
Loop transformations for interface-based hierarchies IN

SDF graphs

Jonathan Piat, Shuvra S. Bhattacharyya, Mickaël Raulet

To cite this version:

Jonathan Piat, Shuvra S. Bhattacharyya, Mickaël Raulet. Loop transformations for interface-
based hierarchies IN SDF graphs. Application-specific Systems Architectures and Processors
(ASAP), 2010 21st IEEE International Conference on, Jul 2010, Rennes, France. pp.341 -344,
2010, <10.1109/ASAP.2010.5540954>. <hal-00560028>

HAL Id: hal-00560028

https://hal.archives-ouvertes.fr/hal-00560028

Submitted on 27 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53011883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00560028

LOOP TRANSFORMATIONS FOR INTERFACE-BASED HIERARCHIES IN SDF GRAPHS

Jonathan Piat1, Shuvra S. Bhattacharyya2, and Mickael Raulet1

(1) IETR/INSA, UMR CNRS 6164

Image and Remote Sensing laboratory, F-35043 Rennes, France

email: {jonathan.piat@insa-rennes.fr, mickael.raulet@insa-rennes.fr}

(2)Department of Electrical and Computer Engineering,

University of Maryland, College Park, MD, 20742, USA

email: {ssb@umd.edu}

ABSTRACT

Data-flow has proven to be an attractive computation model

for programming digital signal processing (DSP) applica-

tions. A restricted version of data-flow, termed synchronous

data-flow (SDF), offers strong compile-time predictability

properties, but has limited expressive power. A new type of

hierarchy (Interface-based SDF) has been proposed allowing

more expressivity while maintaining its predictability. One

of the main problems with this hierarchical SDF model is the

lack of trade-off between parallelism and network clustering.

This paper presents a systematic method for applying an im-

portant class of loop transformation techniques in the con-

text of interface-based SDF semantics.The resulting approach

provides novel capabilities for integrating parallelism extrac-

tion properties of the targeted loop transformations with the

useful modeling, analysis, and code reuse properties provided

by SDF.

Index Terms— Data-Flow programming, SDF graph,

Scheduling, Code Generation, Loop parallelization.

1. INTRODUCTION

Since applications such as video coding/decoding or digital

communications with advanced features are becoming more

complex, the need for computational power is rapidly increas-

ing. In order to satisfy software requirements, the use of par-

allel architecture is a common answer. To reduce the software

development effort for such architectures, it is necessary to

provide the programmer with efficient tools capable of au-

tomatically solving communications and software partition-

ing/scheduling concerns. Most tools such as PeaCE [?], Syn-

DEx [?] or PREESM [?] use as an entry point a model of the

application associated to a model of the architecture. Data-

flow model is indeed a natural representation for data-oriented

applications since it represents data dependencies between the

operations allowing to extract parallelism. In this model, the

application is described as a graph in which nodes represent

computations and edges carry the stream of data-tokens be-

tween operations. The Synchronous Data-Flow (SDF) model

allows to specify the number of tokens produced/consumed

on each outgoing/incoming edge for one firing of a node.

Edges can also carry initialization tokens, called delay. That

information allows to perform analysis on the graph to deter-

mine whether or not the graph is schedule-able, and if so to

determine an execution order of the nodes and application’s

memory requirements.

In basic SDF representation, hierarchy is used either as a

way to represent cluster of nodes in the SDF graph or as pa-

rameterized sub-system [?]. In order to extend the expres-

sivity of the SDF model, we propose a new hierarchy type

more detailed in [?] based on interface. This new representa-

tion allows the designer to describe sub-graphs in a top down

approach, thus adding relevant information for later optimiza-

tions. In this paper, we introduce optimization techniques for

this particular model based on regular loop transformations.

This transformation allows to extract a given level of paral-

lelism from the hierarchy while maintaining an average level

of clustering.

Section 2 explains the Synchronous Data-Flow graphs, and

3 present existing hierarchy and the new hierarchy represen-

tation. Section 4 presents loop analyze and optimization tech-

niques. In 5 we investigate the application of the given opti-

mization technique to the hierarchical SDF model. Section 6

provide results of such optimization on a given application.

Finally, section 7 highlights the future work and concludes

this paper.

2. SYNCHRONOUS DATA-FLOW GRAPH

The Synchronous Data-Flow (SDF) graph [?] is used to sim-

plify the application specification, by allowing the represen-

tation of the application behavior at a coarse grain. This data-

flow model represents operations of the application and spec-

ifies data dependencies between the operations.

A Synchronous Data-Flow graph is a finite directed,

weighted graph G =< V,E, d, p, c > where :

• V is the set of nodes; each node represents a computa-

tion that operates on one or more input data streams and

outputs one or more output data streams.

• E ⊆ V ×V is the edge set, representing channels which

carry data streams.

• d : E → N ∪{0} (N = 1, 2, . . .) is a function with d(e)
the number of initial tokens on an edge e.

• p : E → N is a function with p(e) representing the num-

ber of data tokens produced at e’s source to be carried by

e.

• c : E → N is a function with c(e) representing the num-

ber of data tokens consumed from e by e’s sink node.

The topology matrix is the matrix of size |E| × |V |, in

which each row corresponds to an edge e in the graph and

each column corresponds to a node v. Each coefficient (i, j)
of the matrix is positive and equal to N if N tokens are pro-

duced by the jth node on the ith edge. (i, j) coefficients are

negative and equal to N if N tokens are consumed by the jth

node on the ith edge. It was proved in [?] that a static sched-

ule for graph G can be computed only if its topology matrix’s

rank is one less than the number of nodes in G. This neces-

sary condition means that there is a Basic Repetition Vector

(BRV) q of size |V | in which each coefficient is the repetition

factor for the jth vertex of the graph. SDF graph representa-

tion allows use of hierarchy, meaning that for v = G, a vertex

may be described as a graph. A vertex with no hierarchy is

called an actor.

op1
3

3

op2
2 2

op32 2

op4
4

4 







3 −2 0 0
3 0 −2 0
0 2 0 −4
0 0 2 −4









Fig. 1. SDF and topology matrix

2.1. SDF to DAG translation

One common way to schedule SDF graphs onto multiple pro-

cessors is to first convert the SDF graph into a precedence

graph such that each vertex in the precedence graph corre-

sponds to a single execution of an actor from the SDF graph.

Thus each SDF graph actor A is “expanded into” qA sepa-

rate precedence graph vertices, where qA is the component of

the BRV that corresponds to A. In general, the SDF graph

aims at exposing the potential parallelism of the algorithm;

the precedence graph may reveal more functional parallelism,

moreover it exposes the available data-parallelism. A valid

precedence graph contains no cycle and is called DAG (Di-

rected Acyclic Graph). Unfortunately, the graph expansion

due to the repetition count of each SDF node can lead to an

exponential growth of nodes in the DAG. Thus, precedence-

graph-based multiprocessor scheduling techniques, such as

those developed in [?] [?], in general have complexity that is

not polynomially bounded in the size of the input SDF graph,

and can result in prohibitively long scheduling times for cer-

tain kinds of graphs (e.g., see [?]).

A
3

B
2

A1

A2

B1

B2

B3

Fig. 2. SDF graph and its precedence graph

3. HIERARCHY TYPES IN SDF GRAPH

Hierarchy can be extracted from a graph in order to optimize

application for the scheduling, but can also be used by user

to describe an application at different grain level. The first

type of hierarchy called clustering allows analysis to group

vertices into a single vertex to group data and ease scheduling

steps. The second hierarchy representation allows the user to

design portion of a graph as a vertex which inner behavior

can be determine at runtime using parameters from the data-

flow. The interface-based hierarchy allows to design portion

of an application to be instantiated at later time. Those frag-

ment have fixed interface behavior that allows to perform lo-

cal analysis (outside of the application), and generate cleaner

C code.

3.1. Repetition-based SDF hierarchy

Hierarchy has been described in [?], as a mean of represent-

ing cluster of actor in a SDF graph. In [?] clustering is used

as a pre-pass for the scheduling described in [?] that reduces

the number of vertices in the DAG, minimizing synchroniza-

tion overhead for multi-threaded implementation and maxi-

mizing the throughput by grouping buffers [?]. Given a con-

sistent SDF graph, this approach first clusters strongly con-

nected components to generate an acyclic graph. A set of

clustering techniques are then applied based on topological

and data-flow properties, to maximize throughput and min-

imize synchronization between clusters. This approach is a

bottom-up approach, meaning that the starting point is a SDF

graph with no hierarchy and it automatically outputs a hier-

archical (clustered) graph. In order to ensure that clustering

an actor may not cause the application to be deadlock, the

authors (in [?]) describe five composition rules based on the

data-flow properties.

3.2. Parameter-based SDF hierarchy

Parameter-based SDF hierarchy has been introduced in [?]

where the authors introduce a new SDF model called Param-

eterized SDF. This model aims at increasing SDF expressivity

while maintaining its compile time predictability properties.

In this model a sub-system (sub-graph) behavior can be con-

trolled by a set of parameters that can be configured dynami-

cally. These parameters can either configure sub-system inter-

face behavior by modifying production/consumption rate on

interfaces, or configure behavior by passing parameters (val-

ues) to the sub-system actors. In this model each sub-system

is composed by three graphs: the init graph φi, the sub-init

graph φs, the body graph φb.

Each activation of the sub-system, is composed by an invo-

cation of φs followed by an invocation of φb. The init graph

is effectively decoupled from the data-flow specification of

the parent graph and invoked once, at the beginning of each

(minimal periodic) invocation (see [?]). The sub-init graph

performs reconfiguration that does not affect sub-system in-

terface behavior and is activated more frequently than the init-

graph which can modify sub-system interface behavior. In or-

der to maintain predictability, actors of φb are assigned a con-

figuration which specifies parameters values. This value can

either be a domain which specifies the set of valid parameter

value combinations for the actor, or left unspecified, meaning

that this parameter value will be determined at run-time.

3.3. Interface-based SDF Hierarchy

While designing an application, user might want to use hi-

erarchy in a way to design independent graphs that can be

instantiated in any design. From a programmer view it be-

haves as closures since it defines limits for a portion of an

application. This kind of hierarchy must ensure that while a

graph is instantiated, its behavior might not be modified by its

parent graph, and that its behavior might not introduce dead-

lock in its parent graph. The rules defined in the composition

rules ensure the graph to be deadlock free when verified, but

are used to analyze a graph with no hierarchy. In order to al-

low the user to hierarchically design a graph, this hierarchy

semantic must ensure that the composed graph will have no

deadlock if every level of hierarchy is independently dead-

lock free. To ensure this rule we must integrate special nodes

in the model that restrict the hierarchy semantic. In the fol-

lowing a hierarchical vertex will refer to a vertex which em-

beds a hierarchy level, and a sub-graph will refer to the graph

representing this hierarchy level.

3.3.1. Special nodes

Source node: A Source node is a bounded source of tokens

which represents the tokens available for an iteration of the

sub-graph. This node behaves as an interface to the outside

world. A source port is defined by the four following rules:

A-1 Source production homogeneity: A source node Source
produces the same amount of tokens on all its outgoing

connections p(e) = n ∀e ∈ {Source(e) = Source}.

A-2 Interface Scope: The source node remains write-locked

during an iteration of the sub-graph. This means that the

interface cannot be filled by the outside world during the

sub-graph execution.

A-3 Interface boundedness: A source node cannot be re-

peated, thus any node consuming more tokens than made

available by the node will consume the same tokens

multiple times (ring buffer). c(e)%p(e) = 0 ∀e ∈
{source(e) = source}.

A-4 SDF consistency: Every token made available by a

source node must be consumed during an iteration of the

sub-graph.

Source
1

A
1 1

1

B
1 1

C
1

1
1

Sink
2

Fig. 3. Design of a sub-graph.

Sink node: A sink node is a bounded sink of tokens that

represent the tokens to be produced by an iteration of the

graph. This node behaves as an interface to the outside world.

A sink node is defined by the four following rules:

B-1 Sink producer uniqueness: A sink node Sink only has

one incoming connection.

B-2 Interface Scope: The sink node remains read-locked dur-

ing an iteration of the sub-graph. This means that the

interface cannot be read by the outside world during the

sub-graph execution.

B-3 Interface boundedness: A sink node cannot be repeated,

thus any node producing more tokens than needed by

the node will write the same tokens multiple times (ring

buffer). p(e)%c(e) = 0 ∀e ∈ {target(e) = Sink}.

B-4 SDF consistency: Every token consumed by a sink node

must be produced during an iteration of the sub-graph.

3.3.2. Hierarchy deadlock-freeness

Considering a consistent connected SDF graph G = {g, z},

g = {Source, x, y, Sink} with Source being a source node

and Sink being a sink node, and z being an actor. In the

following we show how the hierarchy rules described above

ensure the hierarchical vertex g to not introduce deadlocks in

the graph G:

• if it exists a simple path going from x to y containing

more than one arc, this path cannot introduce cycle since

this path contains at least one interface, meaning that the

cycle gets broken. User must take this into account to

add delay to the top graph.

• Rules A2-B2 ensure that all the data needed for an it-

eration of the sub-graph are available as soon as its ex-

ecution starts, and that no external vertex can consume

on the sink interface while the sub-graph is being ex-

ecuted. As a consequence no external vertex strongly

connected with the hierarchical vertex can be executed

concurrently. The interface ensures the sub-graph con-

tent to be independent to the outside world, as there is

no edge α ∈























α′‖













(src(α′) = x)
and

(snk(α′) ∈ C)
and

(snk(α′) /∈ {x, y})



































consid-

ering that snk(α′) /∈ {x, y}) cannot happen.

• The designing approach of the hierarchy cannot lead to

an hidden delay since even if a delay is in the sub-graph,

an iteration of the sub-graph cannot start if its input in-

terfaces are not full.

Those rules also guarantee that the edges of the sub-graph

have a local scope, since the interfaces make the inner graph

independent from the outside world. This means that when an

edge in the sub-graph creates a cycle (and contains a delay),

if the sub-graph needs to be repeated this iterating edge will

not link multiple instances of the sub-graph.

The given rules are sufficient to ensure a sub-graph to not

create deadlocks when instantiated in a larger graph.

3.3.3. Hierarchy improvements

As said earlier, this hierarchy type eases the designer work,

since he/she can design subsystems independently and may

instantiate them in any application. Not only easing the de-

signer work, this kind of hierarchy also improves the appli-

cation with the same criteria than the clustering techniques.

The proposed hierarchy is intended to be both a model and a

user-friendly graphical representation, while PSDF and other

abstract forms of data-flow should only be considered as mod-

els of computation.

This model also makes the application easier to describe

for programmers who are for example more familiar with C,

and less familiar with concepts such as repetitions vectors and

sub-init graphs as seen in PSDF.

4. STATE OF THE ART ON NESTED-LOOPS AND

PARTITIONING TECHNIQUE

4.1. Definition and representation

Definition A nested loop of depth n is a structure composed

of n nested loop for which each loop, excluded the nth one,

contains only a loop.

The iteration domain of the outer loop remains constant

while the iteration domain of inner loops consists in maxima

and minima of several affine functions.

f o r i1 := l1 to u1 do

f o r i2 := l2(i1) to u2(i1) do

. . .

f o r in := ln(i1, i2, ..., in−1) to un(i1, i2, ..., in−1) do

{Instruction1}
. . .

{Instructionk}
end

end

end

Fig. 4. Nested loop example.

Optimizing nested loops aims at extracting parallelism, by

transforming the loops structure. Those transformations can

be any of the five types described below.

• Loop distribution : this transformation aims at distribut-

ing the nested loop to extract at least one forall loop.

• Loop fusion: this transformation aims at fusionning sev-

eral loops body into one unique loop

• Loop unrolling: this transformation aims at unrolling a

loop to extract the inter-iteration parallelism

• Loop partitioning: this transformation aims at partition-

ing the loops to extract disjoint iteration domain.

• Unimodular Transformation: this transformation aims at

modifying the iteration domain resulting in an out–of–

order iteration.

In order to perform those transformations to optimize the

loop execution, one must analyze the dependencies between

the iterations of the loops. Three types of dependencies exist.

• Flow dependence: a statement S2 is flow dependent on

S1 (written) if and only if S1 modifies a resource that S2

reads and S1 precedes S2 in execution.

• Anti-dependence: a statement S2 is anti-dependent on

S1 (written) if and only if S2 modifies a resource that

S1 reads and S1 precedes S2 in execution.

• Output dependence: a statement S2 is output dependent

on S1 (written) if and only if S1 and S2 modify the same

resource and S1 precedes S2 in execution.

Analyzing those dependencies can rely on a model which

can be treated for optimization. In the following we will be

using the “distance vector” as a dependency representation. A

distance vector represents the flow dependency between two

operation along the iteration domain. In nested loop of depth

N , given two access to the same data in the flow order by two

instruction S1 and S2 with S1 ⇒ S2 with respective index

vector ~p and ~q. The distance vector ~δ is an N dimensional vec-

tor.For a flow dependency S1[~p] ⇒ S2[~q] the distance vector

is ~δ = ~p− ~q. This specific representation allows to use linear

algebra to perform analysis and optimisation. In the follow-

ing we will investigate a loop partitioning technique based on

this representation.

4.2. Loop partitioning by iteration domain projection

This nested loop partitioning technique was developed as a

method for systolic array synthesis in [?]. A systolic array is

massively parallel computing network. This network is com-

posed of a set of cells locally connected to their spatial neigh-

bors. All the cells are synchronous to a unique clock. For

each clock cycle, a cell takes data from its incoming edges,

perform a computation and output data to its outgoing cells.

This partitioning technique aims at finding a projection vec-

tor by analyzing the distance vector of a nested loop of depth

N . When this projection vector has been determined, the it-

eration domain is projected along this vector resulting in an

N − 1 dimension systolic array.

To determine the projection vector we must first determine

a time vector τ that satisfies the data dependencies. In [?]

the author introduces a nested loops optimization technique

which aims at transforming a nested loop in a nested loop for

which some (all in the optimal case) of the internal loops can

be computed in parallel. This goal is achieved by finding a

set of parallel linear hyperplane in the iteration domain, such

as the set of point being computed is E(t) = H(t) ∩D. This

set of point can then be computed in parallel. Going from one

hyperplane to another H(t) → H(t + 1) is made by trans-

lating the hyperplane with a vector τ called time vector. In

the case of uniform nested loops, dependency vector being all

positive, it is easy to determine a valid τ vector. A valid τ
vector always verify τd ≥ 1 for any dependency vector d.

For a given τ vector, the parallel execution time of the nested

loop, can be determine by tparallel = τ ∗ pmax, pmax being

the coordinate of the last point of the domain. In [?] Lamport

propose a solution to find one τ vector for which the parallel

execution time is minimal.

Given a valid time vector, a valid projection vector sn ver-

ify τsn 6= 0. Let us now complete the sn vectors into a uni-

modular matrix Sn, sn being the first column of the matrix.

The matrix Sn is the space base, so we project the computa-

tion domain along the first column of Sn onto the hyperplane

generated by the n − 1 other vectors of the matrix. Coordi-

nates of a point p of the computation domain into the space

base Sn are S−1p. Thus, the allocation function is the lower

(n−1)×n sub-matrix of S−1, which correspond to the n−1
last coordinate in the space base.

Using this allocation matrix we can now determine how the

domain points are allocated onto the computing network. Fur-

ther analysis using the time vector and distance vectors also

allows to figure out the communication activity over the net-

work and the computation activity of each cell in the network.

By completing the vector τ into a unimodular matrix T−1,

T is the time base of the computation domain. The last n −
1 column vector of T forms the base of the hyperplane of

the point computed at time 0, while the first column, is the

translation vector that allow to go from the hyperplane of the

point computed at t to the hyperplane of the point computed

at t+1. The activity translation vector correspond to the n−1
element of the first column vector of the product S−1.T , and

the (n− 1)× (n− 1) sub-matrix is the activity base.

5. APPLYING LOOP OPTIMIZATION TECHNIQUES

TO INTERFACE-BASED HIERARCHY

Loop partitioning technique described in previous section re-

veals the parallelism nested into the loops by using basic lin-

ear algebra and gives a set of results. As seen previously,

interface-based hierarchy suffers from a lack of parallelism.

All the embedded parallelism remains unavailable for the

scheduler, making an application hard to optimize on a paral-

lel architecture. Interface-based hierarchy being close to code

nesting, it seems appropriate to tap into nested loops parti-

tioning techniques to extract parallelism. The nested loops

code structure could be defined as follow in the Interface-

based Synchronous Data-Flow model :

Definition A nested loop of depth n is a structure composed

of n nested hierarchical actor with a repetition factor greater

than one, for which each actor, excluded the nth one, contains

only one actor.

In order to exploit this optimization technique we must be

able to extract the distance vector from the hierarchical de-

scription, thus allowing to have a relevant representation for

the partitioning. Then having the different projection vector

and their respective resulting execution domain, we must be

able to map back this representation into a SDF graph.

5.1. Distance vector extraction from interface-based SDF

The Synchronous Data-flow paradigm brings some limitation

to the representation.

• In the data-flow paradigm, actors produce tokens that can

then be consumed. A data-flow representation cannot

contain other dependencies than the flow dependency.

• In the SDF paradigm all the data are represented by

edges. Thus all the data of a network are considered

disjoint.

• In the SDF model, data are uni-dimensional and

atomic (token). It means that you cannot have multi-

dimensional access to a data.

The third limitation shows that, the basic SDF representa-

tion does not allow to extract distance vector. The hierarchi-

cal SDF allows factorized representation and therefore allows

to represent edges as multi-dimensional data over the itera-

tion domain. As data are being disjoint, only recursive edge

(source(e) = sink(e)) can carry an inter iteration depen-

dency. It means that the analyze only have to be carried out

on this specific kind of edge. For our purpose, we will con-

sider a recursive edge as an array of size q(source(e))+d(e).

Given a vertex a with q(a) > 1 and a recursive edge e0
with source(e0) = target(e0) = a and d(e0) > c(e0). The

index vector for the read accesses to the data carried by e0 is

~r = [i0 − d(e0)], and the index vector for the write accesses

to the data carried by e0 is ~w = [i0]. Thus the distance vector

between the iteration of a is ~τ = ~w − ~r = [d(e0)].

Let us now consider that a is a hierarchical actor that con-

tains one actor b with q(b) > 1 and a recursive edge e1
with source(e1) = target(e1) = b and d(e1) > c(e1).
Given that edge has a local scope in a hierarchical represen-

tation, the data carried by e1 can be represented as an array

of size (q(source(e1))) + d(e1) itself contained in an array

of size q(a). Thus the index vector for the read accesses to

the data carried by e1 is ~r = [i0, i1 − d(e1)], and the in-

dex vector for the write accesses to the data carried by e1 is

~w = [i0, i1]. Thus the distance vector between iteration of b
is ~τ = ~w − ~r = [0, d(e1)].

By extension the distance vector for a recursive edge at the

N th loop of a nested loops structure is a vector of size N with

the (N − 1)th element being d(eN−1).

Using the distance vector of the application we can now

directly perform the analysis described in the method above

and reveal the parallelism nested into the hierarchy. Using the

analysis results, it is then possible to synthesize a new SDF

network performing the same computation.

5.2. SDF network synthesis using analysis results

The network of computing element resulting from the projec-

tion is itself an SDF graph. Using information given by the

allocation vector we can determine the points of the execution

domains computed by each cell and consequently distribute

the input data among the cells using explode and broadcast

vertices. The output data can also be sorted out using implode

vertices and circular buffers.

The SDF graph then needs to be timed using delay to en-

sure a proper execution of strongly connected components. In

a systolic array all the cell are active synchronously. Thus in

order to synchronize the computation on the cell network, the

communication channel must consist in a register whose size

allows to synchronize the computation. In the SDF paradigm,

computations are synchronized by data, and actors are not

triggered synchronously but sequentially if they share data.

Thus if the resulting network contains strongly connected

components, delays have to be added in order to time the

graph. A proper execution guarantees that the last data avail-

able on a communication link is the valid one for the execu-

tion of the sub-graph.

For a set of strongly connected components C and for each

computing element En ∈ C we can determine the hyper-

plane in the iteration domain containing the last computation

performed by En. The element with the hyperplane that has

the shortest distance to the hyperplane of points computed at

t = 0, is the element that must be scheduled first. This means

that its incoming edges of belonging to the strongly connected

set must carry a delay.

The synthesized network can then be used with ring_buffer

vertex, to ensure the output data to be the last. The computa-

tion performed by the network is strictly the same, with some

vertices performing computation outside of the iteration do-

main (which should be considered null time).

6. THE MATRIX VECTOR PRODUCT EXAMPLE

In this section we will use the matrix vector product as a test

case for the method described above.

Given a vector V and matrix M , the product V ×M = R
can be described using a set of recurrent equations.






Ri,k = 0 if k = 0
Ri,k = Ri,k−1 + vimi,k if 1 ≤ k ≤ N
ri = Ri,N 0

from this set we can extract a the following system.

Initial state






Ri,k = 0 if k = 0
Vi,k = vk if i = 0
Mi,k = mi,k

Calculus equations






Ri,k = Ri,k−1 + Vi−1,kMi,k i 1 ≤ k ≤ N
Vi,k = Vi−1,k i 1 ≤ k ≤ N
Mi,k = mi,k

Output equation

Ri = Ri,N

The SDF representation extracted from those recurrent

equations exposes two level of hierarchy . The first hierar-

chy level contains a vector× scalar product, and the second

hierarchy level represents a scalar × scalar product.

Vi

N N

Dinit

1

Acci
N N

mac

1

1

1

1
C

N N
Mi

N ∗ N

Vi

N

Vo

N

Fig. 5. Matrix vector product

6.1. Network description

The matrix vector product networks, takes a N × N matrix

and a N vector as input, and outputs the result as a N vec-

tor. The Mi port is the matrix input and the Vi is the vector

input. The Vo port is the vector output. The vectscal vertex

takes two input, Vi being a line of the matrix, and Dinit be-

ing an element of the vector. The element in Dinit initialize

the delay token on the recursive edge around the mac oper-

ation. The Acci port takes the vector in which the result is

accumulated. The mac operation takes two scalar, one from

the the matrix line one from the delay (being an element of

the input vector), multiply them and adds the result with the

input accumulating vector. The valid schedule for the graph

is then :

N × {N ×mac}

The schedule take advantage of the special behavior of the

port Vo, which behaves as a ring buffer of size N . Thus the

data contained in Vo at the end of the schedule, is the result

of the last N th iteration of the mac operation, that is the valid

result.

6.2. Distance vector extraction

The index vector for the read operation on the top recursive

edge is ~ro = [i0 − 1, i1], and the index vector for the write

operation on the top recursive edge is ~wo = [i0, i1]. Thus

the distance vector is ~τ0 = ~wo − ~ro = [1, 0]. The index

vector for the read operation on the inner recursive edge is

~r1 = [i0, i1 − 1], and the index vector for the write operation

on the inner recursive edge is ~w1 = [i0, i1]. Thus the distance

vector is ~τ1 = ~w1 − ~r1 = [0, 1].

Using Lamport’s method [?] we can determine that the time

vector minimizing parallel execution time for this application

is τ = [1, 1]. Based on this time vector, a set of projection

vector can be determined :

s1 =

(

1
0

)

s2 =

(

0
1

)

s3 =

(

1
1

)

The following analysis will be carried out using the projec-

tion vector s3. The uni-modular matrix S3 is

S3 =

(

1 0
1 1

)

S−1

3
=

(

1 0
−1 1

)

The allocation function is then A3 = [−1, 1]. Using this

allocation function we can now determine how the points of

the computation domain are allocated onto the execution do-

main. The extremes of the allocation function in the iteration

domain are −N and N meaning that the execution domain is

of size (2×N)−1. The end of the analysis will be performed

with N = 3.

6.3. Network synthesis

N being three, the resulting network is composed of 5 ver-

tices. Using the allocation function we can determine the

point of the iteration domain that will be computed by each

vertex.

• Vertex 0: compute the point [1, 3]

• Vertex 1: compute the points [1, 2] and [2, 3]

• Vertex 2: compute the points [1, 1], [2, 2] [3, 3]

• Vertex 3: compute the points [2, 1] and [3, 2]

• Vertex 4: compute the point [3, 1]

Computing the topology matrix of the network shows that

the repetition factor for each of the actor is 3, as the computa-

tion load must be balanced in an SDF. Thus vertices 0, 1, 3, 4,

will compute points outside of the iteration domain. This

means that we must consequently time the graph to get sure

that the valid data, will be the last produced data. For the

first strongly connected set {V0, V1}, the hyperplane contain-

ing the point [1, 3] as a shorter distance to the hyplerplane

containing [0, 0], than the hyperplane containing [2, 3]. This

means that V0 must be scheduled before V1. To consequently

time the network we must add a delay on the arc going from

V1 to V0. Timing all the strongly connected sets that way

leads to a translation of the iteration domain for the vertices

0, 1, 3, 4.

mac0

mac1

mac2

mac3

mac4

Fig. 6. Valid timed network

The resulting timed network need to be connected to input

and output ports. The original hierarchical representation had

no degree of parallelism, but the resulting representation af-

ter transformation reveals five degree out of nine available for

the flat representation. The other available projection vectors

would give less parallelism, with more regularity in the com-

putation as the activity rate of cells would be homogeneous

over the network.

7. CONCLUSION AND FUTURE WORK

This paper introduces a new hierarchy type that involves the

designer more in the application optimization process by al-

i

j

Fig. 7. Iteration domain after graph timing

lowing him/her to modify the application structural descrip-

tion.In particular, our hierarchy representation is closer to C

code semantics, and provides a useful hybrid representation

related to SDF and C. This representation makes the applica-

tion easier to describe for programmers who are for example

more familiar with C, and less familiar with concepts such

as repetitions vectors and sub-init graphs. Our method al-

lows reuse of graphs developed in other applications with no

modifications, and offer more flexibility by allowing the de-

scription of execution patterns that do not map directly into

conventional types of hierarchy.

The Interface-based hierarchy for Synchronous Data-Flow

Graphs has been implemented as the algorithm specification

model in the tool PREESM [?].

The optimization technique described in section 5 helps at

improving the degree of potential parallelism in the applica-

tion while keeping the network size at a low level. For large

iteration domain, and when targeting architecture with a low

level or parallelism, this optimization does not in general al-

low one to keep the network size optimized in relation to the

architecture. Nevertheless the distance vector extraction, can

lead to further optimization, using technique such as the one

described in [?]. This paper shows that loop optimization

method inherited from various computing environment can be

used in the Synchronous Data-Flow and give relevant results.

8. REFERENCES

[1] W. Sung, M. Oh, C. Im, and S. Ha, “Demonstration Of

Codesign Workflow In PeaCE,” in in Proc. of Interna-

tional Conference of VLSI Circuit, Seoul, Koera, 1997.

[2] T. Grandpierre and Y. Sorel, “From algorithm and ar-

chitecture specification to automatic generation of dis-

tributed real-time executives: a seamless flow of graphs

transformations,” in Proceedings of First ACM and

IEEE International Conference on Formal Methods and

Models for Codesign, MEMOCODE’03, Mont Saint-

Michel, France, June 2003.

[3] J. Piat, M. Raulet, M. Pelcat, P. Mu, and O. Déforges,

“An extensible framework for fast prototyping of mul-

tiprocessor dataflow applications,” in IDT08: Proceed-

ings of the 3rd International Design and Test Workshop,

Monastir, Tunisia, december 2008.

[4] B. Bhattacharya and S. S. Bhattacharyya, “Parameter-

ized dataflow modeling for DSP systems,” IEEE Trans-

actions on Signal Processing, vol. 49, no. 10, pp. 2408–

2421, October 2001.

[5] J. Piat, S. S. Bhattacharyya, and M. Raulet, “Interface-

based hierarchy for Synchronous Data-Flow Graphs,” in

Signal Processing Systems (SiPS), 2009.

[6] E.A Lee and D.G Messerschmitt, “Synchronous data

flow,” Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–

1245, sept 1987.

[7] H. W. Printz, Automatic mapping of large signal pro-

cessing systems to a parallel machine, Ph.D. thesis,

Pittsburgh, PA, USA, 1991.

[8] G.C. Sih and E.A. Lee, “Dynamic-level scheduling

for heterogeneous processor networks,” in Proceedings

of the Second IEEE Symposium on Parallel and Dis-

tributed Processing, October 1990, pp. 42–49.

[9] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee, “A

hierarchical multiprocessor scheduling system for DSP

applications,” in Proceedings of the IEEE Asilomar

Conference on Signals, Systems, and Computers, Pacific

Grove, California, November 1995, pp. 122–126 vol.1.

[10] C. Hsu, J. L. Pino, and S. S. Bhattacharyya, “Multi-

threaded simulation for synchronous dataflow graphs,”

in Proceedings of the Design Automation Conference,

Anaheim, California, June 2008, pp. 331–336.

[11] D.I. Moldovan and J.A.B. Fortes, “Partitioning and

mapping algorithms into fixed size systolic arrays,”

Computers, IEEE Transactions on, vol. C-35, no. 1, pp.

1–12, Jan. 1986.

[12] L. Lamport, “The parallel execution of DO loops,”

Communications of the ACM, vol. 17, no. 2, pp. 83–93,

Feb. 1974.

[13] P. Boulet, A. Darte, T. Risset, and Y. Robert, “(Pen)-

Ultimate Tiling ?,” The VLSI Journal, vol. 17, pp. 33–

51, 1994.

