
Automated generation of an efficient MPEG-4

Reconfigurable Video Coding decoder implementation

Ruirui Gu, Jonathan Piat, Mickael Raulet, Jorn W. Janneck, Shuvra S.

Bhattacharyya

To cite this version:

Ruirui Gu, Jonathan Piat, Mickael Raulet, Jorn W. Janneck, Shuvra S. Bhattacharyya. Auto-
mated generation of an efficient MPEG-4 Reconfigurable Video Coding decoder implementa-
tion. Design and Architectures for Signal and Image Processing (DASIP), 2010 Conference on,
2010, United Kingdom. pp.265 -272, 2010, <10.1109/DASIP.2010.5706274>. <hal-00565289>

HAL Id: hal-00565289

https://hal.archives-ouvertes.fr/hal-00565289

Submitted on 11 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00565289

AUTOMATED GENERATION OF AN EFFICIENT MPEG-4 RECONFIGURABLE VIDEO
CODING DECODER IMPLEMENTATION

Ruirui Gu, Jonathan Piat, Mickael Raulet, Jorn W. Janneck, Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, University of Maryland
College Park, MD, 20742, USA, Email: rgu, ssb@umd.edu

IETR Laboratory, UMR CNRS 6164, Image and Remote Sensing Group,
35043 RENNES Cedex, FRANCE, Email: jonathan.piat, mraulet@insa-rennes.fr

United Technologies Research Center, Berkeley, CA, USA, Email: jannecjw@utrc.utc.com

ABSTRACT

This paper proposes an automatic design flow from user-
friendly design to efficient implementation of video process-
ing systems. This design flow starts with the use of coarse-
grain dataflow representations based on the CAL language,
which is a complete language for dataflow programming of
embedded systems. Our approach integrates previously de-
veloped techniques for detecting synchronous dataflow (SDF)
regions within larger CAL networks, and exploiting the static
structure of such regions using analysis tools in The Dataflow
interchange format Package (TDP). Using a new XML for-
mat that we have developed to exchange dataflow informa-
tion between different dataflow tools, we explore systematic
implementation of signal processing systems using CAL,
SDF-like region detection, TDP-based static scheduling, and
CAL-to-C (CAL2C) translation. Our approach, which is a
novel integration of three complementary dataflow tools —
the CAL parser, TDP, and CAL2C — is demonstrated on an
MPEG Reconfigurable Video Coding (RVC) decoder.

1. INTRODUCTION

Upcoming MPEG video coding standards are intended to
increase the quality and flexibility of complex and versa-
tile future video coding applications. Since 1988, several
MPEG standards have been developed successfully based on
available hardware technologies and software support. Early
MPEG standards (MPEG-1 and MPEG-2) were specified by
textual natural-language descriptions. Starting with MPEG-4,
reference software written in C/C++ became the formal speci-
fication of the standard. Written in a sequential programming
language, this reference software describes a sequential al-
gorithm, effectively hiding the considerable inherent concur-
rency of a video decoder. Furthermore, the reliance on global
memory and state makes the reference description difficult
to modularize, resulting in a very monolithic specification
format.

At the same time, multi-core devices, which incorporate
two or more processors on the same integrated circuits, are
becoming increasingly relevant to the design and implemen-
tation of DSP systems (e.g., see [1]). Efficient deployment
of video processing applications on multi-core systems re-
quires effective parallel exploitation of task level concurrency
in order to improve system performance. The drawbacks of
existing video standard specification formats and the increas-
ing importance of multi-core platform technologies motivated
the development of the Reconfigurable Video Coding (RVC)
standard [2]. The key concept of RVC is to enable design and
specification of decoders at a higher level of abstraction than
that provided by generic, monolithic C-based specifications,
and improve high level application analysis and optimization,
including exploitation of parallel processing resources.

Dataflow-based programming, with its intrinsic concur-
rency, is employed in a wide variety of commercial and
research-oriented tools related to digital signal processing
(DSP) system design. Dataflow modeling techniques under-
lie many popular graphical tools for DSP system design (e.g.,
see [3]). In DSP-oriented dataflow graphs, vertices (actors)
represent computations of arbitrary complexity, and an edge
represents the flow of data as values are passed from the
output of one computation to the input of another. A variety
of dataflow-based languages and tools have been developed
for design and implementation of embedded DSP systems.
Although all of these languages share the property of data-
driven communication between actors, distinct languages
generally differ in terms of specialized dataflow modeling
features and associated support for analysis and optimization
techniques.

Synchronous dataflow (SDF) is a specialized form of
dataflow that is streamlined for efficient representation of
DSP systems [4]. SDF is a restricted model that handles a
limited sub-class of DSP applications, but in exchange for
this limited expressive power, SDF provides increased poten-
tial for static (compile-time) optimization of DSP hardware
and software (e.g., see [5]).

A number of dataflow-based formalisms have been devel-
oped to describe applications that involve dynamic dataflow
behavior. For example, CAL [6] is a language for specifying
dataflow actors in a way that is fully general (in terms of ex-
pressive power), while clearly exposing functional structures
that are useful in detecting important special cases of actor
behaviors (e.g., SDF or SDF-like actor behaviors). The CAL
language, in terms of its high level of abstraction, is similar to
the Stream-Based Functions (SBF) model of computation [7].
Both models share common features relating to modeling of
dynamic dataflow behaviors. However, SBF combines the se-
mantics of both dataflow models and process network mod-
els, while CAL extends the dataflow model by enriching the
properties of individual actors. Furthermore, CAL is a fully-
featured programming language, providing both an abstract,
dataflow model of computation as well as a comprehensive
set of operators and other semantic features for completely
specifying the internal behavior of dataflow components.

The DIF language (TDL) provides a standard approach
for specifying DSP-oriented dataflow graphs at a high level
of abstraction that is suitable for both programming and
interchange (across different dataflow-based languages or
tools) [8]. TDL provides a unique set of semantic features
for specifying graph topologies, hierarchical design struc-
ture, dataflow-related design properties, and actor-specific
information. TDP (The DIF Package) accompanies TDL,
and provides a variety of intermediate representations, anal-
ysis techniques, and graph transformations that are useful
for working with dataflow graphs that have been captured by
TDL.

In order facilitate integration of TDL and TDP into design
flows, we present in this paper a common XML-based format
called DIFML. DIFML is designed for structured exchange of
design information between different dataflow-based specifi-
cation formats, such as TDL and CAL.

In previous work, we have formulated systematic stati-
cally schedulable region (SSR) detection and implemented
SSR region detection using TDP (The DIF Package) [9].
Code generation from CAL to C (CAL2C) has also been
developed in previous work [10], and we have explored inte-
grated application of CAL, TDP, and CAL2C using manual
techniques [9]. Simulation results from such manual inte-
gration demonstrated that the integrated application leads to
improved exploitation of parallelism [11].

This paper builds on these previous efforts, and presents
an automated approach for integrating SSR derivation into
implementations that are synthesized from CAL specifica-
tions. To facilitate such an automated and integrated design
flow, we also present in this paper a new XML-based for-
mat, called DIFML, which we have developed to exchange
information between different dataflow tools. We present
experimental results on a reconfigurable video coding ap-
plication to demonstrate the effectiveness of our automated
toolset.

2. RELATED WORK

2.1. Reconfigurable Video Coding

The desire for a more compositional approach to building ex-
isting and future video standards, and for a shorter path to par-
allel implementation has led to the development of the recon-
figurable video coding (RVC) standard [2]. The MPEG RVC
framework is a new standard under development by MPEG
that aims at providing a unified high-level specification of cur-
rent and future MPEG video coding standards. Rather than
building a monolithic piece of reference software, RVC stan-
dardizes an “Abstract Decoder Model” (ADM) composed of
a network that interconnects a set of video coding tools with
uniform interfaces extracted from a library. Decoder descrip-
tions are composed from that library, which permits a wide
range of decoding algorithms.

The MPEG RVC framework is currently under develop-
ment in MPEG as part of the MPEG-B part 4 [12] and MPEG-
C part 4 [13] standards. An abstract decoder is built as a block
diagram or “network” in which blocks define processing en-
tities called functional units (FUs), and connections represent
data paths between the FUs. Such a network is described in
MPEG-B part 4 as an XML dialect called the FU Network
Language (FNL). RVC also provides in MPEG-C part 4 a
normative standard library of FUs, called the “Video Tool Li-
brary (VTL)”, and a set of decoder descriptions expressed as
networks of FUs.

CAL is currently chosen as the language to express the
behavior for the coding tools of the library (VTL). Such a
representation is modular and helps in formulating the po-
tential configuration of decoders in terms of modifications of
network topologies. The ADM is a CAL dataflow program
that constitutes the conformance point between the normative
RVC specification and all possible proprietary implementa-
tions that have to be generated to decode the incoming bit-
streams. Thus the MPEG RVC standard leaves open the plat-
forms and the implementation methodologies that can be used
to generate proprietary RVC implementations. This provides
great flexibility in the development of future RVC technolo-
gies and implementations.

2.2. Design Flow

Embedded system design and implementation can be a time-
consuming process requiring intensive effort, resources, and
time. Hardware description languages (HDLs), such as Ver-
ilog HDL [14], are widely used in the design of embedded
systems. In an attempt to reduce the complexity of design-
ing in HDLs, which have been compared to the equivalent
of assembly languages, a variety of efforts have emerged to
raise the abstraction level of associated design processes. For
example, companies such as Cadence, Synopsys and Agility
Design Solutions are promoting SystemC as a way to com-
bine high level languages with concurrency models to allow

faster design cycles for FPGAs than is possible using tradi-
tional HDLs.

Approaches based on standard C or C++ (with libraries
or other extensions allowing parallel programming) are found
in the Catapult C tools from Mentor Graphics, and in the Im-
pulse C tools from Impulse Accelerated Technologies. Lan-
guages such as SystemVerilog [15] seek to accomplish the
same goal, but are aimed at making hardware engineers more
productive versus making FPGAs more accessible to software
engineers.

There are also a number of high level languages targeting
embedded systems. For example, StreamIt [16] is a program-
ming language for high-performance streaming applications.
Annapolis Micro Systems, Inc.’s CoreFire Design Suite and
National Instruments LabVIEW FPGA provide a graphical
dataflow approach to high-level design entry. Our work in
this paper is related to such efforts in being tightly coupled
with CAL, which is a language oriented towards design and
implementation of embedded systems from a high level of
abstraction. In addition to the coupling with CAL, another
distinguishing aspect of our work is its focus on the domain
of video processing, and in particular, reconfigurable video
coding.

2.3. XML format

The extensible markup language, widely known as XML, is
a markup language that was created by the World Wide Web
Consortium (W3C) to overcome limitations of HTML. Like
HTML, XML is based on SGML — the Standard General-
ized Markup Language. Although SGML has been used in
the publishing industry for decades, its perceived complexity
intimidated many people that otherwise might have used it.
XML was designed with the Web in mind.

A major advantage of XML is that one can encode doc-
ument information more precisely compared to HTML. This
means that programs processing these documents can “under-
stand” them much better and therefore process the informa-
tion in ways that are not possible for ordinary text processors.

One major application of XML is to make web pages with
decent layout that are universally accessible, regardless of
browser type. XML also lets one check whether or not op-
tional features are present, and allows for invocation of al-
ternative code to take care of cases where such features are
missing.

XML is a promising candidate for carrying data associ-
ated with high level text based languages for subsequent use.
XML itself is designed to be self-descriptive, which ensures
that all of the information from the original file can be under-
stood by other applications. XML tags are not predefined by
users. It can be convenient for users to design appropriate tags
to describe the context of the information being exchanged.

Representing different languages using a common XML
format allows for integrated use of heterogeneous languages

within a design flow, thereby allowing designers to combine
the unique strengths and features associated with different
languages. In our work, as shown in Figure 1, we use CAL to
design the targeted system, DIF to optimize the system, and
Cal2C as a back-end implementation process. The interfaces
in our design flow between CAL and DIF, and between DIF
and Cal2C, are based on CALML (an XML-based format as-
sociated with CAL), and DIFML, respectively.

Fig. 1. Automation of efficient video processing system gen-
eration.

3. AUTOMATED APPROACH

Our proposed design-to-implementation process is illustrated
in Figure 2. Here, CAL is used to describe and model the
functionality of the targeted system. DIF and TDP are then
applied for analysis and exploration of optimization alterna-
tives. Different optimization techniques target different per-
formance measures, such as real time constraints, power con-
sumption, or buffer size. In this paper, we focus on optimizing
the execution speed of the targeted RVC systems. The CAL
actors are manually generated in a designer friendly manner.
The procedure to transform the system of CAL actor into C
code is designed to be automated and we are currently work-
ing on the automation. CAL actors can be re-used to build
other video processing systems, which is one motivation for
the RVC library.

Fig. 2. Automated design-to-implementation flow.

The Open RVC-CAL compiler (Orcc) [17] is a tool set
under the BSD license to realize an automated design-to-
implementation flow for the RVC-CAL dataflow program-
ming language. It has been developed with a back-end that
performs CAL-to-C transformation. Transformation to other
lower level languages, such as Java, is under development.
Source code and test cases can be found on [17]. We have de-
veloped XML-based interfaces between different languages

and the SSR detection algorithm to provide paths for integra-
tion.

The input to the Orcc is an application that is in terms of
CAL actors and a CAL network. CAL actors are represented
in the form of .cal files, and the CAL network is specified as
.xdf file. The output is an automatically generated implemen-
tation, which is targeted to a lower level language, such as C,
C++ or Java.

The compiler is divided into two phases — a front end and
a back end. The front end is responsible for parsing actors and
networks, flattening the hierarchical network, and generating
actors in the JASON format. The back end is responsible for
generating an implementation in a user-specified lower level
language.

3.1. CAL

CAL is a dataflow- and actor-oriented language that rep-
resents algorithms in terms of networks of communicating
dataflow-actor components [6]. A CAL actor is a modular
component that encapsulates its own state. The state of an
actor cannot be shared with other actors, and thus, an actor
cannot modify the state of another actor.

The behavior of an actor is defined in terms of a set of ac-
tions. The operations an action can perform are consumption
(reading) of input tokens, modification of internal state, and
production (writing) of output tokens. The topology of the
connections among actor input and output ports constitutes
what is called a CAL network. Compared to the complexity
of actors, edges — connections between pairs of actors — are
rather simple. The only interaction an actor can have with an-
other actor is through input and output ports that connect the
actors. Such connections are represented as edges in a CAL
network.

Each action of an actor defines the kinds of transitions that
internal states can undergo, and the specific conditions under
which the action can be executed (fired). The conditions for
firing actions in general involve (1) the availability of input
tokens, (2) values of input tokens, (3) state of the actor, and
(4) priority of the action. In an actor, actions are executed
sequentially — i.e., at most one action can be executing at
any given time.

CAL is supported by a portable interpreter infrastructure
that can simulate a hierarchical network of actors. In addition
to the strong encapsulation afforded by the actor description,
the dataflow model also makes much more algorithmic par-
allelism explicit. This allows application of the wide range
of dataflow graph transformations to the realization of sig-
nal processing systems on a variety of platforms. In particu-
lar, platforms will differ in their degree of parallelism, which
gives rise to the challenging problem of matching the concur-
rency of the application representation with the parallelism of
the computing machine that is executing it. The newly de-
veloped MPEG video coding standard, Reconfigurable Video

Coding (RVC) [2], uses the CAL actor language [6] for speci-
fying functional components, and dataflow as the composition
formalism [18]. Building a library of CAL actors for RVC
systems can reduce the design time, since designers can take
or lightly modify available actors to construct a new system
instead of starting from scratch.

3.2. DIF

The dataflow interchange format (DIF) is proposed as a
standard approach for specifying and integrating arbitrary
dataflow-oriented semantics for DSP system design [8]. The
DIF language (TDL) is an accompanying textual design
language for high-level specification of signal-processing-
oriented dataflow graphs. The TDL syntax for dataflow graph
specification is designed based on dataflow theory and is
independent of any design tool. For a DSP application, the
dataflow semantic specification is unique in TDL regardless
of the design tool used to originally enter the specification.
The TDL grammar and the associated parser framework
are developed using a Java-based compiler-compiler called
SableCC [19].

TDL is designed as a standard approach for specifying
DSP-oriented dataflow graphs. TDL provides a unique set
of semantic features to specify graph topologies, hierarchi-
cal design structures, dataflow-related design properties, and
actor-specific information. Because dataflow-oriented design
tools in the signal processing domain are fundamentally based
on actor-oriented design, TDL provides a syntax to specify
tool-specific actor information, which ensures that all rele-
vant information can be extracted from a given design tool.
The DIF Package (TDP) is a software tool that accompanies
TDL, and provides a variety of intermediate representations,
analysis techniques, and graph transformations that are useful
for working with dataflow graphs that have been captured by
TDL.

3.3. Intermediate Representation

The Intermediate Representation (IR) used in Orcc is man-
aged in the form of .jason files. The top-level structure in the
Intermediate Representation is an actor. An actor contains
parameters, input/output ports, state variables, a list of func-
tions/procedures, a list of actions and an action scheduler

A variable is represented by the Variable class. A Vari-
able has a location, which is the place in the source file where
it was declared, a type, a name, and the list of its uses. The
list of uses (called ‘def-use‘) is automatically computed and
maintained by Orcc. A Variable also has two attributes that
may be used depending on the context: a Variable may have
an initial expression, with the exception of local variables, and
a Variable may have a value, which is its runtime value. The
value of a Variable is only used when an actor is interpreted.
A GlobalVariable is a Variable whose initial expression may

be evaluated as a constant, and accessed with the getCon-
stantValue method. A StateVariable is a GlobalVariable that
has an additional “assignable” attribute. This attribute records
the information about whether a variable can be assigned or
not. A LocalVariable is a Variable that has an “assignable”
attribute (like a StateVariable), an SSA (static single assign-
ment) index, and an “instruction” attribute. The “instruction”
attribute references the assign instruction where the variable
is assigned for the first and only time.

A procedure has parameters and local variables. It has a
body made of a list of CFG nodes. A CFG node corresponds
to a node in the Control Flow Graph, and is defined by the
interface. There are three types of nodes: a BlockNode, an
IfNode, and a WhileNode.

Scheduling information (priorities and FSM) are present
in the action scheduler. Actions are sorted by descending pri-
ority, so the action with the highest priority comes first.

3.4. Integrating Results of DIF Analysis into the C Back
End

In our targeted design flow, the analysis of CAL networks and
CAL actors is conducted in the DIF environment, as shown in
Figure 1. In our current implementation, we detect statically
schedulable regions (SSRs) from the DIF-based analysis to
optimize scheduling structures for efficient implementation.
Currently the input to this form of DIF analysis is a CAL
network along with its constituent CAL actors. The output
is a set of SSRs, and static schedules corresponding to those
SSRs. This SSR and schedule information is generated for
efficient system implementation.

The back end of the code generator adopts a round-robin
scheduling approach. Round-robin (RR) is a simple schedul-
ing algorithm for executing multiple tasks in an operating
system. In the form of RR scheduling that we apply, time
slices are assigned to each task in equal portions and in cir-
cular order, and no priority ordering is considered across the
tasks. Round-robin scheduling is simple, easy to implement,
and starvation-free. In the generated system, there is a main
scheduler that takes care of all actor schedulers. The main
scheduler passes the right of execution to the actor schedulers
one by one. When an actor scheduler is selected for execution,
and dataflow requirements for one or more actions within the
actor are satisfied, the actor scheduler will execute an appro-
priate action. Then the right of execution is passed to the next
actor scheduler.

Static scheduling can be integrated into the RR sched-
uler in the following way. If some actors can be statically
scheduled, that is, the execution of some actors is determined
to be continuous and fixed in compile time, then we can
combine the schedulers of these actors into one scheduler.
For example, suppose row and transpose are actors and
row scheduler and transpose scheduler are correspond-
ing schedulers. Based on SSR detection in TDP analysis, we

can determine the scheduling of these two instances as always
following the pattern shown in Figure 3. Thus, we can reduce
the number of schedulers into one.

Fig. 3. Static scheduling: actors row and transpose

A number of related efforts are underway to develop effi-
cient scheduling techniques for CAL networks. The approach
of Platen and Eker [20] sketches a method to classify CAL
actors into different dataflow classes for efficient schedul-
ing. Boutellier et al. [21] propose an approach to quasi-static
multiprocessor scheduling of CAL-based RVC applications.
The approach involves the dynamic selection and execution
of “piecewise static schedules” based on novel extensions of
flow shop scheduling techniques.

Many previous research efforts have focused on task map-
ping for multiprocessor systems from other kinds of specifi-
cation models or languages (e.g., see [3]). For example, Li et
al. [22] provide a method for allocating and scheduling tasks
using a hybrid combination of a genetic algorithm and ant
colony optimization. The approach involves consideration of
both global and local memory spaces across the targeted mul-
tiprocessor system. Ennals et al. [23] develop a method for
partitioning tasks on multi-core network processors.

Compared to prior work on dataflow techniques and mul-
tiprocessor system design, major unique aspects of our ap-
proach for scheduling are the capability to decompose CAL
actors based on their formal action- and port-based seman-
tics, and to construct and subsequently transform SSRs and
SSR actors from these decomposed representations.

When integrating SSRs into real implementations, we dis-
tinguish between two kinds of SSRs, as shown in Figure 4. In
the first type, all CAL actors inside the SSR are preserved
from their original structures in the corresponding CAL net-
work, such as SSR1 in Figure 4. In the second kind of SSR,
there is at least one partial CAL actor, of which some ports do
not belong to the SSR, such as SSR2. When implementing
SSRs of the second type, we divide each partial actor into two
separate actors, as shown in Figure 5. In Figure 5, actor C is
split into two new actors: C1 and C2. C1 is statically sched-
uled in SSR2, and C2 has its own dynamic scheduler. Cur-
rently, implementation of the first kind of SSR is complete,
and integration of the second kind of SSR is under develop-
ment.

Fig. 4. Two kinds of statically schedulable regions.

Fig. 5. SSR: splitting one CAL actor into two actors.

Figure 6 shows three kinds of options to integrate SSRs
into Orcc. Option 3 is to modify the generated C code by
integrating SSRs. Option 2 is to introduce SSRs into inter-
mediate representations, that is, into generated intermediate
code that is based on .jason files and .difml files. Option 1 is
to introduce SSRs in the front end where the CAL network is
parsed into JASON files. Option 3 is generally the simplest to
implement, while option 1 has the potential to produce more
efficient implementations since the structure of SSRs can be
exploited more rigorously in scheduling and related dataflow
transformations.

Fig. 6. Code generation procedure.

We have implemented option 3 as an initial prototype of
SSR integration. In our ongoing and future work, we are ex-
ploring implementations of options 2 and 3.

4. THE DIFML FORMAT

As described previously, the dataflow interchange format
(DIF) is proposed as a standard approach for specifying
and integrating arbitrary dataflow-based semantics for DSP
system design [8], and The DIF language (TDL) is an accom-
panying textual design language for high-level specification
of signal-processing-oriented dataflow graphs.

In order to describe DIFML, we introduce a number of

concepts associated with the general XML format: node,
element, attribute and tag. A node is a part of the hierarchi-
cal structure that makes up an XML document. “Node” is
a generic term that applies to any type of XML document
object, including elements, attributes, comments, process-
ing instructions, and plain text. A tag is a markup construct
that begins with < and ends with >. An element is a logi-
cal component of a document. The element’s content may
contain markup, including other elements, which are called
“child elements”. An attribute is a markup construct con-
sisting of a name/value pair that exists within a start-tag or
empty-element tag.

DIFML is designed as an XML-based format for exchang-
ing information between TDL and other tools and languages,
and more generally, between arbitrary pairs of dataflow envi-
ronments. There are different elements in DIFML and these
elements are listed in a hierarchical way. The element at the
highest level is graph, while topology and interface are lower
level element. Under topology, there are three elements at the
same level: nodes, edges and interface. For each element,
there are three kinds of attributes: implicitAttributes, builtI-
nAttributes and userDefinedAttributes. ImplicitAttributes are
those attributes necessary and inherent to the element, such as
the id of a node. BuiltInAttributes are attributes that are rec-
ognized as part of the DIF language, typically through cor-
responding reserved words or other kinds of language con-
structs. For example, for an edge element in and SDF model
within a DIF graph (i.e., within a graph that is defined with
the sdf keyword), there are three kinds of builtInAttributes:
the production rate, consumption rate, and delay. UserDefine-
dAttributes are attributes that users add to selected elements
at their own discretion. The following is a simple example of
an SDF model in the DIFML format. For conciseness, we just
show part of the associated DIFML file.

<? xml v e r s i o n = ' 1 . 0 ' e n c o d i n g = 'UTF−8 ' ?>
<d i f m l xmlns= ' h t t p : / /www. ece . umd . edu / DIFML '>

<graph>
< i m p l i c i t A t t r i b u t e s>

<name v a l = ' d a t 2 c d ' />
<t y p e v a l = ' SDFGraph ' />

</ i m p l i c i t A t t r i b u t e s>
<t o p o l o g y>

<nodes>
<node>

< i m p l i c i t A t t r i b u t e s>
<i d v a l = 'A ' />

</ i m p l i c i t A t t r i b u t e s>
<b u i l t I n A t t r i b u t e s>

<nodeWeight t y p e = ' DIFNodeWeight '←↩
/>

</ b u i l t I n A t t r i b u t e s>
</ node>

</ nodes>
</ t o p o l o g y>
< i n t e r f a c e>

<p o r t>
< i m p l i c i t A t t r i b u t e s>

<d i r e c t i o n i d = ' InA ' nodeId = 'A ' v a l = '←↩
IN ' />

</ i m p l i c i t A t t r i b u t e s>
</ p o r t>

</ i n t e r f a c e>

</ g raph>
<!−−A u t o m a t i c a l l y g e n e r a t e d from DIF f i l e−−>

</ d i f m l>

As shown in the above example, DIFML follows the same
format as XML files, and defines a series of elements and at-
tributes. Note that there is an element named node. This name
is in correspondence with the related definition in the DIF lan-
guage, and has different a meaning from the node concept in
XML terminology, which is a generic concept that applies to
any type of XML document object.

Currently, the DIFML parser supports several major
dataflow models that are recognized in the DIF language,
including SDF [4], cyclo-static dataflow (CFDF) [24], param-
eterized synchronous dataflow dataflow (PSDF) [25], CAL
dataflow (CALDF) [6], and multidimensional synchronous
dataflow (MDSDF) [26].

5. EXPERIMENTAL RESULTS

We apply our automated design-to-implementation flow to an
RVC MPEG4 SP decoder. We generate three kinds of code
using Orcc tools:

1. C code with “C” as back end;

2. C code with “C+SSR” (C code generation integrated
with derived SSRs) as back end;

3. C code with “C+modified SSR” — based on the de-
rived SSRs, we manually compute token production
rate and consumption rate information to enhance static
scheduling.

Fig. 7. Experimental results for MPEG4 RVC SP decoder.

We generate three kinds of C projects using CMake. The
projects are compiled and built using Microsoft Visual C++
2008. The generated executables are executed on a Sony
VAIO laptop with an Intel Pentium 1.2GHz processor. The
experimental results are shown in Figure 7.

The results show an improvement of approximately a fac-
tor of two in performance after we integrate SSR derivation
and scheduling compared with direct C-based implementa-
tion from the CAL system. If we modify the CAL actors

based on results of SSR derivation, the performance is even
better. Currently, the modification based on SSRs is per-
formed by hand. Automating this part of the optimization
process is an interesting direction for future work.

The results show a significantly higher frame rate on
benchmark 5 of hit016. This is because for the first four
benchmarks, the display sequence is set to 352x288, while
for the fifth benchmark the display sequence is 176x144. The
smaller display size consumes less resources and runs faster.

6. CONCLUSION

This paper proposes an automated design flow from user-
friendly design to efficient implementation of reconfigurable
video coding systems. We have developed tools and tech-
niques to support both designer productivity and implemen-
tation efficiency by strategically combining complementary
dataflow languages and tools.

Our approach integrates previously developed techniques
for detecting SDF-like regions within larger CAL networks,
and exploiting the static structure of such regions using analy-
sis tools in The Dataflow interchange format Package (TDP).
This integration is achieved using a new XML format, called
DIFML, which we have developed to transfer information
across different dataflow environments. Experimental results
demonstrate significant performance improvements on an
MPEG Reconfigurable Video Coding (RVC) decoder.

7. REFERENCES

[1] T. Chen and Y. K. Chen, “Challenges and opportuni-
ties of obtaining performance from multi-core CPUs
and many-core GPUs,” in Proceedings of IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing, April 2009.

[2] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz,
M. Mattavelli, and M. Raulet, “Overview of the MPEG
reconfigurable video coding framework,” Journal of
Signal Processing Systems, June 2009. [Online].
Available: http://dx.doi.org/10.1007/s11265-009-0399-
3

[3] S. Sriram and S. S. Bhattacharyya, Embedded Multipro-
cessors: Scheduling and Synchronization, 2nd ed. CRC
Press, 2009.

[4] E. A. Lee and D. G. Messerschmitt, “Synchronous
dataflow,” Proceedings of the IEEE, vol. 75, no. 9, pp.
1235–1245, September 1987.

[5] S. S. Bhattacharyya, R. Leupers, and P. Marwedel,
“Software synthesis and code generation for DSP,”
IEEE Transactions on Circuits and Systems — II: Ana-
log and Digital Signal Processing, vol. 47, no. 9, pp.
849–875, September 2000.

[6] J. Eker and J. W. Janneck, “CAL language report, lan-
guage version 1.0 — document edition 1,” Electronics
Research Laboratory, University of California at Berke-
ley, Tech. Rep. UCB/ERL M03/48, December 2003.

[7] B. Kienhuis and E. F. Deprettere, “Modeling stream-
based applications using the SBF model of computa-
tion,” Journal of Signal Processing Systems, vol. 34,
no. 3, 2003.

[8] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software syn-
thesis from the dataflow interchange format,” in Pro-
ceedings of the International Workshop on Software
and Compilers for Embedded Systems, Dallas, Texas,
September 2005, pp. 37–49.

[9] R. Gu, J. Janneck, M. Raulet, and S. S.
Bhattacharyya, “Exploiting statically schedulable
regions in dataflow programs,” Journal of Signal
Processing Systems, January 2010. [Online]. Available:
http://www.springerlink.com/content/7828n20m31186635/

[10] M. Wipliez, G. Roquier, M. Raulet, J. Nezan, and O. De-
forges, “Code generation for the MPEG reconfigurable
video coding framework: From CAL actions to C func-
tions,” in Proceedings Multimedia and Expo, IEEE In-
ternational Conference, June 2008, pp. 1049–1052.

[11] R. Gu, J. W. Janneck, S. S. Bhattacharyya, M. Raulet,
M. Wipliez, and W. Plishker, “Exploring the concur-
rency of an MPEG RVC decoder based on dataflow pro-
gram analysis,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, 2009.

[12] MPEG video technologies – Part 4: Video tool library,
ISO/IEC FDIS 23002-4, 2009.

[13] MPEG systems technologies – Part 4: Codec Configu-
ration Representation, ISO/IEC FDIS 23001-4, 2009.

[14] Z. Navabi, Verilog Digital System Design: Register
Transfer Level Synthesis, Testbench, and Verification.
McGraw Hill, 2006.

[15] S. Sutherland, S. Davidmann, and P. Flake, SystemVer-
ilog for Design: A Guide to Using SystemVerilog for
Hardware Design and Modelingn, 2nd ed. Springer,
2006.

[16] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploit-
ing coarse-grained task, data, and pipeline parallelism in
stream programs,” in Proceedings of the International
Workshop on Rapid System Prototyping, San Jose, Cali-
fornia, USA, 2006, pp. 151–162.

[17] “Open RVC CAL compiler.” [Online]. Available:
http://sourceforge.net/apps/trac/orcc/

[18] M. Mattavelli, I. Amer, and M. Raulet, “The reconfig-
urable video coding standard,” IEEE Signal Processing
Magazine, vol. 27, no. 3, pp. 159–167, May 2010.

[19] E. M. Gagnon and L. J. Hendren, “SableCC, an
object-oriented compiler framework,” in Proceedings of
TOOLS (26), 1998, pp. 140–154.

[20] C. v. Platen and J. Eker, “Efficient realization of a CAL
video decoder on a mobile terminal,” in Proceedings of
the IEEE Workshop on Signal Processing Systems, Oc-
tober 2008.

[21] J. Boutellier, V. Sadhanala, C. Lucarz, P. Brisk, and
M. Mattavelli, “Scheduling of dataflow models within
the reconfigurable video coding framework,” in Pro-
ceedings of the IEEE Workshop on Signal Processing
Systems, October 2008.

[22] M. Li, H. Wang, and P. Li, “Tasks mapping in multi-core
based system: hybrid ACO&GA approach,” in Proceed-
ings of the International Conference on ASIC, October
2003.

[23] R. Ennals, R. Sharp, and A. Mycroft, “Task partitioning
for multi-core network processors,” in Proceedings of
the International Conference on Compiler Construction,
April 2005.

[24] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peper-
straete, “Cyclo-static dataflow,” IEEE Transactions on
Signal Processing, vol. 44, no. 2, pp. 397–408, Febru-
ary 1996.

[25] B. Bhattacharya and S. S. Bhattacharyya, “Parameter-
ized dataflow modeling for DSP systems,” IEEE Trans-
actions on Signal Processing, vol. 49, no. 10, pp. 2408–
2421, October 2001.

[26] P. K. Murthy and E. A. Lee, “Multidimensional syn-
chronous dataflow,” IEEE Transactions on Signal Pro-
cessing, vol. 50, no. 8, pp. 2064–2079, August 2002.

