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émanant des établissements d’enseignement et de
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Abstract—In this paper, the generation of 16-QAM and
64-QAM space-time trellis codes (STTCs) for several transmit
antennas is considered. The main problem with an exhaustive
search is the important time to find the best 2

2n-QAM STTCs,
especially for great values of n and for great numbers of transmit
antennas. In order to reduce this search time, an efficient method
must be used to generate optimal 22n-QAM STTCs. Thus, a new
method based on the decomposition of the Euclidean distance
between 2 codewords is proposed to design the optimal STTCs.
Thanks to this new method, the first 16-QAM STTCs with more
than 2 transmit antennas and the first 64-QAM STTCs with 2
and 3 transmit antennas are proposed. The performance of these
new codes is evaluated by simulation.

I. INTRODUCTION

Introduced by Tarokh et al. in [1], space-time trellis codes

(STTCs) reduce the detrimental effects of fading in order to

improve the error performance. STTCs use trellis-coded mo-

dulations (TCMs) over multiple input multiple output (MIMO)

channels via several transmit and receive antennas. Thus,

STTCs combine diversity gain and coding gain leading to a

reduction of the error probability.

In the case of slow fading Rayleigh channels, the rank and

determinant criteria are proposed in [1] to reduce the pairwise

error probability (PEP) of STTCs. In [2], the Euclidean

distance (ED) between two codewords is revealed to strengthen

the design of STTCs. This ED criterion is used to construct

4-PSK and 8-PSK STTCs when the product nTnR is large

[3], [4] where nT and nR are the number of transmit and

receive antennas respectively. In [5], Liao et al. show that

the code performance is also governed by the union bound

which is a function of PEP and the distance spectrum [6]. The

distance spectrum shows the weight repartition of either the

determinants for a small product nTnR or the EDs between

two codewords for a great product nTnR.

In [7], Lui et al. propose the Σ0 criterion, which is a specific

rank criterion to design 22n-QAM STTCs with n ∈ N
∗. New

16-QAM STTCs with improved performance are presented

in [8], governed by both Σ0 criterion and trace criterion.

To design the best STTCs, Hong et al. [9] consider the

union bound with the distance spectrum computed for the

determinants. Regrettably, these new 16-QAM STTCs are

given with only 2 transmit antennas because the exhaustive

search for 16-QAM STTCs with more than 2 transmit antennas

requires a long search time.

The focus of this paper is to propose a method to generate

22n-QAM STTCs such as 16/64-QAM STTCs which reduces

the search time compared to the exhaustive search. This

method is based on the decomposition of the ED between

2 codewords and the partition of the generator matrix of the

code into blocks. Each term of the ED is computed via specific

blocks of the generator matrix. The search method consists in

selecting blocks which increase the terms of ED between 2

codewords.

The rest of the paper is organized as follows. The system

model is given in section II. The design criteria of 22n-QAM

STTCs are reviewed in section III. Section IV describes the

method used to create new 16/64-QAM STTCs which are

presented in section V. The performance of these new STTCs

is given in section VI.

II. SYSTEM MODEL

We consider a 22n-QAM 4nν states space-time trellis en-

coder with nT transmit antennas, as proposed in [7]–[9]. For

n = 2, i.e. for a 16-QAM, this encoder is shown in Fig. 1.

For a 22n-QAM STTC, at each time t ∈ Z, the input

mapper converts the 2n input bits bt1 · · · b
t
n and btn+1 · · · b

t
2n

into 2 input symbols xt
1 ∈ Z2n and xt

2 ∈ Z2n via the

natural mapping, where btn and bt2n are the least significant

bits (LSB). The input block containing these two Z2n input

symbols is followed by ν memory blocks of the same length.

Each memory block contains two memory-cells for two Z2n

symbols. A state at time t is defined by the values of the 2ν
symbols of the memory blocks. At each time t, the two Z2n

symbols of each block are replaced by the two Z2n symbols

of the previous block. For each block i, 1 ≤ i ≤ ν + 1,

the lth symbol with l ∈ {1, 2} is associated to nT complex

coefficients gkl,i = gk,Il,i + jgk,Ql,i ∈ Z2n(j) where Z2n(j) is the

complex ring of the integers modulo 2n and 1 ≤ k ≤ nT .

With these nT × 2(ν + 1) complex coefficients, the generator

matrix GGG is obtained

GGG = GGGI + jGGGQ

=
[

G1,I
1 G1,I

2 | · · · |Gν+1,I
1 Gν+1,I

2

]

+j
[

G1,Q
1 G1,Q

2 | · · · |Gν+1,Q
1 Gν+1,Q

2

]

, (1)

with Gi,I
l = [g1,Il,i · · · gnT ,I

l,i ]T ∈ Z
nT

2n and Gi,Q
l =



g1,I1,1 + jg1,Q1,1 g1,I2,1 + jg1,Q2,1 g1,I1,2 + jg1,Q1,2 g1,I2,2 + jg1,Q2,2
g1,I1,ν+1 + jg1,Q1,ν+1 g1,I2,ν+1 + jg1,Q2,ν+1

gk,I1,1 + jgk,Q1,1 gk,I2,1 + jgk,Q2,1 gk,I1,2 + jgk,Q1,2
gk,I2,2 + jgk,Q2,2 gk,I1,ν+1 + jgk,Q1,ν+1 gk,I2,ν+1 + jgk,Q2,ν+1

gnT ,I
1,1 + jgnT ,Q

1,1 gnT ,I
2,1 + jgnT ,Q

2,1 gnT ,I
1,2 + jgnT ,Q

1,2 gnT ,I
2,2 + jgnT ,Q

2,2 gnT ,I
1,ν+1 + jgnT ,Q
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Fig. 1. 16-QAM 4
2ν states space-time trellis encoder with nT transmit antennas.

[g1,Ql,i · · · gnT ,Q
l,i ]T ∈ Z

nT

2n . In this paper, the matrix V T repre-

sents the transpose of V .

At each time t, the encoder output YXt =
[

yt1y
t
2 · · · y

t
nT

]T
∈

Z
nT

2n (j) is given by

YXt = GGGXt mod 2n

= GGGIX
t + jGGGQX

t mod 2n, (2)

where Xt = [xt
1x

t
2| · · · |x

t−ν
1 xt−ν

2 ]T ∈ Z
2(ν+1)
2n is the

extended-state at time t defined by the two Z2n symbols of

the input block and the ν memory blocks.

At time t, the 22n-QAM signal stk of the kth transmit

antenna is given by the mapping function stk = Φ(ytk) defined

by

Φ : Z2n(j) → C

stk = ytk −
2n − 1

2
(1 + j). (3)

Finally, each output signal stk is send by the kth transmit

antenna. The MIMO signals transmitted simultaneously over

the fading MIMO channel are given by St =
[

st1 · · · s
t
nT

]T
and

the column matrix Rt = [rt1 · · · r
t
nR

]T of the receive MIMO

signals with nR the number receive antennas can be written

as

Rt =HHHtSt +N t, (4)

where N t = [nt
1 · · ·n

t
nR

]T is a column matrix of complex

additive white gaussian noises (AWGN) at time t and HHHt is

a nR × nT matrix representing the complex path gains of the

MIMO channel between the transmit and receive antennas.

III. DESIGN CRITERIA

The main design criteria have been established in [1]–[3] in

order to decrease the bit and frame error rates. In this paper,

only the case of slow fading channels is considered, i.e. the

fading coefficients within each frame are constant. Besides, we

assume that the decoder uses a maximum likelihood algorithm

to estimate the transmitted signals.

The main goal of this design is to reduce the PEP which is

the probability that the decoder selects an erroneous frame. It

is possible to represent a codeword of L MIMO signals starting

at t = 0 by a nT ×L matrix SSS = [S1S2..SL] where St is the

tth MIMO signal. An error occurs if the decoder decides that

another codeword EEE = [E1E2...EL] is transmitted.

Let define the nT × L difference matrix BBB = EEE −SSS:

BBB =







e11 − s11 . . . eL1 − sL1
...

. . .
...

e1nT
− s1nT

. . . eLnT
− sLnT






. (5)

The nT × nT product matrix AAA = BBBBBB∗ is introduced,

where BBB∗ denotes the hermitian of BBB. We define r =
min(rank(BBB)), where AAA is computed for all pairs of coded

frames (EEE,SSS). The design criteria depend on the value of the

product rnR.

rnR ≤ 3: In this case, for a slow Rayleigh fading channel,

two criteria have been proposed [1], [5] to reduce the PEP:

• AAA has to be a full rank matrix for any pair (EEE, SSS).
• The coding gain is given by η =

∑

d

N(d)d−nR , where

N(d) is defined as the average number of error events

with determinant d = det(AAA). The best codes must have

the minimum value of η.

rnR ≥ 4: In [3], based on [2], it is shown that for a

large value of rnR which corresponds to a large number of

independent SISO channels, the PEP is minimized if the sum

of all the eigenvalues of the matrix AAA is maximized. Since AAA
is a square matrix, the sum of all the eigenvalues is equal to

the trace of the matrix AAA given by

tr(AAA) =
L
∑

t=1

d2E(E
t, St) (6)

where d2E(E
t, St) =

nT
∑

k=1

|etk − stk|
2

is the ED between the

MIMO signals Et and St at time t.
For each pair of codewords, tr(AAA) is computed. The mi-

nimum trace is the minimum of all these values tr(AAA). The



minimization of the PEP amounts to using a code which has

the maximum value of the minimum trace. In other words,

the EDs between two paths of the trellis must be maximized.

In [5], it is also stated that to minimize the frame error rate

(FER), the number of error events with minimum EDs (or

trace) has to be minimized.

In this paper, we consider the case rnR ≥ 4 which is

obtained when the rank of STTCs is greater than 1 and there

are at least 2 receive antennas.

IV. CODES DESIGN VIA THE EDS DECOMPOSITION

Since the number of 22n-QAM STTCs is large, an efficient

method to design the best codes must allow to decrease the

search time compared to the exhaustive search. The proposed

method is based on the decomposition of EDs between two

different codewords.

In the next sections, the ED between 2 codewords is notified

by ’Cumulated ED’ (CED), in opposition with the ED between

two MIMO signals.

A. Preliminary

This section gives tools and definitions to design STTCs

via the EDs decomposition. The ED criterion is based on

the maximization of the minimum CED. At each time t, the

CED is the sum of the Euclidian distances between the MIMO

signals of two different codewords.

To compute the CEDs, two conditions must be reminded:

• Initial condition: the initial state of the encoder must be

equal to W 0 = [00| · · · |00].
• Final condition: the final state of the encoder must be

equal to WL+1 = [00| · · · |00].

For a 22n-QAM 22nν states STTC with nT transmit antennas,

two different input sequences of 2(L− ν) Z2n symbols given

by the input mapper, as shown in Fig. 1, are considered:

• Xe = [x1
e,1x

1
e,2|x

2
e,1x

2
e,2| · · · |x

L−ν
e,1 xL−ν

e,2 ]

• Xs = [x1
s,1x

1
s,2|x

2
s,1x

2
s,2| · · · |x

L−ν
s,1 xL−ν

s,2 ]

These two sequences generate two codewords EEE and SSS of

length L. These sequences correspond to two different paths

in the trellis.

At each time t ≤ L, the two symbols xt
e,1x

t
e,2 and xt

s,1x
t
s,2

of the sequences Xe and Xs feeded into the encoder supply

the two MIMO signals St = [st1 · · · s
t
nT

] and Et = [et1 · · · e
t
nT

]
given by

Et = Φ
(

GGGXt
e mod (2n)

)

(7)

St = Φ
(

GGGXt
s mod (2n)

)

, (8)

where Xt
e = [xt

e,1x
t
e,2| . . . |x

t−ν
e,1 xt−ν

e,2 ] and Xt
s =

[xt
s,1x

t
s,2| . . . |x

t−ν
s,1 xt−ν

s,2 ] are the extended-states at time t co-

rresponding to the two sequences Xe and Xs respectively.

The ED between two corresponding MIMO signals at time

t is given by d2E(E
t, St) =

nT
∑

k=1

|etk − stk|
2
.

It is possible to compute this ED thanks to the two corres-

ponding extended-states Xt
e and Xt

s and the generator matrix

GGG via the function DE defined as

DE : Z
2(ν+1)
2n × Z

2(ν+1)
2n → R

+

DE

(

Xt
e, X

t
s

)

= d2E
(

Φ(GGGXt
e),Φ(GGGXt

s)
)

. (9)

Thus, each CED is given by

CED(Xe, Xs) =

L
∑

t=1

DE(X
t
e, X

t
s). (10)

The first term of each CED is DE(X
1
e , X

1
s ) with

X1
e = [x1

e,1x
1
e,2|00|...|00] (11)

X1
s = [x1

s,1x
1
s,2|00|...|00] (12)

and the last term is DE(X
L
e , X

L
s ) with

XL
e = [00|...|00|xL−ν

e,1 xL−ν
e,2 ] (13)

XL
s = [00|...|00|xL−ν

s,1 xL−ν
s,2 ] (14)

Besides, it is easy to show that the mth first term and the

(L−m+1)th last term of CEDs depend of the m first blocks

and the m last blocks of GGG respectively for m ≤ ν + 1.

Let us consider the case of 2n(ν+1) states 22n-QAM STTCs.

if

• ν is odd, we define αF = ν+1
2 and αL = αF − 1.

• ν is even, we define αF = ν
2 and αL = αF .

To ensure that the CEDs of STTCs are maximized, the sum

of αF first terms
αF
∑

t=1

DE(X
t
e, X

t
s) (15)

must be maximized for all pairs (Xt
e, X

t
s) via the selection of

the αF first blocks.

In the same way and independently of the sum of the αF

first terms, the sum of the αL last terms

L
∑

t=L−αL+1

DE(X
t
e, X

t
s) (16)

must be maximized for all pairs (Xt
e, X

t
s) via the selection of

the αL last blocks. The (αF + 1)th term must be selected to

maximized the CED and create a generator matrix with a rank

greater than 1 in function of the previous selections.

In these two case (ν is odd or even), the set of the

αF first blocks is called BF and the set of the αL

blocs is called BM . No block of GGG belongs to both

BF =
{[

G1
1 · · ·G

1
n

]

, · · · , [GαF

1 · · ·GαF
n ]

}

and BL =
{[GαL+1

1 · · ·GαL+1
n

]

, · · · ,
[

Gν+1
1 · · ·Gν+1

n

]}

i.e.

BF

⋂

BL = ∅. (17)

Thus, the αF first terms and the αL last terms are totally

independent. The (αF +1)th block creates the dependance of

these sets of terms in order to maximize the CED.

Remark : If ν = 1, αL = 0. In this case, the (αF + 1)th

block must be maximized the last term independently of the

first block.



B. The EDs decomposition

To assure that the CED between two Z2n sequences Xe =
[x1

e,1x
1
e,2| . . . |x

L−1
e,1 xL−1

e,2 ] and Xs = [x1
s,1x

1
s,2| . . . |x

L−1
s,1 xL−1

s,2 ]
is maximized, we proceed as follows.

The minimum result of the sum of αF first terms of the

CED
αF
∑

t=1

DE(X
t
e, X

t
s) (18)

must be maximized for all pairs (Xt
e, X

t
s). Therefore, The αF

first blocks must be selected as followed:

• The first block used to compute the first term

DE(X
1
e , X

1
s ) must be selected to generate a subset of

Z
nT

2n (j) containing the MIMO symbols separated by the

largest EDs.

• if i blocks have been already selected with 1 ≤ i ≤
αF −1, the (i+1)th block must be selected to maximized
i+1
∑

t=1
DE(X

t
e, X

t
s).

In the same way, The minimum result of the sum of the αL

last terms
L
∑

t=L−αL+1

DE(X
t
e, X

t
s) (19)

must be maximized for all pairs (Xt
e, X

t
s). Therefore, the αL

last blocks must be selected as followed:

• The last block used to compute the last term

DE(X
L
e , X

L
s ) must be selected to generated a subset of

Z
nT

2n (j) containing the MIMO symbols separated by the

largest EDs.

• if i blocks have been already selected with 1 ≤ i ≤ αL−
1, the (i+1)th last block must be selected to maximized
L
∑

t=i

DE(X
t
e, X

t
s).

Further on, the last block must generate a subset and must

maximized the CED.

Remark: If the EDs decomposition is used to design a

4n-QAM STTC, the MIMO symbols originating from or

merging into the same state are separated by the largest EDs.

This principe is one of the rules of the set partitioning proposed

by Ungerboeck to design TCMs [10].

C. Example of the EDs decomposition for 22n-QAM, 4n states

STTCs

The case of 22n-QAM 4n states (ν = 1) STTCs with

nT transmit antennas is presented. The generator matrix GGG
is constituted by 2 blocks of 2 columns. Each column Gi

l

belongs to Z
nT

2n (j) for i ∈ {1, 2} and l ∈ {1, 2}.

To find the best code, the first set is the generation of

optimal block. In fact, each block i of the generator matrix

generates a set of MIMO symbols (which is a subgroup of

Z
nT

2n (j)) given by

Λi =

{

2
∑

l=1

xlG
i
l mod 2n/xl ∈ Z2n

}

. (20)

The blocks with the best distance spectrum are called ’optimal

blocks’. The distance spectrum of the block i is the repartition

of EDs between the elements of Λi.

For example, the minimal EDs between the elements of 16-

QAM optimal blocks with nT = 2 is 4, this minimum EDs

with nT = 3 is 8 and the minimum ED with nT = 4 is 12.

For the 64-QAM optimal blocks, the minimal EDs between

the elements with nT = 2 is 9 and the minimum ED with

nT = 3 is 22. These EDs are given without normalization of

the power.

After this generation of optimal blocks, the codes are

designed by the combination of two different optimal blocks.

Among this set of codes, the best STTCs are those with the

best CEDs.

D. Example of the EDs decomposition for 22n-QAM 16n

states STTCs

The case of 22n-QAM 16n states STTCs with nT transmit

antennas is considered (ν = 2). The generator matrix GGG is

constituted by 3 blocks of 2 columns. Each column Gi
l belongs

to Z
nT

2n (j) for i ∈ {1, 2, 3} and l ∈ {1, 2}.

The CED is computed between two Z2n

sequences Xe = [x1
e,1x

1
e,2| · · · |x

L−2
e,1 xL−2

e,2 ] and

Xs = [x1
s,1x

1
s,2| · · · |x

L−2
s,1 xL−2

s,2 ]. The number of states

being 16n, then αF = 1 and αL = 1.

To design GGG, there are two steps:

• The first step is to select the elements of B1 and B3 used

to compute the first and the last terms. To maximize the

first and the last term, the first and the last blocks must

be selected among the optimal blocks. The generation of

optimal first and last blocks is identical to the generation

of the optimal blocks for the 4n states STTCs.

• The second step is the selection of the block B2. Its

columns must be selected to increase the minimal CED

of the generated code.

The columns of each block can be permuted to obtain the

codes with the best CED between two codewords.

E. Usefulness of the EDs decomposition

The first method used to design the 22n-QAM STTCs is

called Σ0 criterion [7]. Liu et al. exploit the linearity of codes

to decrease the complexity to compute the minimum rank

because this computation does not require to check the rank

for all pairs of possible input sequences.

In [8] the codes are designed according to 3 steps:

• The set of codes is reduced by exploiting the symmetry

of codes.

• Among this set of codes, the codes which achieve full

diversity are obtained via the Σ0 criterion.

• The ED criterion is applied within this new set of codes.

In the case of 16-QAM 16 states STTCs, the number of codes

is 416 ≈ 4.295 × 109. Wong et al. [8] reduce to 9,3% the

number of codes which must be analyzed via the ED criterion.

In [9], Hong et al. use the Σ0 criterion to find the codes

which achieve full diversity. Among these codes, the optimal



design based on the union bound [5] is used to optain the

best codes. In their paper, the time to generate the STTCs is

slightly reduced.

With the proposed method and without the properties of

symmetries, in the case of 16-QAM 16 states STTCs with

2 transmit antennas, there are 6 912 optimal blocks. With the

EDs decomposition, the generator is composed by two optimal

blocks. Thus, it is sufficient to analyze only 6 9122 codes i.e.

1.1% of the totality of codes.

In the case of 16-QAM 16 states STTCs, the number of

optimal blocks is 264 961. The total number of generator

matrices is about 2.8147×1014. The number of codes created

by the EDs decomposition is about 7.02× 1010 which corre-

spond to 0.02% of the totality of codes. For the 4n-QAM 4n

states STTCs, the percentage of codes generated by the EDs

decomposition decrease when the number of transmit antennas

or/and n increase.

Th percentage of 16-QAM 256 states STTCs designed with

the EDs decomposition is the same that the percentage of

16-QAM 16 states STTCs. In fact, for the 16-QAM 256

states STTCs designed with the EDs decomposition, the first

and the last block is selected belong to optimal block. The

’middle’ block is selected only to maximized the CED without

conditions.

V. NEW CODES

This section presents new codes and the known corres-

ponding codes. For each code, the minimum trace is given

without normalization. In Table I, the previous published

codes and new codes are shown. The WYCK’s code has been

presented in [8]. The Hong’s code has been presented in [9].

TABLE I
16-QAM STTCS WITH 2 TRANSMIT ANTENNAS

States Code GGG Trace

16 WYCK [8]
GGGI =

[

3 1 2 0

0 2 1 2

]

GGGQ =

[

0 1 1 0

2 1 1 1

] 12

16 Hong [9]
GGGI =

[

0 2 3 2

1 0 0 2

]

GGGQ =

[

0 1 1 2

2 2 2 1

] 8

16 New 1
GGGI =

[

0 1 2 2

0 2 3 2

]

GGGQ =

[

1 2 1 1

2 3 1 3

] 12

256 New 2
GGGI =

[

0 3 1 0 2 2

2 3 1 2 3 3

]

GGGQ =

[

1 1 1 3 1 3

0 2 2 0 1 0

] 18

Due to the complexity of the exhaustive search, no 16-QAM

STTC has been proposed with more than 2 transmit antennas.

Tables II and III show new proposed 16-QAM codes with 3

and 4 transmit antennas respectively. In Table IV, new 64-

QAM STTCs with 2 and 3 transmit antennas are given.

Despite the reduction of the number of analyzed codes, the

number of remaining codes is important.

TABLE II
16-QAM STTCS WITH 3 TRANSMIT ANTENNAS

States Code GGG Trace

16 New 3

GGGI =





1 0 1 2

2 0 0 1

0 2 1 1





GGGQ =





1 2 1 3

0 1 3 0

2 3 2 3





18

256 New 4

GGGI =





3 0 0 1 2 1

1 1 1 0 0 2

3 2 2 2 1 2





GGGQ =





0 3 0 2 0 1

2 1 1 1 3 0

1 3 2 0 2 0
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TABLE III
16-QAM 16 STATES STTCS WITH 4 TRANSMIT ANTENNAS

States Code GGG Trace

16 New 5

GGGI =









2 1 1 3

2 0 2 3

1 3 2 2

3 2 3 0









GGGQ =









3 0 3 2

1 1 3 3

0 3 0 2

2 2 0 3
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TABLE IV
64-QAM 64 STATES STTCS WITH 2 AND 3 TRANSMIT ANTENNAS

nT States Code GGG Trace

2 64 New 6
GGGI =

[

0 1 0 5

1 0 2 0

]

GGGQ =

[

2 2 5 5

2 5 2 1

] 25

3 64 New 7

GGGI =





0 2 1 0

4 3 0 1

1 0 0 2





GGGQ =





2 3 1 4

3 4 2 0

4 0 4 1
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VI. SIMULATION RESULTS

The performance of each code is evaluated by simulation

in a slow Rayleigh fading channel. The channel fading coeffi-

cients are independent samples of a complex Gaussian process

with zero mean and variance 0.5 per dimension. These channel

coefficients are assumed to be known by the decoder. Each

frame consists of 66 16-QAM or 64-QAM MIMO symbols,

as in [8], [9]. For the simulation, 2 and 4 receive antennas have

been considered. The decoding is performed by the Viterbi’s

algorithm.

The total transmitted power is normalized, i.e. the sum of

the powers of the transmitted signals is equal to 1. Thus, to

normalize the total transmitted power of 16-QAM STTCs, the

MIMO signals must be multiplied by 0.4472 if nT = 2, by

0.3651 if nT = 3 and by 0.3162 if nT = 4. For 64-QAM

STTCs, the MIMO signals must be multiplied by 0.2182 if

nT = 2 and by 0.1781 if nT = 3.

The performance of 16-QAM STTCs with 2 transmit an-

tennas given in Table II is presented in Fig. 2 for 2 and 4

receive antennas. The new 16-QAM 16 states code and the

corresponding WYCK’s code have the same performance, but

the research time to find the new code is much lower. The

performance of Hong’s code is slightly worse than the new



corresponding code because it has been designed with the rank

and determinant criteria. The Hong’s code is optimal with one

receive antenna.

Fig. 3 shows the performance of the new codes proposed

in Tables II and III in the case of 2 and 4 receive antennas.

Fig. 4 shows the performance of the new codes proposed

in Table IV in the case of 2 and 4 receive antennas.
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Fig. 2. 16-QAM 16/256 states STTCs with 2 transmit antennas and 2 & 4
receive antennas
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Fig. 3. 16-QAM 16/256 states STTCs with 3 & 4 transmit antennas and 2
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VII. CONCLUSION

The design of the QAM STTCs has been considered in

this paper. The difficulty to find the best QAM STTCs is

the number of codes which must be analyzed. For example,

there are several billions of 16-QAM 16 states STTCs with

2 transmit antennas. Thus, for the exhaustive search, the time

to find the best codes among all the possible codes is critical,

especially when the number of transmit antennas or/and the
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Fig. 4. 64-QAM 64 states STTCs with 2 & 3 transmit antennas and 2 & 4
receive antennas

number of states increase. Therefore, the previous publications

proposed only 16-QAM codes with two transmit antennas. In

this paper, a new efficient method to generate optimal QAM

STTCs is presented. This method is based on the Euclidean

distance decomposition and the division into blocks of the

generator matrix. It allows to reduce significantly the search

time to obtain the optimal codes. Thus, via this new method,

16-QAM STTCs with more than 2 transmit antennas and

64-QAM STTCs with 2 and 3 transmit antennas have been

proposed for the first time.
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