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Abstract

In this work we investigate the Lieb-Liniger (LL) model belonging to the

class of integrable quantum many-body systems solvable with Bethe Ansatz,

by considering its statistical properties in the many-body Hilbert space, and

comparing the results with Random matrix Theory. The quench dynamics

of the truncated model (t-LL) is characterized by an exponential spread-

ing of wave packets in the many-body Hilbert space. This happens when

the inter-particle interaction is strong enough, thus resulting in a chaotic

structure of the many-body eigenstates considered in the non-interacting

basis. The semi-analytical approach used here, allows one to estimate the

rate of the exponential growth as well as the relaxation time, after which

the thermalization emerges.

The key ingredient parameter in the description of this process is the

width Γ of the Local Density of States (LDoS) defined by the initially excited

state, the number of particles and the interaction strength. In this thesis

we show that apart from the meaning of Γ as the decay rate of survival

probability, the width of the LDoS is directly related to the diagonal entropy

and the latter can be linked to the thermodynamic entropy of a system

equilibrium state emerging after the complete relaxation.

We also address the old and debated question of the statistical properties

of integrable quantum systems, through the analysis of the Bethe Ansatz

solutions. With the use of both analytical and numerical study we show

that the properties of spectra strongly depends on whether the analysis is

done on the full energy spectrum or on a single subspace of fixed total total

momentum. We show the Poisson distribution occurs only when the total

momentum is fixed, for not too large or not too weak interaction strength

and for sufficiently high energy values. These results show once more that

Poisson statistics cannot be considered as a generic one for interacting many-

body integrable systems.
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Chapter 1

Introduction

The problem of thermalization in isolated quantum systems remains a

hot topic in the field of modern statistical mechanics. It has been shown

since long that thermalization can emerge without the presence of a

heat bath, even if the number of interacting particles is small [2–7]. One

of the main problems in this field is to establish the conditions under

which a given system manifests strong statistical properties, such as the

relaxation to equilibrium. Due to a remarkable progress in the study

of this and related problems, much is already understood in theoretical

and numerical approaches (see [8–12] and references therein) as well as

in experimental studies of interacting particles in optical traps [13–18],

even if many basic problems still need further intensive efforts.

As was shown in Ref. [19], the mechanism for the onset of statis-

tical behavior for a quantum isolated system is the chaotic structure

of the many-body eigenstates in a given basis defined in absence of

inter-particle interaction. As for the properties of eigenvalues (such as

the Wigner-Dyson type of the nearest-neighbour level spacing distribu-

tion), it was shown [20,21] that they have a little impact on the global

statistical properties of the wave packet dynamics.

The concept of chaotic eigenstates originates from Random Matrix

Theory (RMT), which was suggested by Wigner in order to explain

local properties of energy spectra of heavy nuclei, observed experimen-

tally [22, 23]. Being unable to describe global properties of energy

5



6 1. Introduction

spectra of complex physical systems, the random matrices turned out

to be effective models for the description of the local statistical proper-

ties of spectra, that were predicted and later confirmed experimentally

to be universal. Since long time, the RMT has served as the theory of

quantum chaos with strong chaotic properties.

Next steps in the mathematical study of many-body chaotic sys-

tems were performed by taking into account the typical two-body na-

ture of the inter-particle interaction. As a result, a new kind of ran-

dom matrix model, closer to the physical realm than the RMT and

known as the Two-Body Random Interaction (TBRI) model has been

invented [24–26]. In contrast with the standard RMT, it depends on

additional physical parameters, such as the number of interacting par-

ticles and the strength of inter-particle interaction. In these matrices a

complete randomness is embedded into the two-body matrix elements,

from which the many-body matrix elements are constructed.

A distinctive property of the TBRI matrices (in application to both

Fermi and Bose particles) is that they are non-ergodic in the sense that

the averaging inside a matrix is not equal to the ensemble averaging,

even for a very large matrix size [27]. Moreover, these matrices are

banded-like, sparse and non-invariant under rotations so that all their

properties are related to a specifically given non-interacting basis. For

this reason, rigorous analytical analysis (especially, for a finite number

of particles) is strongly restricted and many results can be obtained

only numerically.

To date, the TBRI matrices are extensively studied, however, mainly

in what concerns the properties of energy spectra and structure of

eigenstates (see for instance [27–31] and references therein). As for the

related time evolution, a close attention to this problem was recently

surged ahead by the increasing interest to the problem of scrambling,

understood as the loss of information in the process of equilibration

and thermalization. Further progress in random matrix theories was

achieved due to remarkable results based on the Sachdev-Ye-Kitaev

(SYK) model [32,33], which can be considered as a variant of the TBRI
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model (see, for instance, Ref. [34]). The SYK model has attracted much

attention in recent years, widely accepted as an effective model for two-

dimensional gravity, also in application to black holes [35–37]. For the

latter problem, a particular interest has been given to the spreading

and disappearing of information in the process of thermalization.

As is known, chaos in classical systems is originated from the expo-

nential sensitivity of motion with respect to small perturbations. As a

result, the distance in the phase space between two close trajectories

increases, in average, exponentially fast and the rate of such an instabil-

ity is given by the largest Lyapunov exponent λ. In quantum systems,

this mechanism is absent due to the linear nature of the Schrödinger

equation. Although for quantum systems with a strongly chaotic clas-

sical limit, one can observe a complete correspondence to the classical

behavior, the time scale t ∼ 1/λ on which it happens, was found to be

dramatically short due to the fast spreading of the wave function. As

a result, the chaotic behavior of quantum observables is suppressed in

time.

As for quantum systems without classical limit, even in the presence

of strong disordered potentials, observation of exponential instability in

the quantum motion was questioned for a long time. However, recent

remarkable progresses have led to the discovery of the out-of-time-order

correlators (OTOC), which are four-point correlation functions with a

specific time ordering. Extensive studies have manifested the effective-

ness of the OTOC in application to various physical systems [38–41].

It is widely believed that OTOCs can solve the problem of thermal-

ization, however, this is not obvious since their exponential growth in

time is bounded by a time scale which cannot be associated with the

complete relaxation to equilibrium [42]. Indeed, typical applications

of OTOC are mainly restricted by local observables, in contrast with

the very point that thermalization is a global concept. The situation

reminds that which was thoroughly discussed in the early stage of the

setting up of the classical chaos theory. Specifically, for some time it

was believed that correlation functions should typically manifest an ex-
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ponential time decrease. Unexpectedly, it was found later that realistic

physical systems, even if strongly chaotic, are typically characterized

by a quite slow decrease of correlations. Also, an infinite number of

correlations functions can be defined and their time behavior can be

in principle very different. Thus, even if serving as a good test for the

instability of quantum many-body systems, the direct relevance of the

OTOC to the time scale of thermalization remains questionable.

One of the first attempts to relate the OTOC to the long-time dy-

namics in many-body systems has been performed in Ref [43]. Specif-

ically, it was asked whether OTOC can describe the exponential long-

time growth of the effective number Npc of components of the wave

function, in the process of a complete equilibration. This number can

be estimated via the participation ratio provided the many-body eigen-

states can be considered as strongly chaotic. An important result of

this study is that there are two characteristic time scales, one of which

is directly related to the survival probability and can be defined in

terms of the Lyapunov exponent, therefore, in terms of the OTOC.

However, a complete thermalization is described by the excitation flow

along a kind of network created by the many-body states. An applica-

tion of OTOC to such type of dynamics [43] has shown that Npc can

be presented as a set of the OTOCs, each of them describing an ex-

citation on a specific time scale, due to standard perturbation theory.

For a finite number of many-body states, this process terminates when

all states are excited, which create an energy shell in the Hilbert space

(for details see [19]).

Numerical data obtained for the TBRI model with a finite number

of bosons occupying a number of single-particle energy levels [1], as

well as for models of a finite number of interacting spins-1/2 in a finite

length chain [20, 21], clearly demonstrated that, in presence of chaotic

eigenstates, the global time behavior of the systems is very similar.

One has to note that even if one of the spin models is integrable, with

a Poisson-like level spacing distribution, this does not influence the

quench dynamics. These results confirm the prediction that for many-
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body systems the type of energy level fluctuations is less important

than the chaotic structure of the many-body states.

In this thesis we continue the study of the quench dynamics, paying

attention to the new question of the relevance between the diagonal

entropy related to an initially excited state, and the thermodynamic

entropy emerging in the process of thermalization. We show numer-

ically and describe semi-analytically that there is a one-to-one corre-

spondence between them, with some corrections due to the different

size between interacting and non-interacting energy spectra. This re-

markable result holds both for the TBRI model with finite number of

bosons, and for the model originated from the celebrated Lieb-Liniger

(LL) model [44–46]. The latter model, which has no random parame-

ters, was proved to be integrable with the use of Bethe ansatz.

The LL model describes one-dimensional (1D) bosons on a cir-

cle interacting with a two-body point-like interaction. It belongs to

a peculiar class of quantum integrable models solved by the Bethe

Ansatz [47,48]; in particular, it possible to show that it has an infinite

number of conserved quantities. Apart from the theoretical interest,

this model is important in view of various experiments with atomic

gases [49–51]. For a weak inter-particle interaction the LL model can

be described in the mean-field (MF) approximation. Contrarily, for

a strong interaction, the 1D atomic gas enters the so-called Tonks-

Girardeau (TG) regime in which the density of the interacting bosons

becomes identical to that of non-interacting fermions (keeping, how-

ever, the bosonic symmetry for the wave function) [46]. The crossover

from one regime to the other is governed by the ratio n/g between the

boson density n and the interaction strength g. The latter constant is

inversely proportional to the 1D inter-atomic scattering length and can

be experimentally tuned with the use of the Feshbach resonance (see,

for example, [65] and references therein). Specifically, the MF regime

occurs for n/g � 1 and the TG regime emerges for n/g � 1 [46].

In our numerical study we consider a finite many-body Hilbert space

by fixing the total number of momentum states and the number N of
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interacting bosons. This truncated Lieb-Liniger model (t-LL) allows

one to correctly obtain both the eigenvalues and many-body eigenstates

of the original LL model, in a given range of energy spectrum. This

method (truncation of the infinite spectrum) can be considered as the

complimentary one to the recently suggested way [52], according to

which a finite number of eigenstates involving into the quench dynamics

is used.

Chapter 2

In this chapter we provide the theoretical foundations for our stud-

ies. We start with a short review over Random Matrix Theory and

in particular over Two-Body Random Matrix theory. We discuss how

quantum chaos emerge in level statistics and complexity of eigenstates

for strong interaction. Then we discuss the problem of thermalization

for finite number of particles.

In Part I we will introduce the fundamental background that will

form a basis for the rest of this work. In particular, we will discuss how

the random matrix models we will consider manifest generic signatures

of quantum chaos in level statistics and complexity of eigenstates when

the density of the levels is high enough. Then we will derive the ef-

fective Hamiltonian using the projection formalism and explain how

to incorporate the random matrix models into such a framework to

properly describe open quantum systems.

Chapter 3

In this chapter we introduce the model and the approach to the

solutions. We derive the Hamiltonian in second quantization, look into

the symmetries and introduce the truncated model.

Chapter 4

Here we study the spectrum of Bethe Ansatz Approach. We ad-

dress the problem of genericity of Poisson distribution for level spacing
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distribution of integrable systems. In particular, we show that for

well known many-body interacting integrable model studied by Lieb

and Liniger, Poisson distribution occurs only for particular interaction

strengths and particular energy range.

Chapter 5

We study the truncated Lieb-Liniger (t-LL) model by considering

its statistical properties in the many-body Hilbert space. We demon-

strate that, for a fixed total momentum, the properties of both energy

spectra fluctuations and many-body eigenstates follow the predictions

of the random matrix theory. Specifically, the level spacing distribution

manifests the crossover from the Poisson to the Wigner-Dyson statis-

tics. In the latter situation, the many-body eigenstates can be treated

as fully random, in spite of a deterministic nature of matrix elements.

By studying the quench dynamics of an initially excited state of the

unperturbed Hamiltonian, we have discovered a remarkable relation be-

tween the thermodynamic entropy emerging after the relaxation of the

system to equilibrium, and the diagonal entropy related to the initial

state. Our semi-analytical predictions of the onset of thermalization in

the t-LL model are fully confirmed by numerical data.
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Chapter 2

Quantum Chaos

Initially, the study of quantum chaos was restricted to models of a

single particle interacting with external fields. As a result of exten-

sive studies, currently the theory of one-body chaos is developed in

great details (see for example, [73–76] and references therein). On the

other hand, many problems of many-body chaos occurring in quan-

tum systems of interacting particles are not resolved yet. Recently,

the burst of interest in many-body chaos has been triggered by the re-

markable progress in experimental studies of trapped systems of bosons

and fermions [77] and large-scale exact diagonalization of Hamiltonian

matrices for systems of interacting particles.

2.1 Random Matrix Theory

In the first attempt to establish the relation between statistical

properties of complex quantum systems and random matrix models

[78–81], Lane, Thomas and Wigner introduced an ensemble of banded

matrices for the description of conservative systems like atomic nuclei

[82]. Assuming time-reversal invariant dynamics, an ensemble of real

symmetric infinite Hamiltonian matrices was considered:

Hnm = εnδnm + Vnm (2.1)

The diagonal part was modeled with an equidistant spectrum (”picket

15



16 2. Quantum Chaos

fence”), εn+1 − εn = 1/ρ0 where ρ0 is the level density of the ”unper-

turbed” Hamiltonian H0 = εnδnm. In Refs. [78–81] the absolute values

of the off-diagonal matrix elements were taken equal, Vnm = ±v, while

the signs were assumed to be random and statistically independent

within the band of width 2b around the main diagonal. In a more gen-

eral case thoroughly studied in Ref. [83], the diagonal elements εn are

random entries, the matrix elements Vnm are distributed randomly with

< Vnm >= 0 and < V 2
nm >= v2 for |m− n| < b, while Vnm = 0 outside

the band (here and below the angular brackets stand for the ensemble

average). The assumption of random character of the ”perturbation” V

was a pioneering step in the statistical description of complex quantum

systems. In his seminal paper of 1955, Wigner wrote that the consid-

ered quantum-mechanical systems ”are assumed to be so complicated

that statistical consideration can be applied to them”.

Two important features of the BRM should be stressed. The first

point is that the band-like appearance of a matrix is not invariant with

respect to orthogonal transformations of the basis. The special basis di-

agonalizing H0 should be thought of as corresponding to the mean-field

representation. In this way it is assumed the existence of a physically

singled out basis in which the treatment of the total Hamiltonian is

preferential.

The second point is that the banded structure reflects a finite range

of interaction in the energy representation that may emerge from the

physical selection rules.

After Wigner’s pioneering work, the BRM were almost forgotten

(curiously enough, by Wigner himself [78–81]), apparently because of

their mathematical inconvenience, namely the absence of invariance

with respect to basis rotations. Due to this, attention was paid mainly

to full random matrices for which a fairly complete mathematical anal-

ysis has been developed [26, 84, 85]. However, in real physical applica-

tions full random Hamiltonian matrices can be only used to describe

the local statistical properties of spectra and not the global ones. For

this reason, such matrices were criticized by Dyson [23] because of the
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”unphysical” semicircle law of the total level density.

2.1.1 Two-Body Random Interaction

In order to use the random matrix approach with a more realistic

level density, an ensemble of random matrices was suggested in Refs.

[24,25,86,87] that takes into account the n-body nature of interaction

between the particles (for details and other references, see [26]). Since

in the majority of physical applications the main contribution is due

to two-body interactions (n = 2), this kind of random matrices, known

as two-body random interaction (TBRI) matrices, has been studied in

great detail. The ensemble of such matrices, referred to as the two-

body random ensemble (TBRE), is defined in the secondary quantized

form as

H =
∑
p

εpa
†
pap +

c

L

∑
p,q,r,s

Vp,q,r,sa
†
pa
†
qaras (2.2)

Here the term H0 =
∑

p εpa
†
pap corresponds to non-interacting par-

ticles and V = c
L

∑
p,q,r,s Vp,q,r,sa

†
pa
†
qaras absorbs the two-body interac-

tion, where c is the strength of the interatomic coupling interaction,

inversely proportional to the 1D interatomic scattering length, and L

is the length of the ring. In a more general context, H0 can be treated

as a regular one-body part of the total Hamiltonian written in the

mean-field basis, and V represents the residual interaction which, due

to its very complicated structure cannot be embedded into the mean

field. The entries εp represent single-particle (or quasi-particle) energies

corresponding to single-particle states |p >, while a†p and ap are parti-

cle creation and annihilation operators for fermions or bosons. These

operators define the many-particle basis |{p}k >= a†p1 ...a
†
pN
|0 >— of

non-interacting particles. In this basis H0 is diagonal with eigenval-

ues Ek =
∑

n εpn defined by the single-particle levels occupied in the

many-body state |{p}. The matrix elements Vp,q,r,s of the perturbation

V describe a two-body process with indices p, q, r, s indicating initial

(r, s) and final (p, q) single-particle states connected by this interaction.
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In the TBRI model all matrix elements Vp,q,r,s are assumed to be

random independent variables. However, due to the two-body nature

of the interaction the matrix Hk,k′ turns out to be band-like, with

many vanishing elements inside the band, many non-vanishing ma-

trix elements turn out to be correlated, even in the case of complete

randomness of the interaction matrix elements Vp,q,r,s. As shown in

Ref. [59], this is important when analysing the statistical properties of

some observables. Apart from the sparsity and intrinsic correlations

in TBRI matrices, another difference from the Wigner BRM with the

sharp band boundary is that the amplitudes of the matrix elements

Hk,k′ decrease smoothly away from the diagonal. It should be stressed

that all these peculiarities are quite typical for physical systems such

as complex atoms and nuclei (see, for example, [72,88])

Quite specific properties emerge if the Hamiltonian reveals addi-

tional symmetries so that the Hilbert space can be decomposed into

separate subspaces of states, and the dynamics within each subspace

is either regular or chaotic.

An unusual result was observed in a simple simulation [89] for few

fermions occupying a single level with a large total angular momentum

quantum number j and interacting through all types of two-body ma-

trix elements of random magnitude but restricted by rotational invari-

ance. The new aspect here is the interrelation between non overlapping

classes of states due to the dynamics driven by the same Hamiltonian.

The unexpected result is a clear predominance of ground states of total

spin J = 0. Statistical considerations [90] qualitatively explain this by

assuming that the wave functions are randomized and prefer maximal

or minimal values of total spin (precursor of ferromagnetic or anti-

ferromagnetic order). It is interesting that the observed effect seems

to be different from the spin glass system [91], where the ground state

spin on average grows as the square root of the number Np of interact-

ing spins. Other regular collective effects also appear with significant

probability in such systems with random interactions [92, 93], where a

quantitative theory is still absent. One can also use random interac-
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tions in order to study possible landscapes arising in the sectors with

different values of random parameters. This was done in the interact-

ing boson models [94], where it was possible to delineate the parameter

space areas corresponding to different symmetries of the system, and

in the nuclear shell model [92], where the random interactions allowed

one to find out the sectors of the random parameter space responsible

for the predominance of prolate deformation of the mean field.

2.2 Main observables

The problem of quantum chaos was initially referred to one-body

quantum systems, fully deterministic but with strong chaos in the

classical limit. As was discovered numerically, the properties of such

quantum models as the kicked rotor [95–97] and fully chaotic bil-

liards [26, 69, 98, 99] strongly depend on whether the motion is regular

or chaotic in the corresponding classical counterparts. It was under-

stood that, unlike classical chaos that is due to the local instability

of motion, in quantum chaotic systems the properties of spectra and

eigenfunctions have to be compared with those described by full ran-

dom matrices. It was argued [100, 101] that for integrable systems

the nearest level spacing distribution P (s) is generically quite close to

the Poisson distribution emerging as a result of absence of correlations

between eigenvalues (see also discussion and references in Ref. [97]).

2.2.1 Spacing statistics

In the mid 50s a large number of experiments with heavy nuclei was

performed. Heavy many-electron atoms absorb and emit thousands of

frequencies. These large systems are typically non-integrable, so solving

the eigenvalue problem is impossible. Wigner and Dyson were the first

to attack the problem through a statistical point of view. Instead of

searching an approximate solution for the nuclear system, they focused

on the distribution of energy levels.
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”The statistical theory will not predict the detailed sequence of

levels in any one nucleus, but it will describe the general appearance

and the degree of irregularity of the level structure, that is expected

to occur in any nucleus which is too complicated to be understood in

detail..” -Freeman J. Dyson

Level spacing distribution

Exponentially fast dynamics in the Fock space of chaotic many-body

systems

Spectra of time-reversal systems whose classical analogues are K

systems (strongly chaotic) show the same fluctuation properties as pre-

dicted by GOE (Gaussian Orthogonal Ensamble), which means that

for integrable models the eigenvalues are uncorrelated, and prohibited

from crossing and usually their spacings follow the Poisson statistics,

In chaotic models the spacings between eigenvalues follow instead the

Wigner-Dyson statistics for GOE:

Figure 2.1: Example of the level spacing distribution done with Random

Energies and Random GOE matrix compared with Poisson and Wigner

distributions respectively.

For a long time the numerical check whether the form of P (s) is

close to the Wigner-Dyson distribution has served as the main tool for
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the characterization of quantum chaos.

Ratio of consecutive level spacings

Recent papers [119] show how the ratio of consecutive level spacings

can be used to analyze the repulsion between levels. This procedure

has the advantage of not requiring the unfolding of the spectrum. In

practice, following Ref. [119] we introduce the variable

ξn =
sn
sn−1

, sn = En − En−1 (2.3)

and from that the variable

χn = Min(ξn, 1/ξn) (2.4)

In Ref. [119] an exact numerical value has been obtained for the average

value 〈χn〉 = 0.386 in case of a Poisson distribution for the NNLS .

∆3 statistics

To analyze the fluctuation properties, the spectrum has to be un-

folded, i.e. the system specific mean level density must be removed

from the data. We use the standard approach, see for instance [120],

that we briefly summarize here. Let us introduce the function,

η(E) =
N∑
n=1

Θ(E − En) (2.5)

This function counts the number of levels with energy less than or

equal to E and is usually referred to as the staircase function. It is

decomposed into a smooth part and a fluctuating part, through the

unfolding we can remove the smooth part.

The unfolding consists in mapping the sequence {E1, E2, ..., EN}
onto the numbers {ξ1, ξ2, ..., ξN} in such a way that the function ξ(E)

is the smooth part of η(E) and η̂fl(E) is the fluctuating part: η(E) =

ξ(E) + η̂fl(E).
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Figure 2.2: Example of the unfolding procedure done with the first exact

300 Bethe Ansatz energies for N = 5 particles, P = 2 total momentum and

strong interaction n/c = 0.01. Inset: fluctuating part η̂fl.

Then we define,

∆3 = minA,B
1

L

∫ ξs+L

ξs

[η̂(ξ)− Aξ −B]2dξ (2.6)

where η̂(E) counts the number of levels in the interval [ξs, ξs + L].

Minimizing (2.6) we obtain:d∆3

dA
= − 2

L

∫ ξs+L
ξs

ξ[η̂(ξ)− Aξ −B]dξ = 0

d∆3

dB
= − 2

L

∫ ξs+L
ξs

[η̂(ξ)− Aξ −B]dξ = 0
(2.7)

whose solutions, 
A =

px1 − 2q

x2
1 − 2x2

B =
qx1 − px2

x2
1 − 2x2

(2.8)

are given in terms of the following quantities

x1 =
2

L

∫ ξs+L

ξs

ξdξ = 2ξs + L (2.9)

x2 =
2

L

∫ ξs+L

ξs

ξ2dξ =
2

3
(L23ξ2

s + 3ξsL) (2.10)
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p =
2

L

∫ ξs+L

ξs

η̂(ξ)dξ (2.11)

q =
2

L

∫ ξs+L

ξs

ξη̂(ξ)dξ (2.12)

t =
2

L

∫ ξs+L

ξs

η̂2(ξ)dξ (2.13)

from them ∆3 follows easily,

∆3 =
1

2
t+

1

2
A2x2 +B2 − Aq −Bp+ ABx1 (2.14)

2.2.2 Chaotic Eigenstates

It is understood now that the level spacing distribution P (s), al-

though serving as a common test for distinguishing between integrable

and non-integrable models, is not effective in application to many-body

chaos. First, this quantity that requires precise knowledge of relatively

long consecutive series of energy levels of fixed symmetry often is far

from being experimentally accessible. Second, the level spacing statis-

tics is typically a weak characteristic of quantum chaos that appears

already in the first stages of the process of chaotization. Third, the

presence or absence of the Wigner-Dyson level spacing distribution

cannot be a necessary condition for classical chaos: for instance, a

transition from the Poisson to Wigner-Dyson distribution was found

in Ref. [103] in the energy spectrum of the Bunimovich billiard, which

is known to be fully chaotic. Finally, in many realistic systems the

behavior of various observables is not directly related to the spectral

statistics and continues to evolve with the strength of the perturbation

after the function P (s) has been stabilized.

On the other hand, it was also numerically observed [98] that the

eigenfunctions of the stadium billiard have a quite complicated struc-

ture in the position representation. These results have led to the conjec-

ture that the eigenstates of chaotic billiards may be compared to plane
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waves with random amplitudes [102]. Later, the complex structures of

eigenstates were confirmed for many autonomous systems, as well as

for time-dependent systems with external periodic perturbations (for

references, see, for example, [97]).

In this situation the knowledge of the structure of the eigenstates

turns out to be decisive in understanding regular or chaotic properties

of realistic systems. In what follows, we define quantum chaos in terms

of the (chaotic) structure of eigenstates, rather than in terms of the

level statistics. This idea of shifting the definition of chaos onto indi-

vidual eigenstates, rather than just on the spectral statistics, has been

exploited in Ref. [104]. Specifically, it was suggested to define quantum

chaos occurring in an individual eigenstate by the vanishing correlation

function between the eigenstate components in an appropriate basis.

In Ref. [105] the emergence of chaotic eigenstates was found when

analyzing experimental data for the rare-earth cerium atom. It was

shown that excited eigenstates of four valence electrons with the total

angular momentum and parity JΠ = 1+ are random superpositions of

a number of basic states. Although this number was found to be rela-

tively small as compared with chaotic eigenstates in heavy nuclei [106],

one can speak about chaotic atomic states. Later on, intensive ana-

lytical and numerical studies [88] have confirmed the onset of chaos in

both eigenstates and spectrum of the cerium atom. With the use of

the relativistic configuration-interaction method it was shown that the

structure of eigenstates of odd and even levels of this atom with angu-

lar momentum J = 4 above 1eV excitation energy becomes similar to

that of compound states in heavy nuclei. It was found that the atomic

stationary states are random superpositions of about Np.c. ∼ 100 com-

ponents built of the 4f, 6s, 5d and 6p single-electron orbitals. Thus,

even four interacting electrons in the mean field of an inert core cre-

ate chaotic eigenstates. The eigenstates of the random matrix model

are qualitatively the same as those of the real atom with no random

parameters. These data demonstrate that the TBRI model can effec-

tively describe generic properties of realistic physical systems which are
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completely deterministic.

2.2.3 Thermalization

As discussed above, in many physical situations the eigenstates of

an isolated system of interacting particles can be treated as chaotic su-

perpositions of their components in an appropriate many-particle basis.

This fact has been used in Ref. [59,88,107–109] for developing the sta-

tistical approach to the description of various observables, based on two

key ingredients, the notion of the strength function and the shape of

eigenstates in the basis of non interacting particles (or quasi-particles).

In this way a natural question arises about the possibility of thermal-

ization in isolated systems in spite of the absence of a heat bath. In the

canonical description of conventional statistical mechanics, thermaliza-

tion is directly related to the temperature defined by the heat bath;

any definition of temperature (for example, through the kinetic energy

of an individual particle, statistical canonical distribution, or via the

density of states) gives the same result. Contrary to that, in isolated

systems of a finite number of particles, these temperatures can be dif-

ferent, and the difference increases with the decrease of the particle

number. This is also known for classical systems; the detailed study

of different temperatures has been done for interacting classical spins

moving on a ring [58]. With an increase of the particle number N , all

definitions of temperature tend to the unique value, corresponding to

the standard result of the thermodynamic limit N →∞. In this limit

(both in classical and quantum mechanics), the statistical behavior of

systems emerges irrespectively of whether the system under considera-

tion is integrable or non-integrable, (see, for example, Refs. [110–114]).

Thus, the definition of ”thermalization” in application to isolated

mesoscopic systems is obscure; for this reason we prefer to speak of

thermalization in a broader context, namely, as the existence of sta-

tistical relaxation to a steady state distribution. As rigorously shown

in Refs. [110, 115], in the thermodynamic limit N → ∞ even for a
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completely integrable system an infinitely small subsystem (probe) ex-

hibits statistical relaxation, e.g. the emergence of the Gibbs distribu-

tion. With the motion not even ergodic, one can wonder how statistical

relaxation can occur since this requires mixing. In the system consid-

ered by Bogoliubov this is explained by a perturbation spectrum of the

probe oscillator that becomes continuous in the limit N → ∞, a con-

dition necessary for mixing (see discussion in [114]). For finite N � 1

the spectrum is discrete which implies a quasi-periodic behavior for any

observable. However, the characteristic time for revivals is typically so

large that on a finite time scale (which, however, could be larger than

the lifetime of the Universe) a perfect relaxation occurs. In this sense,

quantum chaos can be considered as ”temporary chaos”, however, in-

distinguishable from that occurring in classical mechanics on a finite

time scale.

A new situation emerges for isolated systems consisting of a finite

number of particles. Although in this case the energy spectrum is dis-

crete, the behavior of a system can reveal strong statistical properties,

and the adequate theory is based on the notion of quantum chaos.

First of all, such a theory has to give an answer to the basic question:

when (or under which conditions) the statistical description is possible

and practically useful for a quantum isolated system. To answer this

question one has to know the mechanism responsible for the onset of

statistical behavior. In classical mechanics this problem was solved by

the concept of local instability of motion leading to chaotic behavior

in spite of completely deterministic equations of motion. In quantum

mechanics the Schrödinger equation is linear which means absence of

local instability for the time-dependent wave function. For this rea-

son, the chaos that emerges in quantum systems was termed ”linear

chaos” by Chirikov [116], in order to stress the principal difference from

deterministic chaos occurring in non-linear classical systems.

The situation is somewhat easier when a quantum system has a

well defined classical limit and the corresponding classical motion is

strongly chaotic. Such a situation was originally referred to as ”quan-
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tum chaos”, the term that is nowadays used in other applications such

as optics, acoustics, etc. In contrast to classical mechanics, the descrip-

tion of a quantum system is based on the energy spectrum of stationary

eigenstates, so that the emergence of quantum chaos in a closed system

has to be quantified in corresponding terms. This allows one to speak

of quantum chaos in a more general context, namely, including either

systems without a classical limit or disordered systems, in contrast with

deterministic ones.

As argued in Refs. [3,5,109], for an isolated system of a finite num-

ber of particles (that can be quite small), the mechanism of thermaliza-

tion is due to the interaction between particles. When the interaction

strength exceeds some critical value, or the level density becomes suf-

ficiently high, the many-body wave functions become extremely com-

plicated (”chaotic”) and this leads to thermalization. In a broad sense,

this is understood as emergence of relaxation to a steady-state dis-

tribution allowing for a statistical description. In fact, at such com-

plexity of stationary eigenfunctions expressed in the appropriate basis,

the statistical description seems to be the only one reasonable. A di-

rect link between chaotic eigenstates and the conventional statistical

distributions (Boltzman, Fermi-Dirac and Bose-Einstein ones) was an-

alytically established in Ref. [117] for the billiard models. Concerning

the conditions for the onset of many-body thermalization due to the

inter-particle interaction, the basic ideas and their implications were

reported in Refs. [109,118] demonstrating that the role of a heat bath

is played by a sufficiently strong interaction between particles.
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Chapter 3

Lieb Liniger Model

In order to address these questions we analyze in this thesis a com-

pletely solvable 1D interacting Bose gas : the Lieb-Liniger model [46,

63]. It describes a system of N indistinguishable bosons subject to a

δ-function pairwise inter-particle interaction potential in a circle with

length L. It belongs to the class of quantum integrable models solvable

via Bethe ansatz [47,48].

This model has been widely discussed in literature and in many ex-

periments [64] where atomic gases has been constrained to 1D geome-

tries. At low temperatures, low linear densities, and strong repulsive

effective interactions, these 1D atomic gases enter the so-called Tonks-

Girardeau (TG) regime [65], described by the 1D solvable model of

bosons with ”impenetrable core” repulsive interactions. In particular,

in the TG regime the momentum distribution after many collisions does

not relax to the thermodynamic equilibrium given by statistical me-

chanics [66]. The TG regime, which occur when the ratio between the

boson density n = N/L and the inter-atomic coupling constant c (in-

versely proportional to the 1D inter-atomic scattering length [65]) be-

comes very small coincides with the onset of fermionization. Physically

it means that the density of the interacting bosons becomes identical

to that of non interacting fermions (preserving the bosonic symmetry

of the wave function). The opposite limit, n/c� 1 describes a system

of weakly interacting bosons and it is called mean-field approximation

29
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(MF). The transition from TG to MF from the point of view of the

dynamics in the many-body Hilbert space has been studied in [67].

The Hamiltonian of our system, composed of N bosons in a ring

with length L is given by (~ = 2m = 1):

H = H0 + V = −
∑
i

∂2

∂x2
i

+ c
∑
i 6=j

δ(xi − xj) (3.1)

3.1 Second Quantization

Many-body representation is more suited for a comparison with

TBRI model. Here the states are represented in Fock basis, which are

constructed by filling each single particle state with a certain number

of identical particles.

The second quantized Hamiltonian follows from the expectation

value of H with the field operators ψ(x).

ψ(x) =
1√
L

∑
p

ap exp(ipx)

ψ†(x) =
1√
L

∑
p

a†p exp(ipx) (3.2)

the field operator ψ†(x) acting on the vacuum state creates a particle

at position x. The one particle part of it becomes:

H1 = −
∫
dxψ†(x)

∂2

∂x2
i

ψ(x) (3.3)

Doing the transformation one can obtain the Hamiltonian in mo-

mentum representation

H1 =
∑
p

p2a†pap (3.4)

The Two particles part of it becomes:

H2 = c

∫ ∫
dxdyψ†(x)ψ†(y)δ(x− y)ψ(x)ψ(y) (3.5)



INDEX 31

Which in moment representation become:

H2 =
c

L

∑
p,q,r,s

a†pa
†
qarasδ(p+ q − r − s) (3.6)

3.1.1 Total momentum conservation

As one can see, the Hamiltonian in eq. 3.1 is space invariant

({xi} → {xi + c}), this mean that the the total momentum is con-

served. This can be seen also in second quantization, in the δ-function

of the interaction matrix, we can see the conservation of the momen-

tum for the created and destroyed particles. Due to this we can reduce

the Hilbert space to the one with total momentum of the initial state.

Another symmetry that emerge is the reflection ({xi} → {−xi}), which

is not a continuous symmetry, therefore it does not lead to a conserva-

tion but to the same symmetry in momentum space, as we will show

later in Bethe Ansatz approach. To ignore this symmetry we worked

on fixed total momentum different from zero.

3.1.2 Truncation

The Lieb-Liniger model is a continuum field theory. The Hilbert

space is spanned by infinitely many states, and the Hamiltonian is thus

a matrix with infinite dimensions. To proceed, we have to truncate the

Hilbert space in some manner to obtain a finite matrix, which can then

be diagonalized to obtain the eigenstates and their energies.

As we will show later, due to this truncation we obtain very interest-

ing results different from Bethe Ansatz solutions for strong interactions.
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Chapter 4

Bethe Ansatz approach

Our model belongs to the class of quantum integrable models solvable

via Bethe ansatz [47,48]. This model has been widely discussed in lit-

erature and in many experiments [64] where atomic gases has been con-

strained to 1D geometries. At low temperatures, low linear densities,

and strong repulsive effective interactions, these 1D atomic gases enter

the so-called Tonks-Girardeau (TG) regime [65] , described by the 1D

solvable model of bosons with ”impenetrable core” repulsive interac-

tions. In particular, in the TG regime the momentum distribution after

many collisions does not relax to the thermodynamic equilibrium given

by statistical mechanics [66]. The TG regime, which occur when the ra-

tio between the boson density n = N/L and the inter-atomic coupling

constant c (inversely proportional to the 1D inter-atomic scattering

length [65]) becomes very small coincides with the onset of fermion-

ization. Physically it means that the density of the interacting bosons

becomes identical to that of non interacting fermions (preserving the

bosonic symmetry of the wave function). The opposite limit, n/c� 1

describes a system of weakly interacting bosons and it is called mean-

field approximation (MF). The transition from TG to MF from the

point of view of the dynamics in the many-body Hilbert space has

been studied in [67].

The Hamiltonian of our system, composed of N bosons in a ring

35
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with length L is given by:

H = H0 + cV = −
∑
i

∂2

∂x2
i

+ c
∑
i 6=j

δ(xi − xj) (4.1)

The solutions for the eigenvalue problem can be obtained through

the ansatz wave function, see for instance Refs. [120] and reference

therein,

ψ({xk}α) =
∑
α

a(α) exp[i
N∑
n=1

xnλ
α
n] (4.2)

where: a(α) is the phase factor and λ are called rapidities (quasi-

momenta).

Fixing periodic boundary conditions and the ansatz wave function

(4.2), one obtains infinite systems of N Bethe equations:

λαi =
2π

L
mα
i −

2

L

N∑
k 6=i

arctan(
λαi − λαk

c
)⇒



λα1

...

...

λαN

(4.3)

Each combination {mi}α refers to the eigenstate labelled by α in

terms of a set of N ”quantum numbers” (mα
i 6= mα

j ) which are integers

(half integers) for an odd (even) number of particles N .

The total momentum can be calculated in terms of the rapidities

λαi through the Ansatz wave function:

P̂ψ({xk}α) =
∑

j −i
∂
∂xj
ψ({xk}α) =

[∑
j λ

α
j

]
ψ({xk}α)

=
[

2π
L

∑
jm

α
j

]
ψ({xk}α)

(4.4)

As for the eigenenergies, they are given by,

Eα =
N∑
j=1

(λαj )2 (4.5)
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For the following discussion it is interesting to note that there are

two simple limit cases:

• infinite interaction, fermionization, free fermions

c =∞, λαj =
2π

L
mα
j (4.6)

• no interaction, free bosons

c = 0, λαj =
2π

L
(mα

j − j +
N + 1

2
) (4.7)

In the following we will set for simplicity L = 2π and N odd, so that

the rapidities obtained from Eqs.4.6,4.7 are distinct integer numbers.

Since the eigenenergy is the sum of N squared distinct integer numbers

(see Eq.(4.5)) it is quite clear that the nearest neighbor level spacing

distribution cannot be Poisson in the limiting cases c = 0 and c =∞.

One can wander whether this feature persists also for finite interaction

strength and for all energies. We will investigate this feature in the next

section, focusing now on the particular characteristics of the energy

spectrum.

4.1 Independent spectra

Setting L = 2π, each eigenstate can be labelled by an integer num-

ber (which is the total momentum). Arranging the eigenvalues accord-

ing to i) its momentum and ii) its growing energy, we obtain for the

Hamiltonian an infinite block diagonal structure with each block dis-

connected from any other (due to momentum conservation there are

no matrix elements connecting states with different momenta). In the

following we will consider the level statistics in each separate block

showing that they are not independent.

In order to prove that let us first start from Eq.(4.3):

λi = mi +
∑
k 6=i

f(λi − λk), (4.8)
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with f(x) ≡ arctan(x)/π = f(−x).

Each set of different integers {mi}Ni=1, determine a set of rapidities

λi characterizing an eigenstate with energy and momentum,

E{λi} =
∑
i

λ2
i P{λi} =

∑
i

λi (4.9)

Let us now consider the shifted set of quantum numbers m′i = mi+k

with k a positive or negative integer number. It is clear that the shifted

rapidities λ′i = λi + k satisfy the same equations (4.8)

λ′i = m′i +
∑
k 6=i

f(λ′i − λ′k) (4.10)

but with momentum and energy given by:

P{λ′i} =
∑
i

(λi + k) = P + kN (4.11)

E{λ′i} =
∑

i(λi + k)2 = E{λi}+ ν (4.12)

where ν = 2kP + k2N is an integer number.

This means that, since the number of particles N is given, all en-

ergies corresponding to a some fixed momentum P , will be shifted by

the same constant ν (and thus the levels statistics inside an eigenspace

with fixed total momentum will be the same).

In particular, let us note that for k = −2P/N (consider here that

only k integer is valid) then ν = 0 and P{λ′i} = −P{λi}, so we found

the well known property that each eigenenergy with P 6= 0 is double

degenerate.

Let us now analyze in more details Eq.4.11,4.12. Setting for instance

k = 1 the energy spectrum for P and P + N are simply shifted by

the factor ν = 2P + N . This suggests that, at most, only spectra

for P = 0, 1, ...N − 1 might be independent. But it is not the case.

Actually P = 1 and P = N − 1 have the same spectrum (within a

constant shift). To see that simply put k = 1 and P = −1 in Eq.

(4.12 and observe that P = 1 and P = −1 give the same spectrum. In
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the same way P = 2 and P = N − 2 are the same within a constant

shift and so on. The bottom line is that for N odd particles only the

spectra for momentum P = 0, 1, ..., (N − 1)/2, are independent, all the

other being simply shifted by a constant. This is a quite unexpected

property of the energy spectra since it is completely independent of the

interaction strength c.

This simple exercise suggests that much care should be done when

computing level statistics since it is well known that computing level

statistics without taking into account all the symmetries lead to wrong

conclusions. For instance it is well known that Poisson statistics could

emerge even superimposing completely independent chaotic spectra

(such as those obtained from GOE).

A numerical verification of the simple mathematical proof given

above is shown in Fig. 4.1. There we present the firsts 100 levels of

N = 5 bosons for a fixed value of the interaction n/c = 1, solving the

Bethe Ansatz equations for different value of total momentum 0 ≤ P ≤
9 and comparing the rescaled energies with the corresponding momenta

P = 0, 1, 2 = (N − 1)/2.

Figure 4.1: (a,b) Firsts 100 energies rescaled by the factor ν with interaction

n/c = 1 of N = 5 particles.
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4.2 levels statistics

4.2.1 The limiting cases

As discussed above, for c = 0 and c = ∞ the eigenenergies are

obtained by the sum of N squared integers and thus the NNLS cannot

be Poisson. One might wonder if this behavior persists also when c� 1

or c� 1. Instead of using a particular interaction strength it is much

more significative to use the ratio n/c. In Fig.4.2 we show the NNLS for

a weak interaction n/c = 1 and for strong interaction n/c = 0.01. As

one can see: i) the NNLS shows a very pronounced peak at the origin

(at variance with the Poisson distribution showed for comparison) and

ii) a peculiar similarity between the two cases indicating the symmetric

behavior between the two limiting cases.

Figure 4.2: NNLS distribution for N = 5 particles, momentum P = 2 and

n/c = 1 (a) and n/c = 0.01 (b). Black lines indicate the Poisson distribution,

red lines the Wigner-Dyson distribution.

Since NNLS does not represent a good tool for searching small de-

viation we study in the next two sections the ∆3 statistics, see for

example Ref. [120] and reference therein.
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4.2.2 ∆3 statistics

It is well known that in case of a Poisson NNLS ∆3(L) ∝ L, so

we study the deviation of our distribution from the straight line. In

Fig.4.3 we show the ∆3 statistics for different N = 5 particles and fixed

momentum (P = 0, 1, 2 from the left to the right column) and different

interaction strength n/c = 1, 0.1, 10 (from the top to the bottom line).

In each panel we show with different color ∆3 for the same number of

energies in different parts of the spectrum, from the lowest (close to the

ground state) to the upper part (we computed up to 106 eigenvalues

and since the spectrum is actually infinite it is meaningless to talk

about upper part of the spectrum).

Figure 4.3: Average ∆3 statistics comparison for different fixed total mo-

mentum P = 0, 1, 2 (respectively upper , middle and lower row) of 104

consecutive initial energies. Each column represent a different interaction

strength : left column n/c = 0.2, middle column n/c = 0.02, right column

n/c = 0.002. Different colours indicated different energy regions : low en-

ergy region with ξn starting from n = 1 in blue, middle energy region with

ξn starting from n = 106 in red and ξn starting from n = 2× 106 in purple.

Dashed black line stands for Poisson statistics.
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As one can see from the comparison with the analytical prediction

for the Poisson spectrum only for very strong interaction n/c = 0.01

and excluding the lowest part of the spectrum we may speak of ∆3

statistics close to the predictions given by the Poisson NNLS.

In order to study in a systematic way the deviations from Poisson

(straight line) we fit ∆3(L) with a line

∆3(L) = γ0L+ γ1 (4.13)

in the range 0 ≤ L ≤ 5 and we plot γ0 as a function of the interaction

strength n/c for different energy ranges in the spectrum (se different

symbols in Fig.4.4). As one can see for any energy range one can find

a suitable range in the interaction strength (not too weak, not too

strong) in which there is good correspondence with a Poisson NNLS.

Figure 4.4: Slope of ∆3(L) for different value of interaction and location in

the spectrum as in previous figures, compared with the slope obtained with

Random Energies: black line. Here we choose the P = 2 total momentum

and the average is done over a set of 104 energies around the energy indicated

in the legend. The log scale in x-axis also show a nice symmetry around

some interaction strength n/c dependent of the chosen energy range.
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From this picture it is clear that from one side one can say that

for any energy range a suitable value of the interaction can be found

in order to have a ∆3 test indicating similarity with Poisson statistics.

The bad is for any interaction strength one can find an energy range

where ∆3 statistics indicates strong deviation from Poisson.

Actually the rigidity of the spectrum (linear straight line with slope

1/15 ) last for small L values also in the so called Poisson region, as

shown in Fig. 4.5. Therefore, a kind of correspondence to Poisson

statistics is restricted by nearest levels.

Figure 4.5: Average ∆3 statistics comparison for large L values. Data are

the same as Fig.4.3 central column
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4.2.3 Statistics of close energies

In Fig.4.6 we show for different interaction strength n/c, differ-

ent momentum values and different energy range our numerical results

(light blue dots) compared with the theoretical prevision for a Poisson

distribution (red line). To facilitate the comparison we average χn over

500 consecutive n values (yellow circles) . These results are in agree-

ment with those found with the ∆3 statistics. Indeed, as one can see,

while there is a good agreement with Poisson for large enough energy

and interaction n/c = 0.01, for small interaction n/c = 1 our results

shows a strong level clustering with an average value definitely smaller

than the Poisson reference.

Figure 4.6: Blue dots: 104 values of min(χn , 1/χn). Different rows in-

dicates different spots of the energy spectrum (see x-axis), while different

columns indicate different values of the interaction strength (as indicated in

the legend. Yellow dots are the average over 500 close values while the red

continuous line is the value obtained from Random Energies (y = 0.386).

Parameters are : N = 5, P = 2.
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As a third figure of merit we can compare the distribution functions

for the variable χ, P (/χ). In [119] it has been shown that for a Poisson

NNLS one has the normalized distribution

P (x) = 1/(1 + x)2. (4.14)

In Fig.4.7 we compare the distributions obtained numerically for dif-

ferent interaction n/c = 1, 0.1, 0.01, different momenta P = 0, 1, 2 and

different energy range with Eq.4.14. The strong clustering for weak

interaction n/c = 1 has been confirmed in a strongly peaked P (x) .

Figure 4.7: Distributions of min(χn , 1/χn), for total momentum P =

2 and different interactions (written above) of 104 Energies. Red lines:

distributions made for 104 Random energies. The x-axis is divided in 200

bins.
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Chapter 5

Truncated Lieb-Liniger

approach

The Hamiltonian of the LL model with N bosons occupying a ring

of length L, in momentum representation has the following form (in

dimensional units),

H = H0 + V =
∑
k

εkn̂k +
g

2L

∑
k,q,p,r

â†kâ
†
qâpârδ(k + q − p− r). (5.1)

Here â†k and âk are the creation/annihilation operators acting on a

single-particle level k of the momentum, and n̂k = â†kâk is the number

of particles in the the corresponding k−level. Thus, the single-particle

energy levels (for non-interacting bosons) are given by

εk =
4π2k2

L2
. (5.2)

The δ−function in space configuration indicates the momentum con-

servation at the process of the two-body interaction. Below, the single-

particle states |φk〉 are labeled according to their momentum k =

0,±1,±2, .... From them, the many-body unperturbed states |j〉 =

|...n−k...n0, ..., nk...〉 have been built, where nk indicates the number

of particles in the k-th momentum level. In our numerical study,

we consider a finite number N of particles occupying ` = 2M + 1

of single-particle momentum states. Note that the total number of

47
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single-particle energies εk is M+1 since the states with momentum ±k
are degenerate. We choose N and M to be approximately the same

(analog of a half-filling, typically considered in spin systems). A rough

estimate, n = N/L ∼ g, for the transition from the MF to the TG

regime in connection with quantum chaos, is discussed in Ref. [60].

The many-body states |α〉 of the total Hamiltonian H can be ex-

pressed in terms of the eigenstates |j〉 of the unperturbed part H0 in

the standard way, |α〉 =
∑

j C
α
j |j〉 where the components Cα

j can be

obtained by exact diagonalization. Due to the two-body character of

the interaction, the matrix elements Hij = 〈i|H|j〉 are non-zero only

when the two unperturbed many-body basis states |i〉 and |j〉 have

single-particle occupations which differ by no more than two units.

This means that the Hamiltonian matrix Hij is sparse which is the un-

derlying property of all many-body models with two-body interaction.

If one reorders the diagonal matrix H0 according to increasing val-

ues of the total momentum, its structure takes a diagonal-block form

shown in Fig. 5.3. Here, each block corresponds to a particular value

of the total momentum. Moreover, if we further reorder the diagonal

elements inside the blocks according to the increasing value of the diag-

onal elements, all the block-matrices are band-like as shown in the inset

of Fig. 5.3. Momentum conservation is manifested in the block struc-

ture, the number 2M + 1 of the blocks corresponding to the number of

different values of the total momentum.

5.1 Hamiltonian Matrix

The many-body states |α〉 of the total Hamiltonian H can be ex-

pressed in terms of the eigenstates |j〉 of the unperturbed part H0 in

the standard way, |α〉 =
∑

j C
α
j |j〉 where the components Cα

j can be

obtained by exact diagonalization. Due to the two-body character of

the interaction, the matrix elements Hij = 〈i|H|j〉 are non-zero only

when the two unperturbed many-body basis states |i〉 and |j〉 have

single-particle occupations which differ by no more than two units.
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Figure 5.1: Diagonal-block structure of the Hamiltonian matrix for a system

with N = 6 particles and ` = 11 momentum states. Inset: a single matrix

with fixed total momentum P = 1 has been singled out. Inside the blocks,

the diagonal elements are arranged according to increasing diagonal energies.

This means that the Hamiltonian matrix Hij is sparse which is the un-

derlying property of all many-body models with two-body interaction.

If one reorders the diagonal matrix H0 according to increasing val-

ues of the total momentum, its structure takes a diagonal-block form

shown in Fig. 5.1. Here, each block corresponds to a particular value

of the total momentum. Moreover, if we further reorder the diagonal

elements inside the blocks according to the increasing value of the diag-

onal elements, all the block-matrices are band-like as shown in the inset

of Fig. 5.1. Momentum conservation is manifested in the block struc-

ture, the number 2M + 1 of the blocks corresponding to the number of

different values of the total momentum.
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5.1.1 Total momentum P=0

As seen in the Bethe Ansatz approach, for total momentum P = 0

due to the fact that we have 2 different type of states (symmetric

and not-symmetric), the Hilbert space can be divided in two sub-

spaces. Consider the states of the unperturbed Hamiltonian written

as |n−M , n−M+1, ..., n0, n1, ..., nM >.

1. the subspace for which nk = n−k for any k = −M, ...,M (sym-

metric states)

2. the complement of such subspace (the other not-symmetric states).

In this subspace each state |{nk} > has his twin degenerate state

|{n−k} > that has the same diagonal energy since the latter de-

pends on k2. For each non-symmetric state it is possible to define

the symmetric and anti-symmetric states just taking:

1√
2

(|{nk} > ±|{n−k} >) (5.3)

This means that the total Hilbert space is now divided in the two

sets of symmetric and antisymmetric states. Since the interaction V is

invariant under the change of the momentum signs these two subspaces

have no transition amplitudes. In other words we can restrict ourself

to the subset of symmetric states only. And this is how the interaction

matrix looks like in this new states representation.

For this reason we decided to focus our work on different total mo-

mentum sub-spaces, so we don’t have to split the matrix again.
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Figure 5.2: Sparsity of Vi,j =< i|V |j > for N = 9 particles and l = 13 states.

Here the states |i > and|j > are the symmetric and the anti-symmetric

states discussed before. The first block are the anti-symmetric states, the

second block are the symmetric states created by two twin degenerate states,

and the last small block are the originally symmetric states.
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5.2 Total momentum P=1

The structure of the Hamiltonian matrix at some total momentum

value M is shown in Fig.5.3 and as one can see it is very similar to the

one of TRBI model.
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Figure 5.3: t-LL model : Structure of the Hamiltonian matrix for a sys-

tem with N = 5 particles and ` = 17 momentum states and fixed total

momentum P = 1.

For the case shown in Fig. 5.3 diagonal and off-diagonal Hamilto-

nian matrix elements take the values from a set with very few elements,

as one can see from the plots shown in Fig.5.4. It is important to note

that the validity of our analytical expression holds also in this case

where the non-interacting density of states is a set of δ-functions (and

certainly not a Gaussian).
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Figure 5.4: Truncated LL model (t-LL). Left panel : distribution of off-

diagonal elements ρ(Vi,j) for the Hamiltonian matrix Eq. Right panel :

distribution of diagonal matrix elements ρ(Vi,i). Here we considered N = 9

particles in ` = 13 momentum levels and g = 1.
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5.3 Level spacing distribution and Eigenstates

One of the standard approaches in the quantum chaos theory is

the study of fluctuations of spacings between neighboring energy lev-

els. This approach works fairly good for one-body chaos for which

the level spacing distribution P (s) is typically described by famous

Wigner-Dyson distribution [68,69]. In the other limit case of integrable

Hamiltonian, the form of P (s) is found to be approximately described

by the Poisson distribution. In our many-body system, the P (s) is,

indeed, close to a Poisson distribution, if one considers the spectrum

of the total Hamiltonian. This result is due to the absence of correla-

tions between the energy subsets corresponding to different values of

the total momentum. Therefore, a non-trivial question is: what type

of distribution should be expected for the energy spectrum with a fixed

value of the total momentum P only? Below we show, that the answer

to this question can be obtained with the use of the two-body random

matrix ensemble (TBRE), in spite of the fact that our model is not

only deterministic (non random) but also completely integrable.

In view of the above question, let us focus on the properties of

energy spectra and eigenstates of the LL model, by fixing the total mo-

mentum P . To fix ideas, we choose P = 1 for which the corresponding

matrix is shown in inset of Fig. 5.3. Our main interest is in a strong

inter-particle interaction for which we explore the form of P (s) and

the structure of eigenstates in connection with the theory of random

matrices. Concerning the form of P (s), our extensive data demon-

strate a typical transition from the Poisson to the WD distribution on

decreasing the key parameter n/g, see Fig. 5.6. The characteristic

value for which a clear WD emerges, turns out to correspond to the

condition for the crossover from the MF to the TG regime, namely, for

n/g ∼ 1. Such a change in the form of P (s) is quite typical for both

disordered and non-disordered quantum systems, when changing the

degree of inter-particle interaction [19].

Next, we studied the structure of eigenstates in the middle of the
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energy spectrum and found that they are well described by fully random

matrices, provided the inter-particle interaction is sufficiently strong.

Specifically the RMT predicts that the fluctuations of the amplitudes

for these eigenstates follow the Gaussian distribution. The search of

this distribution is a very sensitive test for a truly random structure of

the eigenstates.

Considering the basis {|k >} of the unperturbed Hamiltonian H0

as our preferential, and the basis {|α >} of the total Hamiltonian H

H0|k >= E0
k |k > , H|α >= Eα|α > (5.4)

We can obtain the projection Cα
k by diagonalizing the total Hamil-

tonian matrix.

|α >=
∑
i

Cα
k |i > , Cα

k =< i|α > (5.5)

Figure 5.5: Example of one specific Eigenstate in the middle of the spectrum

for different values of the interaction strength n/g = 5, 0.5, 0.05, written in

term of the projections Cαk , which show a transition to chaos.

Numerical data for the distribution of components of eigenstates is

demonstrated in Fig.5.6. One can see an excellent correspondence of

the data to the Gaussian distribution P (Cα
k ) of the eigenstate compo-

nents, obtained in the same region of parameters for which the form
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of P (s) corresponds to the WD distribution. It is important to stress

that in our analysis we have used the statistical χ2 test for the cor-

respondence of the data to the analytical predictions. For both P (s)

and P (Cα
k ) this test demonstrates an excellent correspondence to the

predictions of the RMT.
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Figure 5.6: First row: The blue bins are Eigenstates components dis-

tribution compared with the black line Gaussian distribution f(x) =

A
√
b/π exp(−bx2) with b = Nk/2 (Nk = 8122 number of many-body states)

of 3001 states in the middle of the energy spectrum 2500 ≤ α ≤ 5500

(A = 3001 × 8122). Second row: the blue line is the level spacing distri-

bution compared with both black line Poisson and red line Wigner-Dyson

distributions of the same states(2500 ≤ α ≤ 5500), for different values of

n/g. The χ2 test (only for bins with more than 50 events for the components

distribution and 10 for the level spacing) is shown in the pictures. Here the

Components distribution is divided in 5000 bins between −0.05, 0.05. While

for the level spacing we used 100 bins between 0, 4. The number of particles

is N = 9 in ` = 2m+ 1 = 13 single particle states, L = 1 length of the ring.
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5.4 ∆3 statistics and spacing ratios

As shown above, ∆3 statistics can discern chaotic systems from

integrable ones through Long-range correlations instead of only looking

at nearest neighbour.
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n/g=1

n/g=0.5 , 0.05

GOE Analytical

Random Energies

Figure 5.7: Blue lines: Average ∆3 statistics comparison for different inter-

action n/g of 5 × 103 energies in the middle of the spectrum. Compared

with the one calculated with ordered totally random values and analytical

expression of GOE ∆GOE
3 = 1

π2 (ln(2πL) + γ − 5
4 −

π2

8
).

Figure 5.7 show that increasing the interaction we cross totally un-

correlated energies (Random) around n/g ≈ 1, and then it reach GOE

very fast.

It’s also interesting how in the case n/g = 2 for short range we have

similar behaviour has in Random Energies, but after L ≈ 10 it starts

diverging.
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The same study can be done over the ratios of consecutive level

spacings. Fig. 5.8 show that the results are consistent with the above,

so we won’t go into details.
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Figure 5.8: Blue dots: Ratios of consecutive levels χn for the whole spectrum

and different values of the interaction strength, compared with the ones

obtained with Random Energies (Red line), GOE random matrix (Black

line). Yellow dots: average over 500 values. Parameters: N = 9, P = 1 and

` = 13.
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5.5 Dynamics

5.5.1 Quench dynamics

After specifying the non-interacting basis |k〉, one can study the

wave packet dynamics in this basis, after switching on the two-body

interaction V . Our analytical and numerical results refer to the situa-

tion when initially the system is prepared in a particular eigenstate of

H0,

|k0〉 =
∑
α

Cα
k0
|α〉 . (5.6)

and evolved according to the full interacting Hamiltonian H. To do

this, we focus on the time dependence of the effective number Npc(t)

of principal components of the wave function,

Npc(t) ≡

(∑
k

|〈k|e−iHt|k0〉|4
)−1

, (5.7)

known in literature as the participation ratio.

In terms of eigenvalues and many-body eigenstates of the Hamilto-

nian H the participation ratio can be presented as

Npc(t) =

{∑
k

[
P d
k + P f

k (t)
]2
}−1

, (5.8)

where

P d
k =

∑
α

|Cα
k0
|2|Cα

k |2 (5.9)

and

P f
k (t) =

∑
α 6=β

Cα
k0
Cα∗
k Cβ

k0
Cβ∗
k e
−i(Eβ−Eα)t (5.10)

are the diagonal and off-diagonal parts of

Pk(t) = |〈k|e−iHt|k0〉|2 =
∑
α,β

Cα∗
k0
Cα
kC

β
k0
Cβ∗
k e
−i(Eβ−Eα)t. (5.11)

As was recently shown for different models with chaotic behavior

[1], the number Npc increases exponentially fast in time, provided the
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eigenstates involved in the dynamics, are strongly chaotic. After some

relaxation time ts, the value of Npc fluctuates around the saturation

value due to the complete filling of a portion of the total Hilbert space,

called energy shell. Such a wave packet dynamics occurs when the

many-body eigenstates of H are fully delocalized in the energy shell.

This scenario explains the basic properties of the quench dynamics,

before and after the saturation.

5.5.2 Semi-analytical approach

The semi-analytical approach developed in [4] for TBRI matrices

with an infinite number of interacting Fermi-particles and modified

in [1] for finite Bose-systems, allows one to obtain simple estimates for

two important characteristics of the quench dynamics. The first charac-

teristic is the rate of the exponential growth for the Npc(t). The second

characteristic is the time scale ts on which the exponential growth of

Npc(t) occurs.

The two above characteristics can be estimated with the use of

the semi-analytical approach originally developed in [53] for an infi-

nite number of particles. To start with, we write down an infinite set

of probability conservation equations, used for the description of the

probability flow W (t) in the many-body Hilbert space of H0. To this

end, let us consider an initial non-interacting state |k0〉, and the proba-

bility W0(t) to be in this state at the time t. Correspondingly, we define

the set M0 = {|k0〉} consisting of the initial state alone. In order to

describe how the probability spreads in time we consider all states |ki〉
directly coupled to the initial one via the two-body interaction V . We

call this set M1 = {|ki〉 for which |〈k0|V |ki|〉 6= 0}. From this set we

define W1(t) as the probability to be in M1 at the time t. As time

increases, the probability flows onto another set M2 (with probability

W2) consisting of those states, coupled with the states of M1 by non-

zero Hamiltonian matrix elements and so on (see Fig.5.9). Neglecting
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the backward flow the infinite set of rate equations reads,

dW0

dt
= −ΓW0,

dW1

dt
= −ΓW1 + ΓW0,

dW2

dt
= −ΓW2 + ΓW1,

...

(5.12)

where we have introduced the parameter Γ describing the exponential

decay rate of the initial probability W0(t) ≡ Pk0(t). In Ref. [53] it was

shown that the above equations can be solved exactly:

Wk(t) =
(Γt)k

k!
W0(t) (5.13)

with W0(t) = exp(−Γt). The solution (5.13) allows one to derive the

Figure 5.9: Probability flow in the many-body Hilbert space with the con-

nectivity K = 3.

expressions for various observables. Defining the connectivity K of this
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network as the number of the elements in the first set M1, in [53] the

following approximate expression has been obtained,

Npc(t) = exp
[
2Γ(1− 1√

K
)t]. (5.14)

It should be stressed that the analogy with an infinitely large ”tree” is

correct in the thermodynamic limit only. For a finite Hilbert space, as

in our case, the number of the effective subsetsMk is finite. As a result,

as t→∞ each of the probabilities Wk(t) converges to a non-zero value.

Moreover, the set of equations (5.12) is practically restricted by a few

sets (in our simulations, by W1(t) and W2(t) only, since the number

of elements in M2 is already of the same order as the dimension of

the total Hilbert space). For the case of a small number of subsets, in

Ref. [1] the equations (5.12) have been modified and used to explicitly

obtain an extremely detailed quench dynamics. In this case one can

show that, on an intermediate time scale,

Npc(t) ≈ exp(2Γt), (5.15)

which coincides with Eq. (5.14) for large K values. From the above

analysis one can see that the key parameter in the quench dynamics is

the parameter Γ. This parameter is closely related to the width of the

LDoS. Indeed, the Local Density of States is defined by,

Fk0(E) =
∑
α

|Cα
k0
|2δ(E − Eα), (5.16)

where |k0〉 is an eigenstate of H0. Thus, it is obtained by the projection

of the initial state |k0〉 onto the eigenstates of H. The concept of LDoS

is extremely important in the analysis of the dynamical properties of

many-body systems. The Fourier transform of the LDoS determines

the survival probability of an initially excited many-body state, and

it is effectively used in the study of fidelity in many applications. In

particular, the inverse width 1/Γ of LDoS gives the characteristic time

scale, which is associated with the depletion of the initial state, thus

representing an early stage of thermalization [43]. Initially introduced
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in atomic [54] and widely used in nuclear physics [55], it also serves as

an important characteristic in other physical applications. As shown in

many different papers (see for instance [56] and references therein), for

systems with well defined classical limits, a classical analog of the LDoS

can be defined and directly computed from the Hamilton equations of

motion.

For isolated systems of interacting particles, described by a Hamil-

tonian H = H0 + V , the form of LDoS changes on increasing the

interaction strength V [19]. If for a weak, but not negligible, interac-

tion the LDoS is typically a Lorentzian (apart from the tails which are

due to the finite width of the energy spectrum), for a strong interac-

tion (i.e. when the interaction energy becomes of the same order of

the non-interacting one) its form becomes close to a Gaussian. Cor-

respondingly, the width Γ of the LDoS can be estimated either using

the Fermi golden rule, Γ ≈ 2πV 2ρf where ρf is the density of the

many-body states directly connected by V , or by the square root of

the variance of LDoS, σ =
√∑

H2
ij for i 6= j. When studying the

TBRI model, this crossover was found to serve as the condition for the

onset of strong quantum chaos, defined in terms of a pseudo-random

structure of many-body eigenstates. For this reason, instead of Γ in our

case one can use σ since the latter is much easier to estimate than the

former. Thus, when comparing our data in Fig.5.12 with the predicted

exponential dependence (5.15), we use the following expression:

Γ2 =
∑
k 6=j0

H2
k,j0
. (5.17)

As will be shown below, the simple expression (5.15) nicely corresponds

to numerical data demonstrating the exponential increase of Npc in

time.

Now let us discuss another important characteristic of the relaxation

for finite systems, namely, the time scale over which the exponential

growth of Npc lasts. To do that, we have to estimate the saturation

value N∞pc of Npc after the relaxation of the system to equilibrium.
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This value, can be obtained by the time average performed after the

saturation time ts,

[ N∞pc ]−1 = lim
T→∞

1

T

∫ T

0

dt [Npc(t)]
−1. (5.18)

An analytical expression, assuming non-degenerate energy levels, in

terms of the eigenstates can be written as,

N∞pc =

[
2
∑
k

(P d
k )2 −

∑
α

|Cα
k0
|4
∑
k

|Cα
k |4
]−1

. (5.19)

This expression determines the total number of non-interacting many-

body states inside the energy shell, excited in the process of equilibra-

tion.

Following [1], let us estimate the average value of Npc after the re-

laxation, for the situation when the eigenstates are strongly chaotic.

First of all let us notice that the second term in the r.h.s of Eq. (5.19)

is roughly 1/D times smaller than the first one, where D is the di-

mension of the many-body Hilbert space. This can be seen by taking

uncorrelated components Cα
k ' (1/

√
D)eiξα,k , where ξα,k are random

numbers. Thus, one gets,

2
∑
k

(P d
k )2 = 2

∑
α,β,k

|Cα
k0
|2|Cα

k |2|C
β
k0
|2|Cβ

k |
2 ' D

3

D4
' 1

D
, (5.20)

while ∑
α,k

|Cα
k0
|4|Cα

k |4 '
D2

D4
' 1

D2
(5.21)

As a result (taking the first of the above terms only), we arrive at the

estimate, [
N∞pc

]−1 ' 2
∑
k

(P d
k )2. (5.22)

Next, we assume a Gaussian shape for (i) the LDoS, (ii) the density of

states for H0 , and (iii) the density of states of H. These are realistic

assumptions for chaotic many-body systems with random two-body in-

teractions, such as the TBRI model close to the middle of the energy
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spectrum. Obviously, in the tails of the spectrum the Gaussian approx-

imation is not valid, see Fig.5.10. Since our interest is in the energy

region far from the bottom of the spectrum, our assumptions are valid,

at least when we interested in global characteristics of the dynamics,

which in the first line depends on the width of the above shapes, and

not on their details.

Figure 5.10: Histograms stands for interacting (black) and non-interacting

(red) density of states for a system of N = 8 bosons in M = 11 single

particle energy levels. Interaction strength is v = 0.4. The effective energy

width of the Hamiltonians are : ∆H = 98.78 and ∆H0 = 83.32. Dashed lines

are the Gaussian fit in the central region of the energy spectrum.

(i) For the LDoS we then assume

Fk0(E) ' 1

Γ
√

2π
exp

{
−(E − Ek0)2

2Γ2

}
, (5.23)

where Γ is the width of the LDoS and Ek0 is the energy of the non-

interacting state. We also assume that Γ is independent of Ek. Note

that the LDoS is normalized,
∫
Fk(E)dE = 1.

(ii) The Gaussian shape for the non-interacting density of states

ρ0(E) of width σ0 is written as

ρ0(E) =
D

σ0

√
2π

exp

{
− E

2

2σ2
0

}
. (5.24)
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(iii) The Gaussian density of states, characterized by a width σ, is

such that

ρ(E) =
D

σ
√

2π
exp

{
− E

2

2σ2

}
, (5.25)

where for simplicity we set the middle of the spectrum at the energy

E = 0. Both densities of states are normalized to the dimension of the

Fock space, ∫
ρ(E)dE =

∫
ρ0(E0) dE0 = D.

Numerical data confirm the Gaussian form of ρ(E0) and ρ(E), for the

TBRI model in the middle of the spectrum, see Fig. 5.10. As one

can see, due to the interaction the energy spectrum increases its total

width.

The above assumptions imply that in the continuum, one has∑
α |Cα

k0
|2|Cα

k |2 '
∫
dE ρ(E)−1Fk(E)Fk0(E) =

σ2Γ−1D−1
√

2σ2−Γ2 exp
{
− (Ek)2+(Ek0 )2

2Γ2 +
(Ek+Ek0 )2

2Γ2(2σ2−Γ2)

}
≡ Gk0(Ek)

(5.26)

which is defined only for 2σ2 > Γ2. We can then approximate

[N∞pc ]−1 ' 2
∑
k

(P d
k )2 ' 2

∫
dE ρ0(E)G2

k0
(E). (5.27)

Taking into account that σ2
0 = σ2 − Γ2, Eq. (5.27) gives

N∞pc = C1
DΓ

σ
e−E

2
k0
/Γ2

(5.28)

with C1 =
√

1/2− Γ2/4σ2.

The time ts, determining the onset of the saturation, can be esti-

mated from the relation,

exp(2Γts) ≈ N∞pc . (5.29)

Considering the case for which M ' 2N , one gets an estimate for the

maximal time [1]

ts ≈
N

Γ
. (5.30)
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This is one of the important results, obtained in the frame of the

discussed approach. As one can see, the characteristic time ts is N

times larger than the time tΓ ≈ 1/Γ describing the early decrease of

the return probability. The key point is that the time tΓ has to be

associated only with an initial process towards the true thermalization.

In contrast, the latter emerges when the flow of probability fills all the

subsets Wk that create the energy shell available in the thermalization

process. This result can have important implications for addressing

other issues such as the scrambling of information and the quantum

butterfly effect.
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5.5.3 Thermodynamic entropy versus diagonal entropy

Now let us discuss an important relation which has been discovered

by analyzing the quench dynamics leading to thermalization. This

relation links two entropies, Sth and Sdiag. Here

Sth = lnN∞pc (5.31)

is the thermodynamic entropy characterizing the system after its re-

laxation to equilibrium and N∞pc is the average number of basis states

(eigenstates of H0) in the stationary distribution. This number can be

associated with the occupied ‘volume” Vs(E) of the Hilbert space :

Vs(E) ' N∞pc δ0, (5.32)

where δ0 = ∆H0/D is the non-interacting energy spacing, ∆H0 is the

effective width of the energy spectrum of H0 and D is the dimension

of the many-body Hilbert space.

As for the diagonal entropy Sdiag, discussed in view of its relation

to the Von Neumann entropy [57], it is given by,

Sdiag = −
∑
α

|Cα
k0
|2 ln |Cα

k0
|2. (5.33)

Note that the diagonal entropy is the Shannon entropy of the set of

probabilities wk0(E
α) = |Cα

k0
|2 obtained by the projection of the non-

interacting state |k0〉 of H0 onto the eigenstates of H. With the Shan-

non entropy we can built the entropic localization length

`H = exp (Sdiag) , (5.34)

giving the number of eigenstates of H excited by the initial basis state

[53]. Thus, the volume occupied by the initial state is Vi(E) ' `Hδ,

where δ is the energy spacing estimated as δ ' ∆H/D. Since the

two volumes are equal, N∞pc ∆H0 = `H∆H , we arrive at the following

relation:

Sth = Sdiag + ln(∆H/∆H0), (5.35)
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where ∆H and ∆H0 are the widths of the energy spectra of H and H0,

respectively. A similar correction due to the difference between ∆H

and ∆H0 also appeared in other context [58].

Our numerical study of the quench dynamics of the t-LL model

demonstrates that Npc(t) oscillates in time in the MF regime (n/g � 1)

as shown in Fig.5.11. In contrast, it grows exponentially fast in the

TG regime (n/g . 1, see Fig. 5.12), after a short time where, due to

the standard perturbation theory, the time-dependence is quadratic in

time. This exponential growth lasts up to some time ts after which

a clear saturation of Npc emerges, together with irregular fluctuations

around its mean value. In order to reduce these fluctuations which

are due to different initial conditions (various values of j0), we have

performed the average 〈Npc〉 over all those initial non-interacting basis

states with the same energy.

First, the numerical data clearly manifest a very good correspon-

dence to the analytical estimates of the exponential increase of Npc(t)

occurring for t � ts. Second, the relaxation time ts roughly corre-

sponds to the estimate ts ≈ N/Γ (specifically, to Γts ≈ N with N = 9).

Finally, the relation (5.35) between the diagonal and thermodynamic

entropies holds with a very good accuracy. All these results are highly

non-trivial since they are obtained for the t-LL model which is non-

random. Specifically, one can show that the non-diagonal matrix ele-

ments of the total Hamiltonian are strongly correlated. For the case

shown in Fig.5.12 diagonal and off-diagonal Hamiltonian matrix ele-

ments take the values from a set with very few elements, as one can

see from the plots shown in Fig.5.4. It is important to note that the

validity of our analytical expression holds also in this case where the

non-interacting density of states is a set of δ−functions (and certainly

not a Gaussian)
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0.2
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Figure 5.11: Time dependence of ln〈Npc〉 for the t-LL model for weak in-

teraction (MF regime). On x-axis we put the dimensionless time Γt where

Γ is the width of the LDoS averaged over the degenerate initial states. The

average (blue curve) has been done over all initial degenerate states having

the same energy E0 close to the band center (with j0 ≈ 4050). Here we

considered N = 9 particles in ` = 13 momentum levels, n/g = 10, for a

fixed total momentum P = 1 (the matrix size is 8122). The normalized

diagonal entropy Sdiag + ln(∆H/∆H0) = 2.75±1 does not correspond to the

equilibrium value since for this interaction strength the eigenstates involved

in the dynamics are not chaotic.
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Figure 5.12: Time dependence of ln〈Npc〉 for the t-LL model. On x-axis we

put the dimensionless time Γt where Γ is the width of the LDoS averaged

over the degenerate initial states. The average has been done over all initial

degenerate states having the same energy E0 close to the band center (with

j0 ≈ 4050). Inset: the early stage of the evolution of ln〈Npc〉, in comparison

with linear dependence 2Γt (red dashed line). Here we considered N = 9

particles in ` = 13 momentum levels, n/g = 0.5, for a fixed total momentum

P = 1 (the matrix size is 8122). Horizontal green thick line represents the

normalized diagonal entropy Sdiag+ln(∆H/∆H0), the thickness corresponds

to one standard deviation due to different initial states. In computing ∆H

and ∆H0 we excluded a number of energies close to the band edges.
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5.6 Occupation Number

As shown above the interaction act as a thermal bath leading to

thermalization. In the following we will see that we can then define

an effective energy, dependent on the inter-particle interaction, via the

Bose-Einstein distribution.

Our conserved quantity are the total number of particles, the total

momentum and total energy:
∑

s ns = N∑
s sns = P∑
s εsns = E

(5.36)

Due to the conservation of total momentum, the generalized Bose-

Einstein distribution will be:

ps =
gs

exp(α− γs+ βεs)− 1
, gs = 1 (5.37)

5.6.1 Eigenstates

To solve the system of Eq. 5.36, in our case the total number of

particle is fixed N = 9, the total momentum P = 1, and the dressed

energy is calculated for the single eigenstate (since we will make an av-

erage between multiple eigenstates with close energies, we will consider

the average of the energies) as

Ẽα =
∑

s εsn
(α)
s =

∑
s

∑
k εs|Cα

k |2n
(k)
s

=
∑

k |Cα
k |2
∑

s εsn
(k)
s =

∑
k |Cα

k |2Ek
(5.38)

Then we compare the results (ps) with the occupation number:

n(α)
s =

∑
k

|Cα
k |2n(k)

s ,
∑
s

εsn
(k)
s ≡ Ek (5.39)
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Numerical computations show that in the middle of the spectrum

we have a very good correspondence of the exact eigenstates with the

generalized Bose-Einstein distribution with fixed number of particle

N , momentum P and energy E = Ẽα ”dressed” energy defined in Eq.

5.38.
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Figure 5.13: Blue error bar: mean distribution (with relative error bars) of

the eigenstates shown in the upper part of the figures compared with the

Red line: distribution obtained through the numerical solution of the system

of Eq.5.36 with mean Energy E =< Ẽα > over the chosen states. In the

insets it’s shown the mean Dressed Energy and the relative error σE . N = 9

particles in ` = 13 single particle states, with total momentum P = 1 and

medium interaction n/g = 0.5 (left), strong interaction n/g = 0.05 (right)
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5.6.2 Time Evolution

Since previous results show thermalization for some interaction, we

expect a thermalization also in the occupation number distribution. We

calculate the ”time dependent dressed” energy and the evolved occu-

pation number distribution through the projection in the unperturbed

many-body basis:

Ẽ(t) =
∑
k

|ck(t)|2Ek , ns(t) =
∑
k

|ck(t)|2nks (5.40)

where:

ck(t) =< k|ψ(t) >=< k|e−iHt|kin > (5.41)

We can then calculate the time evolved unperturbed Energies dis-

tribution defined as (notice that the ”time dependent dressed” energy

defined above is the mean value of this distribution):

P (Ek, t) =
∑
k

|ck(t)|2δ(E − Ek) (5.42)

while the unperturbed Energies distribution is:

P0(Ek) =
1

Nstates

∑
k

δ(E − Ek) (5.43)
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a)

b)

Figure 5.14: Upper panels) Blue and Red dots: occupation distribution for

two different initial states, compared with Black and Purple curves: dis-

tribution obtained through the numerical solution of the system of Eq.5.36

with Energy E = Ẽ(t) from Eq.5.40 of the time evolved initial state.

Lower panels) Blue and Red bins: Projection of the time evolved state into

the non interacting many body basis (Eq.5.42). Black stair: Many body

non interactive Energies distribution (Eq.5.43).

N = 9 particles in ` = 13 single particle states, with total momentum P = 1

and interactions n/g = 0.5 (a) and n/g = 0.05 (b) .
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Chapter 6

Summary

We started introducing some interesting results obtained in the study

of the Bethe Ansatz to have a better understanding of the model.

Studying the spectrum we found important symmetries which make

the calculation of the spectrum easier. We then address the problem

of genericity of Poisson distribution for level spacing distribution of in-

tegrable systems. In particular, we show that for Lieb Liniger model,

Poisson distribution occurs only for particular interaction strengths and

particular energy range.

We have studied the truncated Lieb Liniger model (t-LL) with a fi-

nite number of particles in a finite number of momentum states which

is originated from the completely integrable Lieb-Liniger model. By

studying the quench dynamics in the region where the many-body

eigenstates can be considered as strongly chaotic, we have found that

the time evolution is quite similar to that recently found for the ran-

dom TBRI, as well as for the deterministic XXZ model of interacting

1D spins-1/2 [20, 21]. Specifically, the number of components in the

wave packets evolving in the Hilbert space, increases exponentially in

time with a rate given by twice the width of the LDoS related to the

initial state of the non-interacting many-body Hamiltonian H0. This

growth lasts approximately until the saturation time ts which is much

larger than the inverse width of the LDoS characterizing the initial

decay of the survival probability. Both the rate of the exponential

77
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increase and the characteristic time ts for the onset of equilibration,

nicely correspond to our semi-analytically estimates.

By studying the process of relaxation of the system to the equi-

librium, we have discovered a remarkable relation between the ther-

modynamic entropy Sth (defined in terms of the number of principal

components Npc in the wave function) of the system after the equili-

bration, and the diagonal entropy Sdiag related to an initial many-body

state. This relation (5.35) establishes a direct link between statisti-

cal and thermodynamical properties, and seems to be generic, valid

for both deterministic and random many-body systems. Recently, an-

other relation between the diagonal entropy and the GGE entropy was

found in a fully integrable 1D Ising model in a transverse magnetic

field [61,62]. Thus, a further study of the relevance of the diagonal en-

tropy to the thermodynamic properties of many-body systems seems to

be very important, especially, in view of possible experimental studies

of the onset of thermalization in isolated systems.

We have shown that the generalized Bose-Einstein distribution,

known to appear in the thermodynamic limit, emerges on the level

of an individual eigenstate in the truncated Lieb-Liniger model. This

happens when the inter-particle interaction is strong enough to lead to

the onset of chaotic many-body eigenstates in the basis defined by the

chosen single-particle spectrum. For the eigenstates we computed the

correspondent occupation number distribution and verified that they

can be successfully described by a generalized Bose-Einstein distribu-

tion with a suitable ”dressed” energy dependent on the inter-particle

interaction. We also have shown that after the thermalization time,

the evolved state, due to the interaction, reach a thermal state.
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