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Abstract 
 

Energy constrained systems can increase their usable 

lifetimes by extracting energy from their environment. 

This is known as energy harvesting. This paper 

investigates scheduling issues in uni-processor real 

time embedded systems using regenerative energy. 

Task scheduling should account for the properties of 

the regenerative energy source which fluctuates, 

capacity of the energy storage as well as deadlines of 

the time critical tasks that characterize most of real 

time embedded systems. In this context, designing 

efficient scheduling strategies is significantly more 

complex compared to conventional real-time 

scheduling. In this paper we compare several 

scheduling heuristics with the optimal algorithm 

known as LSA (Lazy Scheduling Algorithm). We report 

results of an experiment study in terms of percentage 

of deadlines satisfied.  
 

 

1.  Introduction 
 

   Real-time embedded systems play a considerable 

role in our society, and they cover a spectrum from the 

very simple to the very complex. Examples of current 

systems include the control of domestic appliances like 

washing machines and televisions, the control of 

automobile engines, telecommunication systems, 

military command and control systems, industrial 

process control, flight control systems, and space 

shuttle and aircraft avionics... For example, a system 

that monitors temperature in a nuclear power plant 

would require that the readings be reported to a base 

station within enough time for a proper response to be 

made to a rapid increase in the temperature.  

   Harvesting energy in surrounding environment to 

power embedded systems for the lifespan appears 

nowadays to be the alternative to conventional 

batteries. Harvesting systems constructed to date 

extract power efficiently from the source. However, 

they do not use it adequately under real-time running 

conditions. As a result, they need a much larger 

harvester (e.g. solar panel) than necessary to yield the 

same level of power as a more efficient one, or they 

rely on a larger, more expensive, higher capacity 

battery than needed in order to sustain extended 

operation.  

   In this new context, the main problem to solve 

comes from the instantaneous power level that tends to 
vary over a wide. The autonomous nature of operation 

makes it imperative that the system learns its own 

energy environment and adapts its power consumption 

accordingly. Goal of this adaptation is to maximize the 

utility of the application in a long-term perspective. 

The resulting mode of operation is sometimes called 

energy neutral operation. 

Then, the crucial issue is to find scheduling 

mechanisms that can adapt the performance to the 

available energy profile. Up to now, when designing a 

real-time embedded system, the first concern has been 

usually time, leaving energy efficiency as a hopeful 

consequence of empiric decisions. Now, the primary 

concern is that power from solar panels or other free 

sources that cannot be stored (or stored with limited 

capacity) should be fully consumed greedily, or else 

this energy will be wasted. 
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In a real-time environment where tasks have to meet 

deadlines and execute periodically, energy harvesting 

and task scheduling are strongly dependent since they 

have to jointly handle timing constraints and 

variability of available energy. 

   In that paper, we propose five scheduling heuristics, 

easy to implement with limited overhead. Our 

objective is to compare their performance to an 

optimal scheduler, namely LSA with high overhead. 

The main question is to appreciate precisely the 

relative performance of all these schedulers thanks to 

simulation. All of them are based on the famous 

Earliest Deadline First rule. We report results of an 

experiment study in terms of percentage of satisfied 

deadlines and wasted energy. The quantitative analysis 

is achieved without considering computation 

overheads.  

   The remainder of this paper is organized as follows. 

In section 2, we describe the main issues in energy 

harvesting and briefly describe projects that involve 

energy harvesting. Section 3 gives background 

materials around real-time scheduling and precisely 

describes the optimal uni-processor scheduler, LSA, 

under energy harvesting assumptions. In section 4, we 

present five scheduling heuristics and we propose to 

compare them to LSA. Section 5 reports results of a 

simulation study and enables us to bring to light that 

some heuristics may have similar performance to LSA 

without incurring high overhead. We conclude in 

section 6 with a brief discussion on ongoing research. 

 

2.  Energy harvesting 
 

2. 1  Motivations  
With the multitude of mobile devices that are used in 

all areas of social and commercial life it is increasingly 

important to design systems in an energy-efficient 

manner. These autonomous systems (including sensor-

actuator networks) are being envisioned to carry out 

complex task sets under real-time requirements 

without human intervention. However, they require 

power in order to operate, and if power outages occur, 

critical data may be lost. The true autonomy of such 

systems depends on their reliable and guaranteed 

operation for extended times without maintenance. 

 Most prior wireless monitoring systems in last 

decades have relied on continuous power supplied by 

batteries such as lithium-ion cells. Their disadvantage 

is that they become depleted, must be periodically 

replaced or recharged and consequently place hard 

restrictions on products' usability, lifetime, and cost of 

ownership. Moreover, while processing power roughly 

doubles ever two years, battery technology advances at 

a much more sluggish pace (battery capacity has 

doubled every 10 years). In addition to the very slow 

growth in their energy capacity, traditional batteries 

have a limit to the total practical energy density they 

can provide.  

Even if it is possible to increase their energy density 

by tenfold within a few years, we must still consider 

practical safety concerns. First, given improper use, 

batteries with extremely high energy densities can 

become dangerous, explosive devices. Second, in 

many embedded applications, battery replacement is 

impractical or has high labour costs associated with 

maintenance.  

Besides, batteries suffer from self-discharge, 

temperature, and other environmental effects that work 

to bound their usable lifetime, even in the case of zero 

use. Consequently for long-term, economical 

deployment, embedded systems must gather energy 

from the environment around it, a technique known as 

energy harvesting or energy scavenging. 

It concerns as well the high technology sectors as the 

general public products in which wireless embedded 

systems are used in a variety of applications, such as 

environmental applications (forest fire and flood 

detection, monitoring of drinking water and level air 

pollution), military applications (battlefield 

surveillance, reconnaissance of enemy forces), health 

applications (tele-monitoring of human physiological 

data, tracking and monitoring of doctors and patients), 

home applications (intrusion detection), or commercial 

applications (monitoring of product quality, climate 

control in large buildings). While some of these 

applications are marginal today, they will become 

commonplace one day. Devices with maintenance-free 

life of hundreds of years can now be envisaged if we 

provide them with efficient strategies for harvesting, 

storing and managing environmental energy. The 

current perspectives of this market are thus very big 

and promising. 

 

2.2  History 
A number of projects have used energy harvesting 

technologies to deliver sustainable power for 

autonomous sensors. Photovoltaic energy harvesting is 

by far the most prevalent form of technology used in 

current projects in part due to the plentiful supply of 

light in many deployment settings, and the low cost of 

photovoltaic modules. Nodes conventionally store 

electrical energy in super-capacitors or batteries to 

achieve operation. Heliomote has a solar panel and two 

AA type Ni MH batteries [1]. The solar panel is 

directly connected to its battery through a diode. Even 

though ample power may be available on the solar 

panel, a wireless sensor node can still draw current 

from the battery. Prometheus has a super-capacitor as 



a primary buffer, a Li-Polymer battery, and a solar 

panel [2]. The solar panel first charges the super-

capacitor, from which the system draws current when 

enough power is available on the solar panel. The 

system draws current from the battery only when the 

charge level of the primary buffer is less than a certain 

threshold, and it seldom draws power from the battery.  

Heliomote and Prometheus have permitted to show 

that systems may operate perpetually through 

scavenging solar energy. However, the common 

drawback of these first prototypes is that they do not 

target at real-time and quality of service requirements 

that characterize most of embedded applications.  

Several prototype systems incorporating vibration 

energy harvesting have been developed too. For 

example, the S5NAP uses a commercially-available 

electromagnetic vibration energy harvester to power 

an accelerometer based condition monitoring system. 

In this system, energy harvested from vibrations is 

buffered in super-capacitors to permit nodes to draw 

large bursts of power during radio transmissions and 

sensing operations [3]. 

Another project named ShiMmer uses piezoelectric 

transducers to evaluate a portion of a structure (i.e. a 

bridge) to determine if damage exists. It relies on a 

wireless platform that combines active sensing and 

localized processing with energy harvesting to provide 

long-lived structural health monitoring. One of the 

objectives of ShiMmer project is to create a robust and 

flexible software controller that can manage both the 

energy and the task execution [4]. 

 

 

3.  Scheduling with energy constraints 
 

3.1  Background materials 
Most of embedded applications require periodic 

activities that have to be cyclically executed at fixed 

rates and within special deadlines. Typically, each 

periodic instance is assigned a relative deadline equal 

to the task period and is treated as a hard job. Thus, a 

periodic task is executed only if all its instances are 

guaranteed to complete within their deadlines. 

Schedulability analysis of periodic task sets can easily 

be performed both under fixed and dynamic priority 
assignments. In particular, a lot of work has been done 

for the Rate Monotonic (RM) and the Earliest 

Deadline First (EDF) algorithms [5]. Schedulability 

analysis has also been extended for the case in which 

tasks use shared resources  or run in the presence of 

aperiodic activities, under fixed priority scheduling 

and in dynamic priority systems as well [6] [7].  
While EDF (dynamic priority depending on urgency) 

and RM (fixed priority depending on period) can 

support sophisticated task set characteristics such as 

deadlines, precedence constraints, shared resources, 

jitter, etc., they are all open loop scheduling 

algorithms. Open loop refers to the fact that once 

schedules are created they are not "adjusted" based on 

continuous feedback. Systems with open-loop 

schedulers are usually designed based on worst-case 
parameters. Such an approach can result in a highly 

underutilized system based on extremely pessimistic 
estimation of workload (or energy). While open-loop 

scheduling algorithms can perform well when the 

workload and the processing performance are 

accurately modelled, they perform poorly in 

unpredictable dynamic systems including regenerative 

energy dependent ones. 

   Only in the past decade, researchers started to 

address power and scheduling issues with the objective 

of either minimizing power usage under timing 

constraints or maximizing the system performance 

under the energy constraints. Nevertheless, they did 

not consider the rechargeability of the batteries. For 

example, EDF and RM scheduling have been extended 

to variable-voltage processors. The idea is to save 

power by slowing down the processor just enough to 

meet the deadlines [8]. But solely applying these 

techniques has limitations in energy harvesting 

systems because they minimize CPU power, rather 

than they dynamically manage power according to the 

profiles of both available energy and processor 

workload.  

   The performance of a practical energy harvesting 

real-time system is measured by the deadline miss rate 

and heavily depends upon the stored energy and the 

energy harvested from the environment. 

Unfortunately, the scavenging power is time-varying 

and thus very unstable. Therefore, the accurate 

modelling for energy source plays a key role in 

designing a good policy to schedule the tasks and 

reduce the deadline miss rate. 

 

3.2  An optimal scheduling algorithm 
The first work that really makes adaptive power 

management for energy harvesting systems with real 

time constraints has been published in [9]. There, C. 

Moser et al. propose a real-time scheduling algorithm, 

called Lazy Scheduling Algorithm (LSA) that uses 

task postponement. Algorithm LSA is energy-

clairvoyant, i.e., the generated energy in the future is 

known. Taking into account available time as well as 

processable energy, an optimal task ordering can be 

determined based on the prediction of the available 

energy in the future. 

This work deals with a mono-processor architecture 

that draws the energy from storage and uses it to 



process tasks (periodic or non periodic) with arrival 

time, deadline, and worst case execution time. The 

worst case execution time represents the maximum 

energy demand of the task. The arrival time of the task 

is not known beforehand. The deadline as well as the 

worst case execution time of the task is unknown 

before it is released. However, as long as the task is 

released, all these parameters are determined. They 

assume that tasks are preemptable and execute 

according to the earliest deadline first policy. 

At any time, the energy source module harvests the 

energy from its ambient environment and then 

converts it into electrical energy. The electrical energy 

can be stored in the energy storage (battery), whose 

capacity is precisely known. The stored energy is 

assumed to be known at the system level at any time 

and is no more than the storage capacity. It is assumed 

that the energy storage is ideal and the battery can be 

recharged up to its capacity. Likewise, it can also be 

completely discharged to as less as zero. If the stored 

energy reaches the capacity, the incoming harvested 

energy overflows the storage and is discarded. 

According to LSA, the processor executes all tasks at 

full power when the battery is full time, and the system 

starts executing a task if the task is ready and has the 

earliest deadline among all ready tasks and the system 

is able to keep on running at the maximum power until 

the deadline of the task.  

Contrary to greedy scheduling algorithms, LSA 

hesitates to power tasks until it is necessary to respect 

timing constraints. In that sense, tasks are executed 

neither as soon as possible nor as late as possible.  In 

this paper, the authors also discuss an admittance test 

that decides, whether a set of real-time tasks can be 

scheduled without violating deadlines. Another crucial 

question which has been solved is how to dimension 

the capacity of the battery that ensures continuous 

operation. The simulation study demonstrates that 

achievable capacity savings between 20% and 45% are 

obtained comparing the classical Earliest Deadline 

First algorithm. However, all theses measurements 

ignore on line computational costs. 

While optimal in the case of a single speed 

processor, LSA algorithm has the following 

drawbacks: 

   ● The consumption power of the task is assumed to 

be characterized by some value. This implies that for 

every task, its total energy consumption is directly 

connected to its execution time through the constant 

power of the processing device. However, in practice, 

the total energy which can be consumed by a task has 

no correlation with the worst case execution time. 

   ● Renewable energy sources must be accurately 

modelled, otherwise the performance of LSA will be 

degraded. 

   ● Scheduler LSA requires a lot of mathematical 

computations to be performed on-line. So, in practice, 

we have to consider its computational overhead, i.e. 

the cost of its operation both in terms of time and 

energy consumption. 

 

4.  Description of scheduling heuristics 
 

To evaluate the effectiveness of the LSA algorithm 

on energy saving and performance improvement, we 

developed a discrete-event simulation and compared 

LSA to several scheduling heuristics, all using the 

simple and easy to implement earliest deadline rule: 

   ● Heuristic 1: EDt. Before starting the execution of 

the highest priority task which is ready, a test is 

performed to compare the energy level of the battery 

to the total energy required by the task for its 

execution. If the energy available in battery is 

sufficient, the task is authorized to execute. Otherwise, 

the processor is put into sleep mode until the battery 

contains enough energy to run it. According to this 

scheduler, we never start execution of a task if there is 

no sufficient energy to execute it totally. 

   ● Heuristic 2: EDi. All the tasks are processed as 

soon as possible according to EDF until the battery is 

empty. Then, the processor is put into sleep mode until 

the next release date i.e. the next instant corresponding 

to the arrival of another ready task. During that period, 

the battery will replenish and necessarily, the 

processor will be active at that instant for executing 

the highest priority task.  

   ● Heuristic 3: EDd. As previously, all tasks execute 

as soon as possible according to EDF until there is no 

more energy available in the battery.  Then, all ready 

tasks are discarded and the processor is put into sleep 

mode until the next release time.  

   ● Heuristic 4: EDu. Compared to EDi, EDu is 

similar but lets the processor in sleep mode just during 

one time unit whenever the battery is empty.  

   ● Heuristic 5: EDc. Compared to EDd, EDc is 

similar but just deletes the current active task instead 

of discarding all the tasks waiting for execution.  The 

processor is put into sleep mode until the arrival of a 

new task even if the list of ready tasks may not be 

empty. 

   Edi, EDd, EDu and EDc execute tasks as soon as 

possible i.e. as long as the battery contains at least one 

unit of energy. These are typical greedy scheduling 

strategies which mainly differ each other in the way of 

managing energy lack situations. In contrast, EDt will 

test dynamically energy availability before running 

tasks and does not greedily consumes energy. Let us 

note that for every heuristic, as soon as a deadline is 

missed, the corresponding task is aborted for 



immediately stopping the overload situation and 

limiting wasted energy. 

 

5.  Experiments 
 

5.1  Description of the simulator 
In order to evaluate and compare the performance 

and the effectiveness of the scheduling heuristics to 

the optimal algorithm, we developed a discrete-event 

simulation in C/C++. The simulator has been designed 

specifically for any periodic task set under energy 

constraints. By using it, we can report details of the 

schedule produced for any task set with given energy 

storage capacity and energy source profile.  

In our study, we consider the scheduling problem of 

periodic tasks. We assume that deadlines are less than 

or equal to periods and greater than or equal to 

computation times. So we use a task generator to 

produce 30 periodic task sets, each consisting of 6 

tasks with a least common multiple of the periods 

(often called hyper-period) equal to 300 time units.  

The rechargeable power is variable with time in 

practice. But in this paper, we report results when the 

source power is constant along time, equal to 6. In the 

first experiment, the battery capacity is 10. In other 

terms, 10/6 units of time are required to replenish the 

energy storage from the environmental power source. 

Simulations have been processed over 5 

hyperperiods with a mono-frequency processor which 

is characterized by its maximum consumption power, 

here equal to 8 (watts).  In any case, we assume that 

the energy storage is fully charged at the beginning of 

the simulation.  

 

5.2  Experiment 1: Varying the processing load 
Figure 1 presents the ratios of satisfied deadlines for 

the heuristics and the optimal algorithm. It clearly 

shows that the performances of all algorithms degrade 

when the processor utilization factor increases. Figure 

1 naturally shows that optimal LSA outperforms all 

other policies. And LSA has the softest degradation, 

and EDd has the strongest one. Velocities of 

degradations for the other heuristics are intermediate. 

   

For 60% processor utilization, LSA permits to satisfy 

90% task deadlines while EDd, the worst one satisfies 

about 40% task deadlines.  And for 100% processor 

utilization, LSA succeeds in satisfying about 60% task 

deadlines while the performance of  EDd drops to less 

than 10%. From a general view, higher is the processor 

utilization, higher is the gain of LSA compared to 

heuristics, given a power source profile and a battery 

capacity. For every processor load, EDd provide the 

worst performance. Nevertherless, performance 

improvement of LSA over EDi and EDu is always less 

than 20% and less than 10% for very highly loaded 

systems. 
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Figure 1: Percentage of satisfied deadlines, making 

vary the processing load for a given battery capacity 

 

 

5.3  Experiment 2: Varying the battery 

capacity 
We choose three different values for U, 0.2, 0.5 and 

0.8 respectively representing low, medium and high 

system load. And for each load and a given source 

power, we make vary the capacity of the battery.  The 

objective of such study amounts to determine optimal 

dimensioning of the battery for each scheduler and a 

given tolerance expressed in terms of missed 

deadlines. 

Figure 2 (a) is relative to low processing load 

(U=0.2) and consequently to low energy requirement. 

When the battery capacity is less than 12, difference of 

performance between LSA and EDi is very large and 

as the battery capacity increases, the gaps are getting 

smaller. For a battery capacity equal to 3, 100% 

deadlines are satisfied under LSA, Edi and EDu while 

less than 10% respectively 30% under EDd 

respectively EDt and EDc.  When the battery capacity 

is larger than 18, all schedulers perform quasi 

identically. When the battery capacity is greater than 

27, all schedulers achieve exactly 100% satisfied 

deadlines.  This simulation result clearly indicates that 

for low processing loads and low battery capacities, 

LSA, EDu and Edi outperform very significantly the 

other heuristics in terms of deadline meeting. 

Figure 2 (b) shows that the performances of all 

schedulers are degraded when the processing load is 

0.5. When the size of the battery is less than 30, no 

strategy can achieve 100% satisfied deadlines 

including LSA and EDi. To guarantee that LSA 

achieves 100% satisfied deadlines, the battery capacity 

should be larger than 40.  Consequently, we see that if 

we make the load 2.5 times, we have to make the 

battery capacity more than 10 times to guarantee the 

same level of performance. As in previous curve, it 

clearly appears that behaviour of EDt, EDc and EDd 



are very sensitive to the size of the energy storage. To 

ensure 40% satisfied deadlines, they require a battery 

capacity at least equal to 5 while they require a battery 

capacity equal to 30 to guarantee 90% satisfied 

deadlines. In the same capacity range, LSA will 

respectively guarantee between 90% and 100% 

deadlines. 
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(a) U=0.2 
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(b) U=0.5 
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(c) U=0.8 

Figure 2: Percentage of satisfied deadlines, making 

vary the battery capacity for a given processing load  

 

Figure 2 (c) reports the results for high processing 

loads (U=0.8). Comparing to the previous curves, a 

higher battery capacity is required to provide the same 

performance level. No scheduler is able to provide 

100% satisfied deadlines even if the battery capacity is 

more than 80. The system is highly time constraint and 

there is no flexibility for constructing the schedule 

which may be unfeasible even for high battery 

capacities. Except for very low battery capacities, all 

policies yield similar performance with a difference 

limited to 10%. There is consequently no significant 

motivation to increase the battery size for improving 

performance.  

 

6.  Conclusion 
 

Careful energy management is the key to providing 

the best possible performance in real-time harvesting 

systems. In this paper we have presented scheduling 

heuristics in order to compare them to the optimal 

algorithm known as LSA. We have implemented the 

policies and reported results showing that the optimal 

policy outperforms the heuristics that we examined. 

Results were in terms of percentage of satisfied 

deadlines which is commonly used to measure the 

performance of real time systems. However, the 

experiment reveals that, under all processing loads, the 

gain is not significant compared to heuristic EDi that 

executes tasks greedily according to Earliest Deadline 

First until the energy storage unit be empty and then 

lets the processor idle until the next release time.  

Moreover, practical implementation of LSA requires 

exact prediction of environmental energy in order to 

compute dynamically the exact start time of every 

task. Approximation on the above quantities will make 

LSA a sub-optimal scheduler, actually providing worst 

performance relative to the proposed heuristics while 

leading to higher computational overheads. This 

interesting issue needs more attention that will be in 

our immediate research plan. We are measuring the 

impact of approximating energy availability on the 

effective performance of LSA and the actual gain of 

LSA if still existing. 
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