
RVC-CAL dataflow implementations of MPEG

AVC/H.264 CABAC decoding

Endri Bezati, Marco Mattavelli, Mickael Raulet

To cite this version:

Endri Bezati, Marco Mattavelli, Mickael Raulet. RVC-CAL dataflow implementations of
MPEG AVC/H.264 CABAC decoding. Design and Architectures for Signal and Image
Processing (DASIP), 2010 Conference on, 2010, United Kingdom. pp.207 -213, 2010,
<10.1109/DASIP.2010.5706266>. <hal-00565297>

HAL Id: hal-00565297

https://hal.archives-ouvertes.fr/hal-00565297

Submitted on 11 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53011794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00565297

RVC-CAL dataflow implementations of MPEG AVC/H.264 CABAC decoding

Endri Bezati1, Marco Mattavelli1, Mickaël Raulet2
Swiss Federal Institute of Technology, STI-SCI-MM1

Institut National des Sciences Appliques de Rennes, IETR2

endri.bezati@epfl.ch, marco.mattavelli@epfl.ch, mickael.raulet@insa-rennes.fr

Abstract

This paper presents the implementation of the CABAC
entropy decoder in the RVC-CAL dataflow programming
language. CABAC is the Context based Adaptive Binary
Arithmetic Coding entropy decoder used in the AVC/H.264
main and high profile video standard. CABAC as an entropy
decoding engine gives a better compression rate efficiency,
but has a greater complexity compared to other entropy de-
coding engines. With the implementation of the CABAC en-
tropy decoder in RVC-CAL, this paper is a proof that com-
plex algorithms can be implemented in a high level design
and that can be described in a data flow language as RVC-
CAL is. Thought in this paper we are going to analyze two
different methods of implementing the CABAC entropy de-
coder and propose a data flow model of the CABAC entropy
decoder in RVC-CAL.

1. Introduction

1.1. RVC Standard

The purpose of the MPEG RVC standard is to offer a
more flexible use and faster path to innovation of MPEG
standards in a way that is competitive in the current dy-
namic environment. This is meant to give MPEG standards
an edge over its market competitors by substantially reduc-
ing the Time to Market (TTM). The RVC initiative exploits
the reuse of obvious commonalities among different MPEG
standards and their possible extensions using appropriate
higher level formalisms. Thus the objective of the RVC
standard is to describe current and future codecs in a way
that makes such commonalities explicit, reducing the im-
plementation burden for device vendors. In order to achieve
this objective, RVC suggests simplifying the specification
of new coding tools by reusing components of previous
standards instead of defining new ones. [1, 5]

Figure 1. RVC Framework

The MPEG-B standard defines the MPEG RVC frame-
work and the RVC-CAL dataflow programming language.
Also in the MPEG RVC framework the MPEG-C standard
defines the library of the video coding tools (Video Tool
Library or VTL). The Figure 1 describes how from an ab-
stract decoder model using a Functional Unit (FU) network
description a decoding solution can be achieved for a hard-
ware or software implementation.

1.2. CAL Language

CAL Actor Language is a language based on the Actor
model of computation for data flow systems. It provides
many natural concepts to facilitate modeling of those sys-
tems. An actor is a modular component that encapsulates
its own state. Each actor interacts with each other through
FIFO channels, see Figure 2. An actor in general contains
global variables, state variables, global parameters, actions,
procedures, functions and finite state machine to control the
executions of actions. CAL enables concurrent development
and has a strong encapsulation. CAL is used in a variety of
applications and has been compiled to hardware and soft-
ware implementations. The RVC-CAL language is a subset

of the CAL language the has been normalized by ISO/IEC
as a part of the RVC standard. Although it has some restric-
tions in data types and feature that are in used in CAL [1,3].

Figure 2. The CAL computing model

1.3. Open RVC-CAL Compiler

The Open RVC-CAL Compiler is a tool set which pro-
vides developers with a compiler infrastructure to generated
source code in several languages from the RVC-CAL actors
and XDF networks (a network of actors) [8]

Figure 3. ORCC Framework

• Functional Unit (FU): is a video processing compo-
nent or an actor in CAL language. The RVC frame-
work provides a Video Tool Library which is consisted
by a set of FUs that can be embedded by the client and
combined for building the required decoder

• Frontend & IR : For a RVC-CAL dataflow program to
be compiled, its compilation process its done in two-
steps process. The fronted will parse all actors and it
will translates them to an Intermediate Representation
(IR) which is serialized to one file per actor in a JSON-
based format (an XML file format). The IR is a data
structure that is constructed from input data (the actor)
to a program, and from which part or all of the output
data of the program is constructed in turn. The next
steps is to run a language target-specific back-end.

• Backends: Depending the target, ORCC offers a va-
riety of back-ends. Their purpose is to create target
specific code. Each backend will parse the hierarchi-
cal network from a top-level network and its child net-
work. Also optionally it flattens the hierarchical net-

work. ORCC for the moment offers a variety of back-
ends. These back-ends are C, C++, LLVM, VHDL and
a partial support for the Xlim code generation.

To generate a software decoding solution we used the C
backend of ORCC. The generated C code is ANSI-C com-
patible and it is portable to different platforms such as Win-
dows, Linux, Mac OS X and others.

1.4. Entropy Encoding

In information theory an entropy encoding is a lossless
data compression scheme that is independent of the spe-
cific characteristics of the medium. In the AVC/H.264 three
types of entropy encoding are used. Exp-Golomb for decod-
ing the headers of the bitstream(video file). Furthermore the
description of a macroblock and its quantized coefficients
are encoded using the CAVLC or CABAC encoding.

Figure 4. Entropy encoding as the final stage
of compression

2. CABAC Entropy Decoder

CABAC or Context Adaptive Binary Arithmetic Coding
is an entropy decoder that gives better compression rates
than the Baseline Profile CAVLC (Context Adaptive Vari-
able Length Coding) entropy decoder. CABAC chooses
a probability model for each syntax element, it adopts
the estimated probability based on local statistics and it
uses an arithmetic coder rather than variable-length coding
(CAVLC). Though CAVLC is a lot more easy to implement
and less power hungry, CAVLC gets the value directly by
reading the bit-stream. However with CABAC the complex-
ity is more important as there is a feedback loop between the
context modeler and the arithmetic coder [2].

The H.264/AVC parser depending the context, demands
the entropy decoding engine for the value of an Syntax Ele-
ment (SE), see Figure 5. An SE is an element of data repre-
sented in the bit-stream, for example the Macro-block type
Intra4x4, Intra16x16 or other.

Figure 5. An simple interpretation of the
H.264/AVC parser.

2.1. Binarization Process

Each SE has a particular binarization. In H.264/AVC
four types of binarization are defined.

• Unary binarization, used for reference picture list re-
ordering SE

• Truncate unary binarization, used for the Intra chroma
prediction mode SE

• Concatenated unary/k-th order Exp-Golomb(UEKg)
binarization, used mainly in the Residual block pro-
cess and in the movement prediction for P and B slices

• Fixed Length binarization, used for flag types SE

An example of the Fixed Length binarization process can
be seen in the table below. The binIdx, indicates the binary
index of the binary string. For example this same binary
strings indicates the values of the rem intra 4x4 pred mode
and rem intra 8x8 pred mode SE from the H.264/AVC
standard.

Value of Syntax Element Bin String
0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
4 0 0 1
5 1 0 1
6 0 1 1
7 1 1 1

binIdx 0 1 2

Table 1. FL binarization with cMax = 7.

2.2. CABAC Variables

In the H.264/AVC standard the prediction of the binary
value is basically calculated by these variables.

• ctxIdx, which indicates the context of the syntax ele-
ment

• codIRange and codIOffset, corresponds to the status of
the arithmetic decoding process

• pStateIdx, corresponds to the probability state index

• valMPS, corresponds to the value of the most probable
symbol

2.3. CABAC Arithmetic coding engine

After the binarization of an SE, each bin in the binarized
string will be given an context (ctxIdx) and then encoded
using the CABAC arithmetic coding. The Context Arith-
metic coding theory is based on the principle of recursive
interval subdivision. Given a probability estimation p0 and
p1 = 1− p0 of the binary decision (0,1), codIRange will be
initially gives the code sub-interval, this range will be sub-
divided into two sub-intervals having the following range
p0 ∗ codIRange and codIRange − p0 ∗ codIRange, re-
spectively. Depending on the decision, the corresponding
sub-interval is going to be chosen as the new code inter-
val, and the binary code string pointing into that interval
will represent the sequence of observed binary decisions.
In the decoding decision procedure it is useful to distin-
guish between the most probable symbol (MPS) and the
least probable symbol (LPS), it is better that the binary de-
cisions have to be identified as either MPS or LPS, rather
than 0 or 1. Given this terminology, each context is speci-
fied by the probability p of the LPS and the value of MPS
(valMPS), which is either 0 or 1. [7]

3. RVC-CAL CABAC Implementation

The implementation of the RVC H.264/AVC parser FU
in the current RVC-CAL AVC CBP (Constrained Base Pro-
file) [4], [6] decoder is being used as a base for the CABAC
entropy decoder. That means that each action used by the
parser from the CAVLC is modified so that can support
CABAC SE’s extraction. The CABAC implementation is
modelized by twelve untagged actions. These actions are
not named in the source code because they are executed out-
side the FSM (Finite State Machine) of the parser FU. Here
we give them names for clarity. We developed two methods
to retrieve the Syntax Elements values from the AVC/H.264
parser Functional Unit. The first method is using a Look Up
Table (LUT) for comparing the decode binary string given

by the CABAC procedure and the binarized Value of an
Syntax Element. This method was later abandoned due to
the complexity of the binarization LUT of the quantized co-
efficients (Macroblock residual values) and its slow double
loop algorithm. Given the difficulty of the binarized resid-
ual values, we developed a new method, Bin By Bin, which
is an adaptive decoding solution for each Syntax Element.

Figure 6. RVC-CAL main CABAC parsing ac-
tions

In the Figure 6 we represent the LUT and Bin by Bin
method as CabacPasrsing, depending the method we want
to use. CabacPasrsing is the main action and it controls
the activation of the CABAC decoding actions. Depending
the SE three actions are used to decode the binary value.
These actions are DecodeDecision, DecodeByPass and De-
codeTerminate. All three of them execute smaller actions to
read the bitstream.

3.1. Look Up Table method

After the CABAC arithmetic decoding the decoded bins
have to be de-binarized so the value can we retrieved. A
very simple way to get the decoding value from CABAC
de-binarization is to use a Look Up Table. As Each SE has
a specific binarization the idea was to create a look up-table
for each SE and to stock the binarized values in a multi
dimension table. Thus index of the table will be the de-
coded value and the rows of the table represents binarized
bin string. With this method bits are recovered one by one
and then are compared with the binarization table of the
searched SE. As we mentioned before we abandoned this
method, but all the SE expect the coeff abs level minus1
(quantized coefficients), ref lx and mvd lx (mouvement
vectors) fully functional.

3.2. Bin by Bin method

Using a LUT demands more memory and the com-
pare algorithm could be much more time consuming. For
example to decode the 255 residual value of the co-
eff abs level minus1 SE with LUT method, the algorithm

Figure 7. The LUT Method

needed to execute 255*(n bins) double loops. So to make
the process more faster we created the Bin By Bin method.
In this method each SE has a different de-binarization pro-
cedure. In this way the CABAC decoding is unique for each
SE.

Figure 8. The Bin By Bin Method

The Figure 9 shows a part of the coeff abs level minus1
SE de-binarization process, this procedure is called as many
times as the SE value is completely de-binarized.

4. Results

4.1. Conformance Sequences support

The RVC-CAL CABAC implementation supports all the
Syntax Element found in the AVC/H.264 standard except

procedure C o e f f A b s P a r s i n g ()
begin

i f S t a r t P r e f i x then
i f binValDecoded = f a l s e then

b i n I d x := b i n I d x + 1 ;
/ / g i v e t h e c t x I d x
c t x I d x C o e f f A b s L e v e l () ;
/ / Get t h e b i n Value
S t a r t D e c o d e D e c i s i o n := t rue ;
C a b a c S t a r t P r o c e s s := f a l s e ;
NextBi tToDecode := f a l s e ;
b i n I d x := 0 ;

end
. . .

i f binValDecoded = t rue then
/ / I n c r e m e n t b i n I d x
b i n I d x := b i n I d x + 1 ;
i f b i nV a l = 1 then

CabacValue := −1;
e l s e

CabacValue := 1 ;
end
/ / F i n i s h i n g t h e P r e f i x f o r a 0 b i n V a l
S t a r t P r e f i x := f a l s e ;
numDecodAbsLevelEq1 := numDecodAbsLevelEq1 + 1 ;
/ / S top cabac p r o c e s s and g i v e t h e v a l u e
C a b a c S t a r t P r o c e s s := f a l s e ;
FoundSE := t rue ;

end
. . . .

Figure 9. A part of the coeff abs level minus1
SE de-binarization procedure.

the mb field decoding flag (which indicates if the mac-
roblock is field coded). Also because the abstract decoder
model used in this implementation is coming for the AVC
CBP FU, it does not support the decoding of the BiPred
slices. Thus our CABAC implementation supports all the
encoded Macroblock SE except those coded in field order.
The following Table 2 is a list of supported conformance
AVC/H.264 sequences coded using the CABAC entropy en-
coding. Because of the AVC CBP FU the sequence marked
as IPB are supported only by the AVC Parser FU, the de-
coding of those sequence is a work in progress of the AVC
FRExt FU(Fidelity Range Extensions).

4.2. RVC-CAL CABAC versus JM CABAC
implementation

The RVC-CAL is by design ment to be a high level lan-
guage. The Decode Decision process is used by almost all
Syntax Element in the H.264/AVC standard. Here we com-
pare the interpretation of the H.264/AVC Decode Decision
flowchart(Figure 10) with the RVC-CAL (Figure 11) and the
C language used in the JM software Reference software of
the H.264/AVC Standard (Figure 12).

In term of source code we have exactly the same line
of codes for this two different implementations but the dif-
ference is in the readability and the understanding of the
source code. The RVC-CAL implementation is an identi-

Name Slice Type N. Frames Status
CABA1 Sony D I 50 Passed
CABA2 Sony E IP 300 Passed
CABA3 Sony C IPB 300 Only Parser
CABA3 TOSHIBA E IP 300 Passed
CABA1 SVA B I 17 Passed
CABA2 SVA B IP 17 Passed
CABA3 SVA C IPB 33 Only Parser
CANL1 TOSHIBA G I 300 Passed
CANL1 Sony E I 17 Passed
CANL2 Sony E IP 300 Passed
CANL3 SVA C IPB 300 Only Parser
CANL1 SVA B I 17 Passed
CANL2 SVA B I 17 Passed
CANL3 SVA B IP 17 Passed
CANL4 SVA C IPB 33 Only Parser
CAQP1 Sony B IP 50 Passed
CACQP3 Sony D IPB 50 Only Parser

Table 2. Conformance sequences supported
by the Bin By Bin RVC-CAL implementation

cally copy the of the Decode Decision flowchart. In addi-
tion the C code of the JM software contains pointers, the
variables are not named exactly the same and in general the
code readability is not as easy to read and analysable as the
RVC-CAL code.

Our full implementation of the CABAC in RVC-CAL
contains less source code than the C implementation of the
JM AVC decoder. 2500 source code lines for the RVC-CAL
and more than 3000 lines for the C code.

Figure 10. Decoding Decision flowchart in the
H.264/AVC standard.

DecodeDec i s ion : a c t i o n ⇒
guard

S t a r t D e c o d e D e c i s i o n and
b y p a s s F l a g = f a l s e and c t x I d x != 276 and
Star tRenormD = f a l s e

do
qCodIRangeIdx := (codIRange >> 6) & 3 ;
codIRangeLPS :=

rangeTabLPS [p S t a t e I d x [c t x I d x]] [qCodIRangeIdx] ;
codIRange := codIRange − codIRangeLPS ;

i f c o d I O f f s e t >= codIRange then
b i nV a l := intXOR (valMPS [c t x I d x]) ;
c o d I O f f s e t := c o d I O f f s e t − codIRange ;
codIRange := codIRangeLPS ;

i f p S t a t e I d x [c t x I d x] = 0 then
valMPS [c t x I d x] := 1 − valMPS [c t x I d x] ;

end
p S t a t e I d x [c t x I d x] :=

t r a n s I d x L P S [p S t a t e I d x [c t x I d x]] ;

e l s e
b i nV a l := valMPS [c t x I d x] ;
p S t a t e I d x [c t x I d x] :=

t ransIdxMPS [p S t a t e I d x [c t x I d x]] ;
end

/ / Give t h e r i g h t t o compare i n CabacPars ing
binValDecoded := t rue ;
/ / w r i t e t h e b i t i n t o t h e R e a d B i n S t r i n g
R e a d B i n S t r i n g [b i n I d x + 1] := b inV a l ;

i f codIRange < 0 x0100 then
Star tRenormDRead := t rue ;

e l s e
C a b a c S t a r t P r o c e s s := t rue ;

end
/ / Do n o t c a l l aga in DecodeDec i s ion
S t a r t D e c o d e D e c i s i o n := f a l s e ;
/ / Do n o t g i v e t h e hand t o CabacPars ing

end

Figure 11. Decoding Decision action written
in RVC-CAL.

5. To a data flow model

The actual form of the AVC parser in RVC-CAL is se-
quential, as is supposed to be for a parser. As RVC-CAL
is data flow based language, the idea here is to transform
it’s sequential form to a data flow one. Actually the chal-
lenge is how to pipeline a sequential parser. As a matter
of fact the bitsream has a start up code when a new slice
starts. We can store the whole bitstream for a slice to buffer
and then analyzed it and dispatched it to where is neces-
sary. Actually in this way we can separate the parser process
in smaller actors and create a pipeline architecture. These
actors are the BitstreamAnalyser, NAL, SPS, PPS, Slice-
Header and EntropyDecoding. Appart EntropyDecoding all
other actors are explicit, for a reconfigurable decoder is a
necessity to separate the CAVLC and the CABAC entropy
Decoding. So in the EntropyDecoding actor we will re-
group SliceData, macroblock layer, mb pred, sub mb pred,
residual and residual block [7]. The Figure 13 shows how

unsigned i n t b i a r i d e c o d e s y m b o l
(D e c o d i n g E n v i r o n m e n t P t r dep ,

B i C o n t e x t T y p e P t r b i c t)
{

unsigned i n t b i t = b i c t−>MPS;
unsigned i n t ∗v a l u e = &dep−>Dvalue ;
unsigned i n t ∗ r a n g e = &dep−>Drange ;
u i n t 1 6 ∗ s t a t e = &b i c t−>s t a t e ;
unsigned i n t rLPS =

r L P S t a b l e 6 4 x 4 [∗ s t a t e] [(∗ range>>6) & 0x03] ;
i n t ∗D b i t s L e f t = &dep−>D b i t s L e f t ;

∗ r a n g e −= rLPS ;
i f (∗ v a l u e < (∗ r a n g e << ∗D b i t s L e f t)) { / / MPS
∗ s t a t e = AC nex t s t a t e MPS 64 [∗ s t a t e] ; / / n e x t s t a t e

i f (∗ r a n g e >= QUARTER){
re turn (b i t) ;

} e l s e
∗ r a n g e <<= 1 ;

(∗ D b i t s L e f t)−−;
} e l s e { / / LPS

i n t renorm = r e n o r m t a b l e 3 2 [(rLPS>>3) & 0x1F] ;
∗v a l u e −= (∗ r a n g e << dep−>D b i t s L e f t) ;
∗ r a n g e = (rLPS << renorm) ;
(∗ D b i t s L e f t) −= renorm ;

b i t ˆ= 0x01 ;
i f (! (∗ s t a t e))

/ / s w i t c h meaning o f MPS i f n e c e s s a r y
b i c t−>MPS ˆ= 0x01 ;

∗ s t a t e = A C n e x t s t a t e L P S 6 4 [∗ s t a t e] ; / / n e x t s t a t e
}

i f (∗D b i t s L e f t > 0){
re turn (b i t) ;

} e l s e {
∗v a l u e <<= 1 6 ;
∗v a l u e |= ge tword (dep) ;
(∗ D b i t s L e f t) += 1 6 ;
re turn (b i t) ;

}
}

Figure 12. Decoding Decision action written
in C from the JM.

the sequential AVC/H.264 parser can be transformed to a
dataflow model using RVC-CAL.

Figure 13. A DataFlow model for the
H.264/AVC Parser

6. Conclusions

Implementing the basic CABAC process in RVC-CAL
took one month and two months for making it possible to
decode the I,P and B slices. Our implementation is sup-
porting all the CABAC encoded Syntax Elements found
in the AVC/H.264 standard except the Macroblock field
flag. The software generated decoder by our RVC-CAL
abstract description can successfully decode a big part of
the AVC/H.264 conformance sequences. Using RVC-CAL
to interpret the H.264/AVC standard is really easy and this
cuts a lot the conception time and actual work compared
to other languages. With RVC-CAL is not only possible to
implement a type of algorithm in one way but you can im-
plement it as sequential monolithic process, a monolithic
dataflow model and to a networked data flow model. Thus
implementing the AVC/H.264 Parser in a data flow model
and it’s entropy decoding engines (CAVLC and CABAC)
will achieve higher performances than the actual monolithic
data flow model.

References

[1] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz,
M. Mattavelli, and M. Raulet. Overview of the MPEG Re-
configurable Video Coding Framework. Springer journal of
Signal Processing Systems. Special Issue on Reconfigurable
Video Coding, 2009.

[2] H. Eeckhaut, M. Christiaens, D. Stroobandt, and V. Nollet.
Optimizing the critical loop in the H.264/AVC CABAC de-
coder. Field Programmable Technology, 2006. FPT 2006.
IEEE International Conference, 2006.

[3] J. Eker and J. Janneck. CAL Language Report. Technical
Report ERL Technical Memo UCB/ERL M03/48, University
of California at Berkeley, Dec. 2003.

[4] J. Gorin, M. Raulet, Y. Cheng, H. Lin, N. Siret, K. Sugimoto,
and G. Lee. An RVC Dataflow Description of the AVC Con-
strained Baseline Profile Decoder. In Proceedings of ICIP’09,
Nov. 2009.

[5] ISO/IEC FDIS 23001-4. MPEG systems technologies – Part
4: Codec Configuration Representation, 2009.

[6] J. W. Janneck, M. Mattavelli, M. Raulet, and M. Wipliez. Re-
configurable video coding: a stream programming approach
to the specification of new video coding standards. In MMSys
’10: Proceedings of the first annual ACM SIGMM conference
on Multimedia systems, pages 223–234, New York, NY, USA,
2010. ACM.

[7] I. JTC1/SC29/WG11 and I.-T. S. Q.6. Joint Draft ITU-T Rec.
H.264 — ISO/IEC 14496-10 / Amd.3 Scalable video coding ,
2007.

[8] M. Wipliez, G. Roquier, and J. Nezan. Software Code Gen-
eration for the RVC-CAL Language. Journal of Signal Pro-
cessing Systems, 2009.

