
Real-time Scheduling of periodic tasks in a

monoprocessor system with a rechargeable battery

Maryline Chetto, Hussein El Ghor

To cite this version:

Maryline Chetto, Hussein El Ghor. Real-time Scheduling of periodic tasks in a monoprocessor
system with a rechargeable battery. IEEE. The 30th IEEE Real-Time Systems Symposium,
Dec 2009, Washington, United States. pp.45, 2009. <hal-00542182>

HAL Id: hal-00542182

https://hal.archives-ouvertes.fr/hal-00542182

Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53012331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00542182


Real-time Scheduling of periodic tasks
in a monoprocessor system with rechargeable energy storage

Maryline Chetto and Hussein El Ghor
IRCCyN - University of Nantes

1 Rue de la Noë, F-44321 Nantes FRANCE
maryline.chetto@univ-nantes.fr, elghorh@irccyn.ec-nantes.fr

Abstract—We are interested in a real-time computing system
that is powered through a renewable energy storage device.
In this context, two constraints need to be addressed: energy
and deadlines. Classical task scheduling, in particular Earliest
Deadline First, only accounts for timing parameters of the
tasks and consequently is not suitable when considering energy
constraints. We show here how to modify Earliest Deadline so
as to account for the properties of the energy source, capacity of
the energy storage as well as energy consumption of the tasks.
We present a scheduling framework called EDeg (Earliest
Deadline with energy guarantee) and an exact feasibility test
that decides for periodic task sets, whether they can be
scheduled without deadline violations. To this end, we introduce
the concepts of energy demand and slack energy.

Keywords-scheduling; periodic tasks; earliest deadline; re-
newable energy;

I. INTRODUCTION

The problem of scheduling tasks on one processor to
meet deadlines and energy constraints has been the focus of
great interest for about ten years. However, few papers have
been devoted to emerging harvesting systems which need
to operate perennially thanks to the environmental energy.
A key consideration that affects power management in an
energy harvesting system is that instead of minimizing the
energy consumption and maximizing the lifetime achieved as
in classical battery operated devices, the system operates in
an energy neutral mode by consuming only as much energy
as harvested.

The system we target here consists of a processing unit,
an energy harvester such as a solar panel or a furl cell, and
a rechargeable energy storage such as a battery or a super-
capacitor. We consider a single processor that has to execute
a set of independent periodic tasks.

So the problem we have to deal with is: How can we
schedule the tasks so as to guarantee their timing constraints
perpetually by suitably exploiting both the processor and the
available ambient energy.

The goal of this work is first to construct an opti-
mal scheduling algorithm and second, to provide an exact
schedulability test. Finally, we show how to dimension the
capacity of the storage unit, provided that the worst case
recharging rate of the storage unit is enough for ensuring
neutral operation.

II. RELATED WORKS

In [1], the authors are interested in the problem of schedul-
ing periodic tasks in the so-called frame-based systems with
a rechargeable battery. In this model, all task periods are
identical, all task deadlines are equal to the common period.
Consequently, the order of task execution within a frame
is not crucial for whether the task set is schedulable or
not. Moreover, the power scavenged by the energy source
is assumed to be constant and all tasks consume energy
at a constant rate. A solution is presented that schedules
tasks in such a way that the wasted recharging energy
is minimized and the battery level is at all times within
two limits, starting with a battery fully charged. The idea
behind this algorithm is to insert as little idle time as
necessary for recharging the battery and minimizing the
length of the schedule. This work is certainly the first one
to concentrate on a rechargeable system with hard real-time
constraints. However, the solution only deals with frame
based systems under the restrictive hypothesis that each
task is characterized by an instantaneous consumption power
which is constant along time.

More recently, in [7] the so-called LSA scheduling algo-
rithm was proved to be optimal under a more generalized
model including hard deadline tasks, periodic or not. LSA is
a variation of the famous Earliest Deadline First scheduler:
the system starts executing a task only if the task is ready
and has the earliest deadline among all ready tasks and the
system is able to keep on running at the maximum power
until the deadline of the task. In that work, the consumption
power of the computing system is characterized by some
maximum value which implies that for every task, its total
energy consumption is directly connected to its execution
time through the constant power of the processing device.

However, in practice, the total energy which can be
consumed by a task has no correlation with the worst
case execution time [6]. For every task, the worst case
instantaneous consumption power depends on the circuitry
that is used by the task. It clearly appears as impractical to
determine the energy consumption of a task from the worst
case consumption power for the computing system. While it
is easy to determine the average consumption power of a task



(given by the execution time and the energy consumption),
this parameter is of no interest in the so-called hard real-time
applications.

Furthermore, some recent studies focused on how to
precisely compute the energy that is consumed by a program,
independently of the average or the worst case consumption
power of the computing system. More particularly, in [6]
a bound on worst-case energy consumption of a task is
computed through a static analysis by estimating an upper
bound on the energy consumption of all individual basic
blocks that make up the task.

III. MODEL AND TERMINOLOGY

A. Task Set

We study the case of a Hard Real-Time system which
is composed of periodic tasks. The arrival times, energy
demands and deadlines of these tasks are known in ad-
vance. Such a periodic task set can be denoted as follows:
τ = {τi, i = 1, . . . , n}. A four-tuple (Ci, Ei, Di, Ti) is
associated with each τi. In this characterization, task τi
makes its initial request at time 0 and its subsequent requests
at times kTi, k = 1, 2, ... called release times. The least
common multiple of T1, T2, . . . , Tn (called the hyperperiod)
is denoted by TLCM . Each request of τi requires a Worst
Case Execution Time (WCET) of Ci time units and has a
Worst Case Energy Consumption (WCEC) of Ei. We assume
that the WCEC of a task has no relation with its WCET.
A deadline for τi occurs Di units after each request by which
task τi must have completed its execution. We assume that
0 < Ci ≤ Di ≤ Ti for each 1 ≤ i ≤ n. We define:
• the processor utilization as Up =

∑n
i=1

Ci

Ti
.

• and the energy utilization as Ue =
∑n

i=1
Ei

Ti

A job is any request that a task makes. A four-tuple
(rj , Cj , Ej , dj) is associated with a job Jj and gives its
release time, worst case execution time, worst case energy
consumption and (absolute) deadline respectively. A job can
be preempted and later resumed at any time and there is no
time or energy loss associated with such preemption.

B. Energy

Our system uses an energy storage unit that has a nominal
capacity, namely E, corresponding to a maximum energy
(expressed in Joules or Watts-hour). The energy level has
to remain between two boundaries Emin and Emax with
E = Emax −Emin. If the storage is fully charged, and we
continue to charge it, energy is wasted. In contrast, if the
storage is fully discharged, no task can be executed.

In order to characterize the energy source, we define the
WCCR (Worst Case Charging Rate), namely Pr, which is
a lower bound on the harvested source power output. Pr

is then the instantaneous charging rate that incorporates all
losses caused by power conversion and charging process.

We assume that energy production times can overlap with
the consumption times.

C. Definitions

• A schedule Γ for τ is said to be valid if the deadlines
of all tasks of τ are met in Γ, starting with a storage
fully charged.

• A task set τ is said to be temporally-feasible if there
exists a valid schedule for τ without considering its
energy constraints.

• A task set τ is said to be feasible if there exists a valid
schedule for τ with considering its energy constraints.

• A scheduling algorithm will be called optimal if it finds
a valid schedule whenever one exists.

IV. BACKGROUND MATERIALS

The problem of scheduling periodic tasks on one pro-
cessor with no energy constraint has been an active area
of research for more than thirty years (see, e.g., [3]). In
[5], Dertouzos showed that Earliest Deadline First (EDF) is
optimal among all preemptive scheduling algorithms. EDF
schedules at each instant of time t, the ready task (i.e the
task that may be processed and is not yet completed) whose
deadline is closest to t. The EDF algorithm is typically
preemptive, in the sense that, a newly arrived task can
preempt the running task if its absolute deadline is shorter.
This dynamic priority assignment allows EDF to exploit
the full processor, reaching up to 100% of the available
processing time.

In general, the implementation of EDF consists in execut-
ing tasks according to their urgency, as soon as possible with
no inserted idle time. Such implementation is known as EDS
(Earliest Deadline as Soon as possible). Nevertheless, in
some applications, it can be preferable to postpone execution
of periodic tasks, executing them by the so called EDL
(Earliest Deadline as Late as possible) strategy, for exam-
ple when some additional aperiodic tasks with unexpected
arrival times require to be run as soon as possible [4].

V. FEASIBILITY ANALYSIS UNDER ENERGY
CONSTRAINTS

In order to develop a procedure for the feasibility assess-
ment of a periodic task set with energy constraints, we give
some definitions. Let us consider the periodic task set τ and
the interval [t1, t2).
• The processor demand of τ in [t1, t2), is
h(t1, t2) =

∑
Di≤t2−t1

(
1 +

⌊
t2−t1−Di

Ti

⌋)
Ci

• The energy demand of τ in [t1, t2), is
g(t1, t2) =

∑
Di≤t2−t1

(
1 +

⌊
t2−t1−Di

Ti

⌋)
Ei

The processor demand (resp. the energy demand) is a
measure of how much computation (resp. energy) is re-
quested by all the jobs which have both their release times
and their deadlines, in a given interval of time. It is clear



that for a given time length and among all intervals, the
initial one has the maximum fraction of processor and energy
demanded by the jobs i.e. h(t1, t2) ≤ h(0, t2 − t1) and
g(t1, t2) ≤ g(0, t2 − t1).

For simplicity, we respectively denote as h(t) and g(t)
the processor demand and the energy demand of the task
set τ in [0, t). So, h(t) =

∑
Di≤t

(
1 +

⌊
t−Di

Ti

⌋)
Ci and

g(t) =
∑

Di≤t

(
1 +

⌊
t−Di

Ti

⌋)
Ei.

Without energy constraint, the exact schedulability analy-
sis is based on the processor demand criterion and is stated
as follows [2]:

Theorem 1. A task set τ is temporally-feasible if and only
if Up ≤ 1 and ∀t > 0, h(t) ≤ t.

This exact feasibility test is of pseudo-polynomial com-
plexity since the points in which the test has to be performed
correspond to deadlines within the hyperperiod TLCM . Sug-
gestions for practical improvements in testing Theorem 1
have been given in [8] and [9].

Here, we extend Theorem 1 to account for energy con-
sumption:

Theorem 2. A task set τ is feasible if and only if
• τ is temporally-feasible,
• Ue ≤ Pr and ∀t > 0, g(t) ≤ E + Prt

VI. THE OPTIMAL SCHEDULING ALGORITHM

The intuition behind the scheduling algorithm is to run
tasks according to the earliest deadline first rule. However,
before authorizing a task to execute, the storage level must
be sufficient to provide energy for all future occurring tasks,
considering their timing and energy requirements and the
replenishment rate of the storage unit. And if this condition
is not verified, the processor has to be idle so that the storage
unit recharges as much as possible and as long as the system
will be able to meet all the deadlines i.e. the system will have
available time to remain idle. Following the idea described
above, we propose the EDeg (Earliest Deadline with energy
guarantee) algorithm. To formally present the algorithm, we
need to introduce two concepts:
• The slack time of the system at current time t, is

the length of the longest interval starting at t during
which the processor may be idle continuously while
still satisfying all the timing constraints.

• The slack energy of the system at current time t, is
the maximum amount of energy that can be consumed
from t continuously while still satisfying all the timing
constraints.

In the following description, t is the current time, E(t)
is the residual capacity of the storage unit at time t i.e.
the energy that is currently stored. Slack.energy(t) and
Slack.time(t) are respectively the slack energy and the
slack time at time t. PENDING is a boolean which equals

true whenever there is at least one job in the ready list queue.
We use the function wait() to put the processor to sleep and
function execute() to put the processor to run the ready job
with the earliest deadline.

The framework of the optimal scheduling algorithm is as
follows:

Algorithm 1 Earliest Deadline with energy guarantee algo-
rithm (EDeg)

while (1) do
while PENDING=true do

while (E(t) > Emin and Slack.energy(t) > 0) do
execute()

end while
while (E(t) < Emax and Slack.time(t) > 0) do

wait()
end while

end while
while PENDING=false do

wait()
end while

end while

We notice that:
• EDeg degenerates to an EDS policy if Emax = 0 and

an EDL (Earliest Deadline as Late as possible) policy
if Emax =∞.

• We never run out of storage (that is, we never dispatch
tasks when there is no energy); this is obvious from the
algorithm that does not allow tasks to run after Emin.

• We start charging the storage unit when, either it is
empty or there is no more sufficient energy to guarantee
the feasible execution of all future occurring tasks i.e.
the system has no more slack energy.

• the charging process aims to charge at the maximum
level provided there is sufficient slack time.

• We only waste recharging power when there are no
pending tasks and the storage unit is full.

As a consequence, we can prove the following theorem.

Theorem 3. Algorithm EDeg is optimal.

VII. PRACTICAL CONSIDERATIONS

The computations of Slack.energy(t) and Slack.time(t)
are thus the keys to the operation of the EDeg algorithm.
As shown in [10], the slack time of a periodic task set at
a given time instant can be obtained on-line by computing
the dynamic EDL schedule, with complexity O(K.n). n is
the number of periodic tasks, and K is equal to bR/pc,
where R and p are respectively the longest deadline and the
shortest period of current ready tasks.
The slack energy at time t is computed only when there is
at least one job, say Jj which will be released after t and
has a deadline dj that is less than or equal to that of the



highest priority job, ready at t. For such job, we compute
Slack.energy(Jj ,t), given by E(t)+Pr(dj−t)−Aj where Aj

is the processor demand within [t, dj). Slack.energy(Jj ,t)
clearly represents the amount of energy surplus in the
storage that can be used from t until the start time of Jj

while still guaranteeing its timing and energy requirements.
The slack energy of the system is determined by the
minimum slack energy of all the jobs. The complexity for
computing the slack energy is O(K.n) too.

A suggestion to improve the efficiency of the scheduler
in terms of overhead is to compute statically a lower bound
on the slack time and a lower bound on the slack energy
and use them instead of exact values which are computed
on-line. The effect will be only, first to stop charging earlier
and second to stop executing tasks earlier. As a consequence,
decreasing the processor overheads due to computations will
cause increasing the number of tasks preemptions.

VIII. ILLUSTRATIVE EXAMPLE

Consider a task set τ that is composed of the tree follow-
ing tasks: τ1(2, 16, 7, 20), τ2(2, 10, 4, 5) and τ3(1, 6, 9, 10).
The storage capacity is E = 10 and we assume that
Emin = 0 and Emax = E. The recharging power Pr is
constant and equal to 4. To simplify the illustration, we
assume that tasks consume energy at constant rate. We note
that the processor utilization and the energy utilization are
respectively 0.6 and 3.4, consequently no more than 1 and
4. By scheduling the task set τ according to EDF on the
first hyper-period i.e. from 0 to 20, we can verify that τ is
temporally-feasible. The schedule which is produced by the
EDeg scheduler for τ in the first hyper-period is described on
(Figure 1). Let us explain how this schedule is constructed
in the first steps.

At time 0, the storage is full. τ2 is the highest priority
task, executes until time 2 and consumes 10. At time 2,
E2 = 8. τ1 is the highest priority task and the slack energy
is undefined (no job released after 2 with deadline less than
4). τ1 executes completely until time 4 and consumes 16.
8 units of energy are produced. At time 4, E4 = 0. The
processor has to remain idle as long as the storage has not
refilled it (predicted at time 6.5) and the latest start time has
not been attained (at time 6 which is computed using EDL).
At time 6, E6 = 8. τ2 is the highest priority task, executes
until time 8 and consumes 10. At time 8, E8 = 6. τ3 is the
highest priority task, executes and completes exactly at time
9 that coincides with its deadline.

IX. CONCLUSION

We have presented the framework of a monoprocessor
preemptive scheduling algorithm, namely EDeg, that is a
variation of EDF able to cope with energy constraints. EDeg
has been designed to schedule any set of time critical tasks,
periodic or not, given any energy source profile with constant

Figure 1. The EDeg schedule

power production or not and given an energy storage unit
with limited capacity. Proof of optimality and validation
of the exact feasibility condition attached to EDeg are the
object of a Work in Progress.
This paper specifically focussed on a system that receives
energy at constant rate and has to run periodic tasks with
non related computation and energy requirements.

REFERENCES

[1] A. Allavena and D. Moss, ”Scheduling of Frame-based Embedded
Systems with Rechargeable batteries”, Workshop on Power Manage-
ment for Real-Time and Embedded Systems, 2001.

[2] S.K. Baruah, A.K. Mok and L.E. Rosier, ”Preemptively Scheduling
Hard Real-Time Sporadic Tasks on One Processor”, Proc. 11th IEEE
Real-Time System Symp., pp. 182-190, 1990.

[3] G.C. Buttazzo, Hard Real-Time Computing Systems, Springer, 2005

[4] H. Chetto, M. Chetto, ”Some Results of the Earliest Deadline
Scheduling Algorithm”. In Proceedings of the IEEE Transactions on
Software Engineering, Vol. 15, No. 10, pp 1261-1269, 1989.

[5] M.L. Dertouzos, ”Control Robotics: The Procedural Control of Phys-
ical Processes”, Proc. Int’l Federation for Information Processing
Congress, pp. 807-813, 1974.

[6] R. Jayaseelan, T. Mitra, X. Li, ”Estimating the Worst-Case Energy
Consumption of Embedded Software,” 12th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS’06), pp.81-
90, 2006

[7] C. Moser, D. Brunelli, L. Thiele, L. Benini, ”Real-time scheduling
for energy harvesting sensor nodes”, Real-Time Systems, Volume 37
, Issue 3, Pages: 233 - 260,December 2007

[8] I. Ripoll, A. Crespo and A.K. Mok, ”Improvement in Feasibility
Testing for Real-Time Tasks”, Real-Time Systems 11, 1996.

[9] F. Zhang and A. Burns, ”Schedulability Analysis for real-time sys-
tems with EDF scheduling”, IEEE Transactions on Computers, Vol.
58, N 9, September 2009.

[10] M. Silly, ”The EDL Server for Scheduling Periodic and Soft Ape-
riodicTasks with Resource Constraints”, Real-Time Systems, Volume
17 , Issue 1, July 1999.


