour of those (hardware and software)
elements that act upon the performances of such systems.

2. The STORM simulator

For the time being, engineering efforts on STORM
have concerned its simulator component since it is the re-
taining element of the platform. For a given problem i.e.
a software application that has to run on a (multiproces-
sor) hardware architecture, this simulator is able to play its
execution over a specified time interval while taking into
account the requirements of tasks, the characteristics and
functioning conditions of hardware components and the
scheduling rules, and with the highest timing faithfulness.
As shown by Figure 1, the STORM simulator needs the
specification of the studied problem as input. It is based
on some reference components and their characteristics
available in attached libraries. It computes a lot of outputs
either user readable in the form of diagrams or reports, or
machine readable intended for a subsequent analysis tool.
More information is made available in [1]..

Inputs : The system to be simulated is specified in a xml
file. As shown by the example of Figure 2, some specific
tags delineate the parts of the specification and some spe-
cific attributes characterise their elements. As regards the
given example, the hardware architecture is composed of
two identical processors. Here a reference is made to the



Figure 1. The STORM simulator.

CT11MPCore component which is the identifier of a pro-
cessor component in library. It is the name of a Java class
which implements such a processor. The scheduling strat-
egy is a global pre-emptive EDF one (as for processors, it
is the Java class name of this scheduler). Three tasks are
present in the software architecture. All of them reference
the same periodic task type (Java class) in library. Their
own period, first activation date, worst case execution time
and deadline (if not equal to the period) are given. More-
over, a data of 10 byte size is declared which is exchanged
from task T1 to task T2. Its rate means that 2 executions
of task T1 are necessary for task T2 to be allowed to be-
gin. As it will be explained later, whatever it is a matter of
processor, task, or scheduling strategy, other types are of
course available and those libraries are extensible as often
as wished.

Figure 2. . A xml file as input of the simula-
tor.

Graphical User Interface : The STORM simulator of-
fers a user-friendly graphical interface which is composed
of various windows and enables him, on the one hand,
to order the simulator and on the other hand, to visualize
some simul ation results (as it will be discussed in the next
section). All those windows can be easily handled through
some key combinations or function keys.

Outputs: Over the simulation process, a very large set
of events that have punctuated the life of the studied sys-
tem are recorded with their occurrence date and some
other context information. Such events are for example:
the release of a job, its start of execution on a processor,
its pre-emption of a job, its completion, a frequency pro-
cessor change, etc. From such execution tracks, either di-
rectly or with some further computation, it is thus possible
to compute the required real-time metrics for analysis.

3. Conclusion

Presently, the STORM simulator is able to simulate
accurately the execution of a set of tasks over a multi-
processor system. Tasks may exhibit various behaviors
and be independent or not. Various scheduling strategies
are supported too. As a result, the simulator is not only
able to state about the schedulability of the studied system
but also to characterize its behavior with some measure-
ments for further analysis. It is a flexible, portable, and
open tool. At first, the STORM software is freeware un-
der Creative Commons License; subsequently it will be
available as an open source. At the present time, our work
on STORM is concerned with The energy and power as-
pects: we are expanding the hardware component library
with processors supporting DVFS and DPM; The memory
architecture modelling: since memory time access can act
significantly upon the global performances of a multipro-
cessor system, we are investigating how to model the be-
haviour of (different levels of) cache and external memory
and in particular the overhead induced by their manage-
ment; The evaluation process automation: we are defining
a simulation language to drive the experiments. Thus the
user would be able to describe a domain for the simula-
tion inputs and to specify the metrics to be measured as a
result. Then the tool would automatically build a statisti-
cally representative set of compliant test cases, run their
simulations, and output the statistical results.

References

[1] http://storm.rts-software.org/. may 2009.
[2] J. H. Anderson.Handbook of scheduling:Algorithms, Mod-

els, and Performance Analysis. J.Y-T Leung, Chapman &
Hall/CRC, 2004.

2


