
Performance Evaluation of Real-Time Scheduling

Heuristics for Energy Harvesting Systems

Maryline Chetto, Hui Zhang

To cite this version:

Maryline Chetto, Hui Zhang. Performance Evaluation of Real-Time Scheduling Heuristics for
Energy Harvesting Systems. IEEE CS Press. The 2010 International Symposium on Energy-
aware Computing and Networking (EaCN-2010), Dec 2010, Hangzhou, China. pp.0, 2010.
<hal-00541127>

HAL Id: hal-00541127

https://hal.archives-ouvertes.fr/hal-00541127

Submitted on 29 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53012351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00541127

Performance Evaluation of Real-Time Scheduling Heuristics

for Energy Harvesting Systems

Maryline CHETTO and Hui ZHANG

IRCCyN – University of Nantes

1 Rue de la Noé, F-44321 Nantes FRANCE

Maryline.chetto@univ-nantes.fr

Hui.zhang@univ-nantes.fr

Abstract

Energy constrained systems can increase their usable

lifetimes by extracting energy from their environment.

This is known as energy harvesting. This paper

investigates scheduling issues in uni-processor real

time embedded systems using regenerative energy.

Task scheduling should account for the properties of

the regenerative energy source which fluctuates,

capacity of the energy storage as well as deadlines of

the time critical tasks that characterize most of real

time embedded systems. In this context, designing

efficient scheduling strategies is significantly more

complex compared to conventional real-time

scheduling. In this paper we compare several

scheduling heuristics with the optimal algorithm

known as LSA (Lazy Scheduling Algorithm). We report

results of an experiment study in terms of percentage

of deadlines satisfied.

1. Introduction

 Real-time embedded systems play a considerable

role in our society, and they cover a spectrum from the

very simple to the very complex. Examples of current

systems include the control of domestic appliances like

washing machines and televisions, the control of

automobile engines, telecommunication systems,

military command and control systems, industrial

process control, flight control systems, and space

shuttle and aircraft avionics... For example, a system

that monitors temperature in a nuclear power plant

would require that the readings be reported to a base

station within enough time for a proper response to be

made to a rapid increase in the temperature.

 Harvesting energy in surrounding environment to

power embedded systems for the lifespan appears

nowadays to be the alternative to conventional

batteries. Harvesting systems constructed to date

extract power efficiently from the source. However,

they do not use it adequately under real-time running

conditions. As a result, they need a much larger

harvester (e.g. solar panel) than necessary to yield the

same level of power as a more efficient one, or they

rely on a larger, more expensive, higher capacity

battery than needed in order to sustain extended

operation.

 In this new context, the main problem to solve

comes from the instantaneous power level that tends to
vary over a wide. The autonomous nature of operation

makes it imperative that the system learns its own

energy environment and adapts its power consumption

accordingly. Goal of this adaptation is to maximize the

utility of the application in a long-term perspective.

The resulting mode of operation is sometimes called

energy neutral operation.

Then, the crucial issue is to find scheduling

mechanisms that can adapt the performance to the

available energy profile. Up to now, when designing a

real-time embedded system, the first concern has been

usually time, leaving energy efficiency as a hopeful

consequence of empiric decisions. Now, the primary

concern is that power from solar panels or other free

sources that cannot be stored (or stored with limited

capacity) should be fully consumed greedily, or else

this energy will be wasted.

mailto:Maryline.chetto@univ-nantes.fr
mailto:Hui.zhang@univ-nantes.fr

In a real-time environment where tasks have to meet

deadlines and execute periodically, energy harvesting

and task scheduling are strongly dependent since they

have to jointly handle timing constraints and

variability of available energy.

 In that paper, we propose five scheduling heuristics,

easy to implement with limited overhead. Our

objective is to compare their performance to an

optimal scheduler, namely LSA with high overhead.

The main question is to appreciate precisely the

relative performance of all these schedulers thanks to

simulation. All of them are based on the famous

Earliest Deadline First rule. We report results of an

experiment study in terms of percentage of satisfied

deadlines and wasted energy. The quantitative analysis

is achieved without considering computation

overheads.

 The remainder of this paper is organized as follows.

In section 2, we describe the main issues in energy

harvesting and briefly describe projects that involve

energy harvesting. Section 3 gives background

materials around real-time scheduling and precisely

describes the optimal uni-processor scheduler, LSA,

under energy harvesting assumptions. In section 4, we

present five scheduling heuristics and we propose to

compare them to LSA. Section 5 reports results of a

simulation study and enables us to bring to light that

some heuristics may have similar performance to LSA

without incurring high overhead. We conclude in

section 6 with a brief discussion on ongoing research.

2. Energy harvesting

2. 1 Motivations
With the multitude of mobile devices that are used in

all areas of social and commercial life it is increasingly

important to design systems in an energy-efficient

manner. These autonomous systems (including sensor-

actuator networks) are being envisioned to carry out

complex task sets under real-time requirements

without human intervention. However, they require

power in order to operate, and if power outages occur,

critical data may be lost. The true autonomy of such

systems depends on their reliable and guaranteed

operation for extended times without maintenance.

 Most prior wireless monitoring systems in last

decades have relied on continuous power supplied by

batteries such as lithium-ion cells. Their disadvantage

is that they become depleted, must be periodically

replaced or recharged and consequently place hard

restrictions on products' usability, lifetime, and cost of

ownership. Moreover, while processing power roughly

doubles ever two years, battery technology advances at

a much more sluggish pace (battery capacity has

doubled every 10 years). In addition to the very slow

growth in their energy capacity, traditional batteries

have a limit to the total practical energy density they

can provide.

Even if it is possible to increase their energy density

by tenfold within a few years, we must still consider

practical safety concerns. First, given improper use,

batteries with extremely high energy densities can

become dangerous, explosive devices. Second, in

many embedded applications, battery replacement is

impractical or has high labour costs associated with

maintenance.

Besides, batteries suffer from self-discharge,

temperature, and other environmental effects that work

to bound their usable lifetime, even in the case of zero

use. Consequently for long-term, economical

deployment, embedded systems must gather energy

from the environment around it, a technique known as

energy harvesting or energy scavenging.

It concerns as well the high technology sectors as the

general public products in which wireless embedded

systems are used in a variety of applications, such as

environmental applications (forest fire and flood

detection, monitoring of drinking water and level air

pollution), military applications (battlefield

surveillance, reconnaissance of enemy forces), health

applications (tele-monitoring of human physiological

data, tracking and monitoring of doctors and patients),

home applications (intrusion detection), or commercial

applications (monitoring of product quality, climate

control in large buildings). While some of these

applications are marginal today, they will become

commonplace one day. Devices with maintenance-free

life of hundreds of years can now be envisaged if we

provide them with efficient strategies for harvesting,

storing and managing environmental energy. The

current perspectives of this market are thus very big

and promising.

2.2 History
A number of projects have used energy harvesting

technologies to deliver sustainable power for

autonomous sensors. Photovoltaic energy harvesting is

by far the most prevalent form of technology used in

current projects in part due to the plentiful supply of

light in many deployment settings, and the low cost of

photovoltaic modules. Nodes conventionally store

electrical energy in super-capacitors or batteries to

achieve operation. Heliomote has a solar panel and two

AA type Ni MH batteries [1]. The solar panel is

directly connected to its battery through a diode. Even

though ample power may be available on the solar

panel, a wireless sensor node can still draw current

from the battery. Prometheus has a super-capacitor as

a primary buffer, a Li-Polymer battery, and a solar

panel [2]. The solar panel first charges the super-

capacitor, from which the system draws current when

enough power is available on the solar panel. The

system draws current from the battery only when the

charge level of the primary buffer is less than a certain

threshold, and it seldom draws power from the battery.

Heliomote and Prometheus have permitted to show

that systems may operate perpetually through

scavenging solar energy. However, the common

drawback of these first prototypes is that they do not

target at real-time and quality of service requirements

that characterize most of embedded applications.

Several prototype systems incorporating vibration

energy harvesting have been developed too. For

example, the S5NAP uses a commercially-available

electromagnetic vibration energy harvester to power

an accelerometer based condition monitoring system.

In this system, energy harvested from vibrations is

buffered in super-capacitors to permit nodes to draw

large bursts of power during radio transmissions and

sensing operations [3].

Another project named ShiMmer uses piezoelectric

transducers to evaluate a portion of a structure (i.e. a

bridge) to determine if damage exists. It relies on a

wireless platform that combines active sensing and

localized processing with energy harvesting to provide

long-lived structural health monitoring. One of the

objectives of ShiMmer project is to create a robust and

flexible software controller that can manage both the

energy and the task execution [4].

3. Scheduling with energy constraints

3.1 Background materials
Most of embedded applications require periodic

activities that have to be cyclically executed at fixed

rates and within special deadlines. Typically, each

periodic instance is assigned a relative deadline equal

to the task period and is treated as a hard job. Thus, a

periodic task is executed only if all its instances are

guaranteed to complete within their deadlines.

Schedulability analysis of periodic task sets can easily

be performed both under fixed and dynamic priority
assignments. In particular, a lot of work has been done

for the Rate Monotonic (RM) and the Earliest

Deadline First (EDF) algorithms [5]. Schedulability

analysis has also been extended for the case in which

tasks use shared resources or run in the presence of

aperiodic activities, under fixed priority scheduling

and in dynamic priority systems as well [6] [7].
While EDF (dynamic priority depending on urgency)

and RM (fixed priority depending on period) can

support sophisticated task set characteristics such as

deadlines, precedence constraints, shared resources,

jitter, etc., they are all open loop scheduling

algorithms. Open loop refers to the fact that once

schedules are created they are not "adjusted" based on

continuous feedback. Systems with open-loop

schedulers are usually designed based on worst-case
parameters. Such an approach can result in a highly

underutilized system based on extremely pessimistic
estimation of workload (or energy). While open-loop

scheduling algorithms can perform well when the

workload and the processing performance are

accurately modelled, they perform poorly in

unpredictable dynamic systems including regenerative

energy dependent ones.

 Only in the past decade, researchers started to

address power and scheduling issues with the objective

of either minimizing power usage under timing

constraints or maximizing the system performance

under the energy constraints. Nevertheless, they did

not consider the rechargeability of the batteries. For

example, EDF and RM scheduling have been extended

to variable-voltage processors. The idea is to save

power by slowing down the processor just enough to

meet the deadlines [8]. But solely applying these

techniques has limitations in energy harvesting

systems because they minimize CPU power, rather

than they dynamically manage power according to the

profiles of both available energy and processor

workload.

 The performance of a practical energy harvesting

real-time system is measured by the deadline miss rate

and heavily depends upon the stored energy and the

energy harvested from the environment.

Unfortunately, the scavenging power is time-varying

and thus very unstable. Therefore, the accurate

modelling for energy source plays a key role in

designing a good policy to schedule the tasks and

reduce the deadline miss rate.

3.2 An optimal scheduling algorithm
The first work that really makes adaptive power

management for energy harvesting systems with real

time constraints has been published in [9]. There, C.

Moser et al. propose a real-time scheduling algorithm,

called Lazy Scheduling Algorithm (LSA) that uses

task postponement. Algorithm LSA is energy-

clairvoyant, i.e., the generated energy in the future is

known. Taking into account available time as well as

processable energy, an optimal task ordering can be

determined based on the prediction of the available

energy in the future.

This work deals with a mono-processor architecture

that draws the energy from storage and uses it to

process tasks (periodic or non periodic) with arrival

time, deadline, and worst case execution time. The

worst case execution time represents the maximum

energy demand of the task. The arrival time of the task

is not known beforehand. The deadline as well as the

worst case execution time of the task is unknown

before it is released. However, as long as the task is

released, all these parameters are determined. They

assume that tasks are preemptable and execute

according to the earliest deadline first policy.

At any time, the energy source module harvests the

energy from its ambient environment and then

converts it into electrical energy. The electrical energy

can be stored in the energy storage (battery), whose

capacity is precisely known. The stored energy is

assumed to be known at the system level at any time

and is no more than the storage capacity. It is assumed

that the energy storage is ideal and the battery can be

recharged up to its capacity. Likewise, it can also be

completely discharged to as less as zero. If the stored

energy reaches the capacity, the incoming harvested

energy overflows the storage and is discarded.

According to LSA, the processor executes all tasks at

full power when the battery is full time, and the system

starts executing a task if the task is ready and has the

earliest deadline among all ready tasks and the system

is able to keep on running at the maximum power until

the deadline of the task.

Contrary to greedy scheduling algorithms, LSA

hesitates to power tasks until it is necessary to respect

timing constraints. In that sense, tasks are executed

neither as soon as possible nor as late as possible. In

this paper, the authors also discuss an admittance test

that decides, whether a set of real-time tasks can be

scheduled without violating deadlines. Another crucial

question which has been solved is how to dimension

the capacity of the battery that ensures continuous

operation. The simulation study demonstrates that

achievable capacity savings between 20% and 45% are

obtained comparing the classical Earliest Deadline

First algorithm. However, all theses measurements

ignore on line computational costs.

While optimal in the case of a single speed

processor, LSA algorithm has the following

drawbacks:

 ● The consumption power of the task is assumed to

be characterized by some value. This implies that for

every task, its total energy consumption is directly

connected to its execution time through the constant

power of the processing device. However, in practice,

the total energy which can be consumed by a task has

no correlation with the worst case execution time.

 ● Renewable energy sources must be accurately

modelled, otherwise the performance of LSA will be

degraded.

 ● Scheduler LSA requires a lot of mathematical

computations to be performed on-line. So, in practice,

we have to consider its computational overhead, i.e.

the cost of its operation both in terms of time and

energy consumption.

4. Description of scheduling heuristics

To evaluate the effectiveness of the LSA algorithm

on energy saving and performance improvement, we

developed a discrete-event simulation and compared

LSA to several scheduling heuristics, all using the

simple and easy to implement earliest deadline rule:

 ● Heuristic 1: EDt. Before starting the execution of

the highest priority task which is ready, a test is

performed to compare the energy level of the battery

to the total energy required by the task for its

execution. If the energy available in battery is

sufficient, the task is authorized to execute. Otherwise,

the processor is put into sleep mode until the battery

contains enough energy to run it. According to this

scheduler, we never start execution of a task if there is

no sufficient energy to execute it totally.

 ● Heuristic 2: EDi. All the tasks are processed as

soon as possible according to EDF until the battery is

empty. Then, the processor is put into sleep mode until

the next release date i.e. the next instant corresponding

to the arrival of another ready task. During that period,

the battery will replenish and necessarily, the

processor will be active at that instant for executing

the highest priority task.

 ● Heuristic 3: EDd. As previously, all tasks execute

as soon as possible according to EDF until there is no

more energy available in the battery. Then, all ready

tasks are discarded and the processor is put into sleep

mode until the next release time.

 ● Heuristic 4: EDu. Compared to EDi, EDu is

similar but lets the processor in sleep mode just during

one time unit whenever the battery is empty.

 ● Heuristic 5: EDc. Compared to EDd, EDc is

similar but just deletes the current active task instead

of discarding all the tasks waiting for execution. The

processor is put into sleep mode until the arrival of a

new task even if the list of ready tasks may not be

empty.

 Edi, EDd, EDu and EDc execute tasks as soon as

possible i.e. as long as the battery contains at least one

unit of energy. These are typical greedy scheduling

strategies which mainly differ each other in the way of

managing energy lack situations. In contrast, EDt will

test dynamically energy availability before running

tasks and does not greedily consumes energy. Let us

note that for every heuristic, as soon as a deadline is

missed, the corresponding task is aborted for

immediately stopping the overload situation and

limiting wasted energy.

5. Experiments

5.1 Description of the simulator
In order to evaluate and compare the performance

and the effectiveness of the scheduling heuristics to

the optimal algorithm, we developed a discrete-event

simulation in C/C++. The simulator has been designed

specifically for any periodic task set under energy

constraints. By using it, we can report details of the

schedule produced for any task set with given energy

storage capacity and energy source profile.

In our study, we consider the scheduling problem of

periodic tasks. We assume that deadlines are less than

or equal to periods and greater than or equal to

computation times. So we use a task generator to

produce 30 periodic task sets, each consisting of 6

tasks with a least common multiple of the periods

(often called hyper-period) equal to 300 time units.

The rechargeable power is variable with time in

practice. But in this paper, we report results when the

source power is constant along time, equal to 6. In the

first experiment, the battery capacity is 10. In other

terms, 10/6 units of time are required to replenish the

energy storage from the environmental power source.

Simulations have been processed over 5

hyperperiods with a mono-frequency processor which

is characterized by its maximum consumption power,

here equal to 8 (watts). In any case, we assume that

the energy storage is fully charged at the beginning of

the simulation.

5.2 Experiment 1: Varying the processing load
Figure 1 presents the ratios of satisfied deadlines for

the heuristics and the optimal algorithm. It clearly

shows that the performances of all algorithms degrade

when the processor utilization factor increases. Figure

1 naturally shows that optimal LSA outperforms all

other policies. And LSA has the softest degradation,

and EDd has the strongest one. Velocities of

degradations for the other heuristics are intermediate.

For 60% processor utilization, LSA permits to satisfy

90% task deadlines while EDd, the worst one satisfies

about 40% task deadlines. And for 100% processor

utilization, LSA succeeds in satisfying about 60% task

deadlines while the performance of EDd drops to less

than 10%. From a general view, higher is the processor

utilization, higher is the gain of LSA compared to

heuristics, given a power source profile and a battery

capacity. For every processor load, EDd provide the

worst performance. Nevertherless, performance

improvement of LSA over EDi and EDu is always less

than 20% and less than 10% for very highly loaded

systems.

p
e

rc
e

n
ta

g
e

 o
f

d
e

a
d

li
n

e
s
 s

a
ti
s
fi
e

d
 (

%
)

0

20

40

60

80

100

120

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

utilization factor of processor U

LSA

EDt

EDi

EDd

EDu

EDc

Figure 1: Percentage of satisfied deadlines, making

vary the processing load for a given battery capacity

5.3 Experiment 2: Varying the battery

capacity
We choose three different values for U, 0.2, 0.5 and

0.8 respectively representing low, medium and high

system load. And for each load and a given source

power, we make vary the capacity of the battery. The

objective of such study amounts to determine optimal

dimensioning of the battery for each scheduler and a

given tolerance expressed in terms of missed

deadlines.

Figure 2 (a) is relative to low processing load

(U=0.2) and consequently to low energy requirement.

When the battery capacity is less than 12, difference of

performance between LSA and EDi is very large and

as the battery capacity increases, the gaps are getting

smaller. For a battery capacity equal to 3, 100%

deadlines are satisfied under LSA, Edi and EDu while

less than 10% respectively 30% under EDd

respectively EDt and EDc. When the battery capacity

is larger than 18, all schedulers perform quasi

identically. When the battery capacity is greater than

27, all schedulers achieve exactly 100% satisfied

deadlines. This simulation result clearly indicates that

for low processing loads and low battery capacities,

LSA, EDu and Edi outperform very significantly the

other heuristics in terms of deadline meeting.

Figure 2 (b) shows that the performances of all

schedulers are degraded when the processing load is

0.5. When the size of the battery is less than 30, no

strategy can achieve 100% satisfied deadlines

including LSA and EDi. To guarantee that LSA

achieves 100% satisfied deadlines, the battery capacity

should be larger than 40. Consequently, we see that if

we make the load 2.5 times, we have to make the

battery capacity more than 10 times to guarantee the

same level of performance. As in previous curve, it

clearly appears that behaviour of EDt, EDc and EDd

are very sensitive to the size of the energy storage. To

ensure 40% satisfied deadlines, they require a battery

capacity at least equal to 5 while they require a battery

capacity equal to 30 to guarantee 90% satisfied

deadlines. In the same capacity range, LSA will

respectively guarantee between 90% and 100%

deadlines.

p
e

rc
e

n
ta

g
e

 o
f

d
e

a
d

li
n

e
s
 s

a
ti
s
fi
e

d
 (

%
)

0

20

40

60

80

100

120

3 6 9 12 15 18 21 24 27 30

Battery capacity C

LSA

EDt

EDi

EDd

EDu

EDc

(a) U=0.2

p
e

rc
e

n
ta

g
e

 o
f

d
e

a
d

li
n

e
s
 s

a
ti
s
fi
e

d
 (

%
)

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50

Battery capacity C

LSA

EDt

EDi

EDd

EDu

EDc

(b) U=0.5

p
e

rc
e

n
ta

g
e

 o
f

d
e

a
d

li
n

e
s
 s

a
ti
s
fi
e

d
 (

%
)

0

10

20

30

40

50

60

70

80

90

8 16 24 32 40 48 56 64 72 80

Battery capacity C

LSA

EDt

EDi

EDd

EDu

EDc

(c) U=0.8

Figure 2: Percentage of satisfied deadlines, making

vary the battery capacity for a given processing load

Figure 2 (c) reports the results for high processing

loads (U=0.8). Comparing to the previous curves, a

higher battery capacity is required to provide the same

performance level. No scheduler is able to provide

100% satisfied deadlines even if the battery capacity is

more than 80. The system is highly time constraint and

there is no flexibility for constructing the schedule

which may be unfeasible even for high battery

capacities. Except for very low battery capacities, all

policies yield similar performance with a difference

limited to 10%. There is consequently no significant

motivation to increase the battery size for improving

performance.

6. Conclusion

Careful energy management is the key to providing

the best possible performance in real-time harvesting

systems. In this paper we have presented scheduling

heuristics in order to compare them to the optimal

algorithm known as LSA. We have implemented the

policies and reported results showing that the optimal

policy outperforms the heuristics that we examined.

Results were in terms of percentage of satisfied

deadlines which is commonly used to measure the

performance of real time systems. However, the

experiment reveals that, under all processing loads, the

gain is not significant compared to heuristic EDi that

executes tasks greedily according to Earliest Deadline

First until the energy storage unit be empty and then

lets the processor idle until the next release time.

Moreover, practical implementation of LSA requires

exact prediction of environmental energy in order to

compute dynamically the exact start time of every

task. Approximation on the above quantities will make

LSA a sub-optimal scheduler, actually providing worst

performance relative to the proposed heuristics while

leading to higher computational overheads. This

interesting issue needs more attention that will be in

our immediate research plan. We are measuring the

impact of approximating energy availability on the

effective performance of LSA and the actual gain of

LSA if still existing.

References

[1] V. Raghunathan, A. Kansal, et al, “Design

considerations for solar energy harvesting wireless

embedded systems”, In Proceedings of the Fouth

International Symposium on Information Processing in

Sensor Networks, pp 457-462, UCLA, Los Angeles,

USA, April 2005.

[2] X. Jiang, J. Polastre, and D. E. Culler, “Perpetual

environmentally powered sensor networks”, In

Proceedings of the Fourth International symposium on

Information Processing in Sensor Networks, pp 463-

468, Los Angeles, USA, April 2005.

[3] S.E. George, M Bocko and G.W. Nickerson,

“Evaluation of a vibration-powered, wireless

temperature sensor for health monitoring”, In IEEE

Aerospace Conference, pp 3775-3781, 2005.

[4] D. Dondi, A. Di Pompeo, C. Tenti, and T. S.

Rosing, “SHiMmer: a Wireless Harvesting Embedded

System for Active Ultrasonic Structural Health

Monitoring”, presented at SENSORS, 2010 IEEE, 1-4

November. 2010.

[5] C.L. Liu and J.W. Layland, “Scheduling

Algorithms for Multiprogramming in Hard Real-time

Environment”, Journal of ACM 20(1), pp. 46-61,

1973.

[6] H. Chetto and M. Chetto, “Some Results of the

Earliest Deadline Scheduling Algorithm”, IEEE

Transactions on Software Engineering, Vol. 15, No.

10, pp 1261-1269, 1989.

[7] J.W.S. Liu, “Real-Time Systems”, Prentice Hall,

610 pages, march 2000.

[8] G. Quan and X. S. Hu, “Designing Embedded

Processors, A Low Power Perspective”, Springer

Netherlands, Chapter 10, 2007.

[9] C. Moser, D. Brunelli, L. Thiele, and L. Benini,

“Real-time scheduling with regenerative energy”, in

Proc. of the 18th Euromicro Conference on Real-time

Systems (ECRTS06), pp 261-270, Dresden, Germany,

October, 2006.

