
A portable Video Tool Library for MPEG

Reconfigurable Video Coding using LLVM

representation

Jérôme Gorin, Matthieu Wipliez, Françoise Prêteux, Mickaël Raulet

To cite this version:

Jérôme Gorin, Matthieu Wipliez, Françoise Prêteux, Mickaël Raulet. A portable Video Tool
Library for MPEG Reconfigurable Video Coding using LLVM representation. Design and
Architectures for Signal and Image Processing (DASIP), 2010 Conference on, 2010, United
Kingdom. pp.183 -190, 2010, <10.1109/DASIP.2010.5706263>. <hal-00565298>

HAL Id: hal-00565298

https://hal.archives-ouvertes.fr/hal-00565298

Submitted on 11 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53011793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00565298

A PORTABLE VIDEO TOOL LIBRARY FOR MPEG RECONFIGURABLE VIDEO CODING
USING LLVM REPRESENTATION

J. Gorin1 - M. Wipliez2 - F. Prêteux1 - M. Raulet2

1ARTEMIS, Institut Télécom SudParis, UMR 8145, Evry, France
2IETR, INSA Rennes, F-35043, Rennes, France

ABSTRACT

MPEG Reconfigurable Video Coding (RVC) represents the
last answer of MPEG to overcome the lack of interoperabil-
ity between codecs deployed in the market nowadays. The
main goal of MPEG RVC is to provide a set of coding tools
employed in all MPEG standards, the Video Tools Library
(VTL), encapsulated into independent entities called Func-
tional Units (FUs). FUs are described as dataflow actors in
RVC-CAL actor language (RVC-CAL) and decoders are de-
scribed as dataflow programs with the Abstract Decoder Mod-
els (ADMs). Therefore, an ADM of an MPEG decoder cor-
responds in MPEG RVC to a network of FUs taken from the
VTL. The typical use of MPEG RVC is to translate an ADM
into a hardware or software description language that target
one specific platform. In [1], we propose to skip this synthesis
process of ADM and to directly integrate a portable version
of VTL described in the Low-Level Virtual Machine Inter-
mediate Representation (LLVM IR) inside platforms. This
portable VTL is couple with a new RVC Decoder, we called
Just-In-Time Adaptive Decoder Engine (Jade), that dynami-
cally instantiates ADM to decode any encoded video using
its associated network description. In this paper, we intro-
duce the different compiling steps required to obtain an au-
tomatically translation of a VTL described in RVC-CAL into
a portable VTL described in LLVM. This translation is based
on a new RVC-CAL compiler called Open RVC-CAL Com-
piler (Orcc).

Index Terms— RVC, CAL, LLVM, Orcc, Dataflow pro-
gramming, Compilation, Intermedia Representation, dynamic
decoding.

1. INTRODUCTION

MPEG Reconfigurable Video Coding (RVC) has been cho-
sen by the MPEG community to be an alternative paradigm
for codec deployment. Its objective is to enable arbitrary
combinations of fundamental algorithms, without additional
standardization steps. The paradigm used in MPEG RVC is
the RVC-CAL Actor Language (RVC-CAL). This language
allows developer to produce high-level description of Ab-
stract Decoder Model (ADM) by using dataflow programs.

Fig. 1. Representation of the Just-In-Time Adaptive Decoder
Engine.

An ADM encapsulates the algorithms of an application into
independent entities called Functional Units (FUs). By us-
ing this principle, a dataflow description naturally exposes
concurrency between components of an application without
adding any implementation details. The MPEG RVC frame-
work provides both a normative standard library of FUs called
Video Tool Library (VTL) and a set of decoder descriptions
expressed as network of FUs. An ADM representation of a
decoder is modular and helps its reconfiguration by permit-
ting the topology of its network to be easily modified.

In this context, we developed a new dynamic decoder
called Just-In-Time Adaptive Decoder Engine (Jade), which
follows the concept of MPEG RVC. This decoder is based on
the Virtual Machine provided by the Low-Level Virtual Ma-
chine (LLVM) infrastructure to dynamically load and execute
dataflow programs of ADM. This dataflow decoder is created
in Jade according to a network description of the ADM and
an LLVM representation of the VTL. As represented in Fig-
ure 1, Jade is able to take the side information of the decoder
description alongside the content itself, for a dynamic gener-
ation of decoders 1, 2 or a hybrid version between these two
decoders. To be fully RVC compliant, Jade is based on FUs
provided by the VTL and translated into LLVM Intermedi-
ate Representation (IR). This LLVM IR enables a transparent
execution of FU on a Virtual Machine.

In this paper, we describe the way to automatically con-
vert a VTL described in RVC-CAL into a Low-Level Vir-
tual Machine equivalent Intermediate Representation (LLVM
IR). The LLVM IR is a low-level and platform independent

representation, close to Assembly languages, which provides
high-level information for compiler optimizations. By cou-
pling LLVM IR with its associated Virtual Machine, LLVM
provides excellent computation performance, comparable to
static code execution (i.e. without using a Virtual Machine).
After a brief reminder of the concept of MPEG RVC and of its
associated language RVC-CAL, this paper presents the differ-
ent compilation stages starting from an RVC-CAL description
of a Functional Unit to obtain an LLVM IR of this FU. This
automatic process is helped by a new Open RVC-CAL Com-
piler (Orcc) that produces the first stage of our compilation
process. We will finally conclude this paper with some ex-
periments on size and execution performance of the portable
VTL coupled with Jade.

2. MPEG RECONFIGURABLE VIDEO CODING
(RVC)

The key approach of MPEG RVC [2] is to produce an Ab-
stract Decoder Model of MPEG standards at system-level and
suitable for any platform. An ADM is a generic representa-
tion of a decoder, built as a block diagram expressed with the
XML Dataflow Format (XDF). XDF is an XML dialect that
describes the connections between blocks (FUs). Each FU is
described in RVC-CAL and defines a processing entity of a
decoder. Connections represent the data flow between FUs.

XML Dataflow
Format

Encoded Video Data Decoded Video Data

N
o

n
-N

o
rm

at
iv

e
N

o
rm

at
iv

e

Decoding Translation

Video Tools
Library

Fig. 2. A typical use of the MPEG RVC Framework.

The MPEG RVC framework [2] is under development as
part of the MPEG-B standard [3], which describes the frame-
work and the language it uses; and as part of the MPEG-C
standard [4], which defines the library of video coding tools
(Video Tool Library or VTL) employed in existing MPEG
standards. The Figure 2 shows a typical use of a normative
ADM description to produce a non-normative decoding solu-
tion that can target either software or hardware platform.

2.1. RVC-CAL dataflow programming

RVC-CAL Actor Language has been chosen by MPEG RVC
as the reference programming language for describing FU [5].
An actor in RVC-CAL represents an instantiation of an RVC

Functional Unit and an RVC-CAL dataflow model represents
a composition of actors. An actor (shown in Fig. 3 and Fig. 4)
is a computational entity with input ports, output ports, states,
actions, and parameters. All actors communicate with oth-
ers by sending and receiving tokens (atomic pieces of data)
through their ports.

actor Abs () int (size=16) I ==> uint (size=15) O,
uint (size=1) S :

pos: action I: [u] ==> O:[u] end
neg: action I :[u] ==> O:[-u] guard u < 0 end

unsign: action ==> S:[0] end
sign: action ==> S:[1] end

priority
neg > pos;

end

schedule fsm s0 :
s0 (pos) --> s1;
s1 (unsign) --> s0;
s0 (neg) --> s2;
s2 (sign) --> s0;

end
end

Fig. 3. Description of the Absolute Value actor in RVC-CAL.

An actor contains one or several actions. Actions define
computations that an actor has to execute (or to fire). Actions
may have a tag, guard, local variables, and statements. An
action is defined by the amount of tokens consumed on the in-
put. It may change the actor state, and may output tokens ac-
cording to a function of inputs tokens and state variables. The
guard conditions specify additional firing conditions, where
the action firing depends on the values of input tokens or the
current state.

When an actor fires, an action is selected according to the
number and value of tokens available, and if the guard asso-
ciated to the action is true. Action selection may be further
constrained using a Finite State Machine (FSM) and prior-
ity inequalities to impose a partial order among action tags.
The reader can refer to [5] for more details on the RVC-CAL
language.

State

Actor

Parameters

-2

State

Actor

Parameters

2

1

Fig. 4. Absolute Value actor before and after firing.

An actor called Absolute Value is described in RVC-CAL
on Figure 3 and is represented on Figure 4. This actor out-
puts the sign and the absolute value of its input data. It
is composed of three ports, one input I of int(size=16) and

two outputs S and O of size respectively uint(size=15) and
uint(size=1). The output O produces absolute value of token
on input I . The output S produces a token designating the
sign of the input data, i.e. 1 if data is negative and 0 other-
wise. The actor contains four actions; pos and neg that pro-
duce absolute values; sign and unsign for producing signed
values. An FSM rules the order in a way that actions can
be fired with the sequence pos then unsign or neg then sign.
The priority favors action neg over action pos when both are
fireable.

3. LOW-LEVEL VIRTUAL MACHINE (LLVM)

RVC-CAL describes dataflow programs at high-level of de-
scription without giving any implementation details, expos-
ing available parallelism between the component of an ap-
plication. On the contrary, the Low-Level Virtual Machine
(LLVM) is a low-level representation of applications, close to
Assembly languages, that captures the key operations of ordi-
nary processors but avoids machine specific constraints such
as physical registers or pipelines. The LLVM Intermediate
Representation (LLVM IR) has been designed as a low-level
representation but with high-level type information for com-
piler analysis and optimization [6].

The term of LLVM is also designating its associated Vir-
tual Machine capable to manage the LLVM IR of an appli-
cation for producing highest performance executable code
through an aggressive system of continuous optimization.

3.1. LLVM Intermediate Representation

One of the key factors that differentiate LLVM from other
systems is the intermediate representation it uses. The reader
is invited to read [6] that explains the justification of LLVM
IR design choices. The LLVM IR is composed of an infinite
set of typed virtual registers that can hold values of primi-
tive types (integral, floating point, or pointer values). These
virtual registers are in Three Address Code (3AC) form and
Static Single Assignment (SSA) form [6]. We develop the
property of these two forms, widely used for compiler opti-
mization, in section 5.1. LLVM programs transfer values be-
tween virtual registers and memory solely via load and store
operations using typed pointers.

%X = d i v i 3 2 4 , 9 ; S igned i n t d i v i s i o n
%Y = d i v u n s i g n e d i 8 12 , 4 ; Unsigned c h a r d i v i s i o n
%cond = eq i 3 2 %X, 8 ; P r o d u c e s a boo l v a l u e
b r i 1 %cond , l a b e l %True , l a b e l %F a l s e
True :
. . .

Fig. 5. LLVM IR coding example

The LLVM instruction set contains 31 operation codes
(opcode) that can be overloaded (for example, the add in-
struction can operate on operands of any integer size or vector

type). The LLVM IR has also a mechanism for explicit rep-
resentation of Control Flow Graph (CFG). Figure 5 provides
an example of the LLVM IR. More information on syntax and
semantics of each LLVM instructions are given in the LLVM
reference manual [7].

3.2. LLVM inside the Just-In-Time Adaptive Decoder
Engine

The Virtual Machine from LLVM represents the core of Jade.
Jade is a dynamic RVC decoder able to generate and execute
a dataflow program from an ADM, by using its associated de-
coder description and an LLVM representation of the VTL.
The decoder description is a network description of an ADM
expressed in XDF. The dynamic decoder creation and exe-
cution of jade is made by coupling the Virtual Machine of
LLVM with a dedicated library — the RVC Decoder Engine
(RDE) represented in Figure 6.

The RDE library parses XDF files, parses LLVM IR of
required FUs among the VTL, and generates an LLVM rep-
resentation of the corresponding ADM. The LLVM represen-
tation is finally sent to the Virtual Machine that will produce
and execute efficient machine code, fitted to the target plat-
form.

Just-In-Time Adaptive Decoder Engine

Low-Level Virtual Machine
Decoded

VideoCoded data

Decoder Description

LLVM-Portable
Video Tool Library

RVC Decoder Engine

Fig. 6. Infrastructure of Just-In-Time Adaptive Decoder En-
gine.

The strength of Jade is to take the benefits of the LLVM
infrastructure along with the RVC infrastructure. As LLVM is
becoming a commercial grade research compiler, the LLVM
IR generated from an ADM will continually benefit from
improvements of the LLVM compiling infrastructure. The
achievement of this solution is also highly related to the effi-
ciency of the LLVM IR of FU in the VTL. The translation of
an RVC-CAL FU into LLVM IR must keep the high-level in-
formation from the original model, but with a very low-level
description of the FU processing and behavior. The next two
sections of this article are focused on the LLVM translation
process of the VTL.

4. RVC-CAL COMPILER INFRASTRUCTURE

The translation process of an RVC-CAL FU into an llvm-
equivalent representation is based on the Open RVC-CAL
Compiler (Orcc) [8]. Orcc is a compilation framework that

networks

actors
RVC-CAL
front-end

intermediate
files

C back-end .c files

Java back-end .java files

LLVM back-end .ll files

XLIM back-end .xlim files

... back-end ... files

Fig. 7. Open RVC-CAL Compiler Infrastructure.

can translate RVC-CAL programs into a software or hardware
representation. This compilation framework is composed of
different components, i.e. one front-end and several back-
ends. Thus, a compilation process for a given RVC-CAL
dataflow program to target a specific language is made in two-
steps:

1. A unique front-end parses the FUs of a given network
and translates them into a an Orcc-specific Intermediate
Representation (Orcc IR),

2. A dedicated back-end loads the network and the actors
in Orcc IR form to generate code in the targeted lan-
guage.

For the need of Jade, we developed a new LLVM back-
end that starts from the low-level Orcc IR to produce LLVM
IR of an entire VTL.

4.1. Actor Intermediate Representation

The Orcc IR is a conservative representation of a dataflow
program in terms of structure and semantic while being at a
lower level of representation. It is a common denominator
of potential target languages such as C, C++ or Java without
favoring one in particular.

Each actor representation is serialized in JavaScript Ob-
ject Notation (JSON) description format. Figure 8 shows
the structure of the Absolute Value actor (Fig 3) in Orcc IR.
The JSON description contains name, pattern and a list of
actions of the actor. The FSM of the actor is translated
into an action scheduler that lists state-to-state transitions.
Priorities become a list of action tags sorted by decreasing
priority.

The JSON description of an action (Fig. 9) contains the
action tag and the number of tokens produced and consumed.
The expressions in the action are reduced to simple arith-
metic expressions. Functional tests and list generators be-
come imperative statements. The assignment statement is dif-
ferentiated into assignments (assign) to local variables and
load/store to memory operations. The high-level RVC-CAL
functional expressions containing function calls, conditionals
or list generators are translated into an equivalent lower-level
IR expression.

The condition to fire an action becomes an isSchedulable
function (Fig. 10), which tests value and the number of token
on the input of the action, as well as testing guard condition

"name": "Abs",
"inputs" : ["int", [16]], "I"],
"outputs": ["uint", [15]], "O"],
"actions": [
[

(...)
]
"action scheduler": [

"s0", //Initial states
["s0", "s1", "s2"], //States
[
["s0", [[["b"], "s1"], [["a"], "s2"]]],
["s1", [[["n"], "s0"]]],
["s2", [[["p"], "s0"]]]

]
]

]

Fig. 8. Description of the structure of Absolute Value actor in
Orcc Intermediate Representation.

"pos",false,[32,54,5],"void",[],
[
[["O"],,["List"[1], ["uint",[15]]]],
[["I"],["List",[1], ["uint",[16]]]],
[["u"],["uint",[15]]]

],
[
["read",[["I"],"I",1]],
["load",[["u",1],["I"],[0]]],
["store",[["O"],[0],["var",["u",1]]]],
["write",[["O"],"O",1]]

]

Fig. 9. Description of the action pos of Absolute Value actor
in Orcc Intermediate Representation.

"isSchedulable_pos","bool",
[
[["_tmp",1,1],"bool"],
[["_tmp",0,1],"bool"],
[["_tmp",0,2],"bool"],
[["_tmp",0,3],"bool"]

],
[
["hasTokens",[],[["_tmp",1,1],"I",1]],
["if",
["var",["_tmp",1,1]],
["assign",[["_tmp",0,1],[true]]],
["assign",[["_tmp",0,3],[false]]]

],
["join",[["_tmp",0,2],[["_tmp",0,1],["_tmp",0,3]]]],
["return",["var",["_tmp",0,2]]]

]

Fig. 10. Description of the firing condition of the action pos
of Absolute Value actor in Orcc Intermediate Representation.

if it exists. If isSchedulable returns true, it means that the
current action can be fired.

Specific operations dealing with FIFOs become read,
write, hasTokens or peek statements. This is necessary in
Orcc IR because the semantics of RVC-CAL specify that the
input and output patterns may have read/write several tokens
as a list, or may have to reorder tokens.

4.2. Template engine

Each Orcc back-end, which can produce C, Java or V HDL
code, has the role to parse Orcc IR from actor into classes,
then to unparse these classes to the targeted language using a
template engine. A template engine is a simple code generator
that emits texts using template documents. A template engine
breaks up template documents into piece of text and attribute
expression, producing the grammar and syntax of the func-
tional language. It avoids print statements into Orcc back-end
to generate source code and ease the implementation of new
language.

A template document is composed of 4 canonical opera-
tions:

1. Attribute reference: $name$

2. Template references: $search()$

3. Apply template to multi-valued attribute:
$users:{u — u.name ID is $u.id$.}$

4. Conditional include: $if(var)$ var is true. $endif$

These canonical operations are encapsulated into methods
corresponding to IR instructions (Fig. 11). Texts or canonical
operations include in these methods are printed when a corre-
sponding instruction is found on the Orcc IR.

Assign(assign) ::= <<
$assign.target$ = $assign.value$;

>>

Fig. 11. Example of a template for assignment instructions in
Orcc IR.

A template group can contain several templates, and can
extend a parent template. These functionalities allow a tem-
plate group in a back-end to overwrite templates of a parent
template, and thus favor reusability among back-ends. The
template engine also supports recursion, automatic indenta-
tion, and line wrapping.

5. FROM RVC-CAL COMPILER IR TO LLVM

C, Java or V HDL Orcc Back-ends are designed to produce
one targeted-code file per actor and a network file that manage

the execution of the overall decoder. These files, representing
an ADM, have to be compiled into a single application that
can then be installed into the machine we target. For the need
of Jade, the llvm back-end does only compile each FU from
VTL into a separate LLVM IR file. One VTL generation fits
every platform supported by the LLVM infrastructure. The
generation and execution of the network is left to the RDE of
Jade.

The Orcc IR and LLVM IR have some similarity that
helps the translation process for the LLVM back-end. They
are both in SSA form with an unlimited number of registers.
They have both integer types with arbitrary bit widths. Both
IRs have instructions with similar semantics, those include
assignment to a local variable, load/store memory operations
and φ assignments. In the next part, we explain the necessary
transformation applied to the Orcc IR to obtain an LLVM IR.

5.1. Three Address Code form

The first main difference between LLVM and the actor IR is
that the Orcc IR supports arithmetic expressions in assign-
ments, load/store, and conditional branches, while LLVM
only supports three-address code(3AC) [9].

Three-Address Code (3AC) is a form used to improve
compiler analysis. Each instruction of the 3AC form is de-
scribed as a 4-tuple: operator, operand1, operand2, result.
The general form of 3AC is x := y op z, where x, y
and z are variables, constants or temporary variables and op
is an arithmetic operator. In Orcc IR, each expression that
contains more than one fundamental operation must be de-
composed into an equivalent series of instructions that fits
3AC form and SSA constraints. For instance, the instruc-
tion p := x + y × z is converted into t1 := y × z
and p := x + t1 where t1 is a variable that is assigned
exactly once in the overall function to respect the SSA con-
straint. Three-address code is still also used even if some in-
structions use more or fewer than two operands.

The key features of three-address code are that every in-
struction implements exactly one fundamental operation. Ev-
ery expression containing more than one fundamental opera-
tion in Orcc IR is translated into a series of 3AC instructions
before generating the LLVM IR. This transformation is di-
rectly applied to the Orcc IR of actors as a transformation
pass.

5.2. Structure of template document

The other difference between Orcc IR and LLVM is that an
instruction in Orcc IR usually corresponds to many instruc-
tions in LLVM IR. For instance, the hasTokens node, which
checks FIFO status in Orcc IR, is decomposed into a load op-
code and a call opcode in LLVM. To respect the SSA form,
the template document of the Orcc back-end is structured into
3 levels of template as shown in Figure 12.

//Orcc IR Instructions
HasTokens(hasTokens) ::= <<
$HasTokensNode(hasTokens.target,

hasTokens.numTokens,
hasTokens.port)$

>>

// Conversion instructions
HasTokensNode(result, token, port) ::= <<
$LoadOp(result=result+"0", ty="%fifo**", pointer="@"+port)$
$CallOp(result=result,

ty="i1",
fnptrval="@hasTokens",
function_args= "%fifo* "+result+"1"+, i32 "+token
)$

>>

// LLVM Operations
LoadOp(result, ty, pointer) ::= <<

$result$ = load ty* $pointer$
>>

CallOp(result, ty, fnptrval, function_args) ::= <<
$if(result)$

$result$ =
$endif$
call ty $fnptrval$ (
$if(function_args)$

$function_args$
$endif$
)

>>

Fig. 12. Example of template transformation stage for hasTo-
kens instructions.

The first level is devoted to Orcc IR instructions (i.e. Has-
Tokens). This template is called by the back-end when Orcc
IR has the corresponding instruction. It gets information
from the instruction and selects the right transformation to
apply. The second level describes the conversion to apply to
an instruction (HasTokensNode). This template transforms an
Orcc IR instruction into a series of LLVM opcodes and en-
sures that SSA property is respected. The third level manages
LLVM opcodes (LoadOp and CallOp). The overload of each
LLVM opcode is managed according to the parameters given
to the template. This lower-level of template is the only level
that prints LLVM instructions into files.

5.3. Control Flow Graph Transformation

Another main difference between LLVM and Orcc IR is that
conditional branch nodes, namely if and while nodes, have
no equivalent in LLVM IR. The Control Flow Graph (CFG)
of a function in the LLVM IR is a list of basic blocks, each
basic block starting with a label. A basic block contains a list
of instructions, and ends with a terminator instruction, such
as a branch instruction or function return instruction. We
augmented the Orcc IR with a straight Control Flow Graph
checking that creates, flattens, and simplifies the CFG.

Figure 13 gives an LLVM-equivalent representation of
the scheduler of action pos (isSchedulable pos), described in
RVC-CAL on Figure 3 and in Orcc IR on Figure 10. This

define internal i1 @isSchedulable_pos() {
entry:
br label %bb1

bb1:
%_tmp1_10 = load %fifo_s** @I
%_tmp1_1 = call i32 @hasTokens (%fifo_s* %_tmp1_10, i32 1)
br i1 %_tmp1_1, label %bb2, label %bb3

bb2:
br label %bb4

bb3:
br label %bb4

bb4:
%_tmp0_2 = phi i1 [0 , %bb2], [1 , %bb3]
ret i1 %_tmp0_2

}

Fig. 13. Description of the firing condition of the action pos
of Absolute Value actor in LLVM Representation.

scheduler defines the firing condition of pos. It returns 1 if
the action pos is fireable and 0 otherwise.

The isSchedulable pos LLVM IR function is composed
of 5 basic blocs (entry and bb1 to bb4) surrounded by branch
instructions (br). It checks the status of the FIFO I, by call-
ing hasTokens function. The control flow is then branched to
bb1 or bb2 according to the resulting % tmp1 1. % tmp0 2,
corresponding to return value, is set by a phi instruction. This
instruction takes the value 0 if the previous basic block is bb3,
or the value 1 if the previous block is bb2.

5.4. Metadata information

LLVM is also able to manage extensible metadata informa-
tion inside LLVM IR. Metadata is widely used in program-
ming languages to give “extra” information about some el-
ement of the application (for instance variables, functions,
structures...).

In our approach, metadata information is used to carry the
structural information of an FU. We call structural informa-
tion of FU the information elements in the Orcc IR that have
any influence on computation, namely name, inputs, outputs
and actions of an FU. This structural information is necessary
for Jade to connect actors in dataflow programs and to apply
some actor transformation inside an ADM, for instance the
merging of actors [10]. Figure 13 corresponds to the meta-
data description of Absolute Value actor. This representation
is equivalent to the Orcc IR description given in Figure 8.

The metadata elements are identified in LLVM with a
metadata type and a preceding exclamation point (’!’). Meta-
data elements of FUs are explored using Named metadata.
Named metadata are collection of metadata primitives that
contain properties of dataflow elements. For instance, the in-
put I of Absolute Value is described by the named metadata
!1 in Figure 14.

Metadata primitives are composed of metadata strings

!name = !{!0}
!inputs = !{!1}
!outputs = !{!2}
!actions = !{!3, !4, !5, !6}
!action_scheduler = !{!7}

!0 = metadata !{metadata !"Abs"} ; Name of the actor
!1 = metadata !{ i32 16, ; Size of the input I
metadata !"I", ; String name of I
%fifo_s** @I} ; LLVM IR variable

(...)
!3 = metadata !{metadata !"pos", ; Tag of action
metadata !8, ; Scheduler of action
metadata !9} ; Body of action

!8 = metadata !{metadata !"bool", ; Function return type
metadata !10, ; Function pattern
i1()* @isSchedulable_pos} ; LLVM function name

!9 = metadata !{metadata !"void", ; Function return type
(...)

Fig. 14. Description of the structure of Absolute Value actor
using LLVM metadata.

and metadata nodes. Metadata strings are surrounded by
double quotes and give name of dataflow elements (metadata
¡‘I” for Input I). Metadata nodes are presented as comma
separated list of elements, surrounded by braces (!{ i32 16, ..,
%fifo s** @I}). They can have any values, nodes, strings or
LLVM variables as operand.

We incorporate LLVM variables inside metadata node to
bound metadata information with their corresponding LLVM
variables. By encapsulating this information inside the LLVM
description, no information is lost between Orcc IR and struc-
tural information is directly bounded to the LLVM IR. The
representation of the original CAL description is conserved
and manageable by the RDE of Jade.

6. GENERATED VIDEO TOOL LIBRARY

We tested our concept of portable VTL on the MPEG RVC
VTL at its current state of standardization in MPEG-C [4].
This VTL currently incorporates coding tools from MPEG-
4 Part-2 Simple Profile (SP) and MPEG-4 Advanced Video
Coding (AVC) standards. It is composed of 69 RVC-CAL
FUs, 22 are coming from the MPEG-4 SP standard and 47
are coming from MPEG-4 AVC standard.

We compared the LLVM back-end with the other back-
ends of Orcc namely the C back-end and Java back-end.
This comparison puts the focus on the relevance of using
LLVM IR as the reference language for Jade into a unique en-
vironment. However, C represents the most popular language
for static compilation as much as Java is the most popular
language for dynamic compilation using a Virtual Machine.

Table 1 compares the size of the generated VTL from
these 3 back-ends. All the files include in the resulting VTLs
were compiled independently with no optimization enabled.
The compiling tools used are gcc V4.3.2 for C, javac V1.6.0
for Java and the llvm assembler from LLVM 2.7.

The important size of the C compiled version of VTL
is explained by the fact that C files are incorporating FIFO
headers, where Java and LLVM doesn’t use header and ex-
ternalize functions. This result shows the lightness of LLVM
bytecode size comparable to Java bytecode that allows the
portable VTL to be easily sent or incorporated into embedded
system.

C Java LLVM
MPEG-4 SP 1,74 Mo 300 Ko 285 Ko

+ MPEG-4 AVC 2,29 Mo 775 Ko 755 Ko
VTL 4.03 Mo 1,04 Mo 1,01 Mo

Table 1. Comparison of the compilation size without opti-
mization of a same VTL generated in C, Java and LLVM. The
VTL includes FUs from MPEG-4 Simple Profile (SP) stan-
dard and from MPEG-4 Advanced Video Coding (AVC) stan-
dard.

The second experimental result puts the focus on the
achievement of the generated decoder from each backend.
These experiments were led on two configurations of de-
coders, an RVC ADM of MPEG-4 SP described in [11] and
an RVC ADM of MPEG-4 AVC described in [12]. We con-
sidered these configurations as the most representative among
RVC ADMs as they cover all the VTL.

Table 2 shows the achievement of these 6 generated
decoders on an Intel R©E6600 CoreTM2 Duo processor at
2.40GHz running with Windows 7TM. The integrated devel-
opment environment (IDE) used to compile generated files
from each back-ends were namely Microsoft Visual Studio
2008 Express for C, Eclipse V3.6.0 for JAVA and Jade using
LLVM V2.7 for LLVM.

C JAVA LLVM
MPEG-4 SP 26,7 fps 3,5 fps 24,9 fps

MPEG-4 AVC 30,9 fps 2,8 fps 31,7 fps

Table 2. Comparison of decoder performance for C, JAVA
and LLVM version of the MPEG-4 Part-2 Simple Profile con-
figuration on a CIF sequences (352× 288), and of the MPEG-
4 Advanced Video Coding configuration on QCIF sequences
(176 × 144).

These results show that using Jade instead of a statically
C-compiled decoder has minor or no impact on the execution
of a decoder. On the contrary, Jade is about 7 times faster
than the Java version of the same ADM running on the Java
Virtual Machine (JVM). This speed factor can be explained
by the fact that Java, instead of LLVM, has no pointer. FIFO
accesses in JAVA involve a memory copy of data, which puts
pressure on the garbage collector and reduces the decoder per-
formance.

Jade has also been tested with this same test environ-
ment, i.e. same decoder configurations and an only version

the portable VTL in LLVM IR, on different Operating Sys-
tems (OSes) (Linux and MAC OS X) and different platforms
(ARM R© V7 and PS3 R©). The portable VTL used were com-
piled once in a single environment, and then copied into each
tested platform. The resulting performance of Jade on these
two configurations is highly dependent on computation ef-
ficiency of each platform, but proves the portability of our
LLVM-generated VTL.

7. CONCLUSION AND PERSPECTIVES

This paper describes the compilation stage required to trans-
late RVC-CAL description of FUs from the VTL of MPEG
RVC to generate a portable VTL, efficiently expandable into
a wide variety of platforms. The generation of this portable
VTL is the most crucial elements for the achievement of our
RVC decoder called Jade. We proved the relevance of using
the LLVM IR for this portable Video Tool Library by com-
paring achievement of equivalent decoder descriptions with
the two most popular languages used nowadays in decoding
systems. By using dynamic property of LLVM, Jade repre-
sents an excellent starting point for new research on adaptive
decoding.

However, the Jade framework is still a base for many
works. Its Reconfigurable RVC Engine (RDE) does not yet
take into account many information included in the portable
VTL. For instance changing a decoding solution in another
decoding solution needs Jade to be fully reconfigured. We
plan to reduce this reconfiguration time by finding parts of a
dataflow decoder that really need to be changed (i.e. partial
reconfiguration). Using CAL dataflow programming involves
scalable parallelism adapted from uni-core systems to mas-
sively multi-core systems, but a smart dispatching of decod-
ing algorithms onto different processing elements has to be
implemented into the RDE. Finally, we take MPEG RVC as
the base application for Jade, but the concept of ADM repre-
sentation can also be extended to others medias that involve
signal processing, such as audio, cryptographic or 3D appli-
cations.

8. REFERENCES

[1] J. Gorin, M. Wipliez, J. Piat, F. Preteux, and M. Raulet,
“An LLVM-based decoder for MPEG Reconfigurable
Video Coding,” in Proc. of IEEE ICC 2010. October
2010, IEEE.

[2] M. Mattavelli, I. Amer, and M. Raulet, “The reconfig-
urable video coding standard [standards in a nutshell],”
Signal Processing Magazine, IEEE, vol. 27, no. 3, pp.
159 –167, may 2010.

[3] ISO/IEC FDIS 23001-4, MPEG systems technologies –
Part 4: Codec Configuration Representation, 2009.

[4] ISO/IEC FDIS 23002-4, MPEG systems technologies –
Part 4: Video Tool Library, 2010.

[5] I. Amer, C. Lucarz, M. Mattavelli, G. Roquier,
M. Raulet, O. Déforges, and J.F. Nezan, “Reconfig-
urable Video Coding: An overview of its main objec-
tives.,” in IEEE Signal Processing Magazine, Special
Issue on Signal Processing on Platforms with Multiple
Cores, 2009.

[6] C. Lattner, “LLVM: An Infrastructure for Multi-Stage
Optimization,” M.S. thesis, Computer Science Dept.,
University of Illinois at Urbana-Champaign, Urbana, IL,
Dec 2002, See http://llvm.cs.uiuc.edu.

[7] C. Lattner and V. Adve, “LLVM Language Reference
Manual,” Tech. Rep. 4th edition, ECMA International,
June 2006.

[8] J. W. Janneck, M. Mattavelli, M. Raulet, and
M. Wipliez, “Reconfigurable video coding: a stream
programming approach to the specification of new video
coding standards,” in MMSys ’10: Proceedings of
the first annual ACM SIGMM conference on Multime-
dia systems, New York, NY, USA, 2010, pp. 223–234,
ACM.

[9] C. Lattner and V. Adve, “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transforma-
tion,” in Proceedings of the 2004 International Sympo-
sium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[10] M. Wipliez and M. Raulet, “Classification and Transfor-
mation of Dynamic Dataflow Programs,” in The 2010
Conference on Design and Architectures for Signal and
Image Processing (DASIP 2010). 2010, IEEE Computer
Society.

[11] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz,
M. Mattavelli, and M. Raulet, “Overview of the MPEG
reconfigurable video coding framework,” Journal of
Signal Processing Systems, 2009.

[12] J. Gorin, M. Raulet, Y.L. Cheng, H.Y. Lin, N. Siret,
K. Sugimoto, and G.G. Lee, “An RVC Dataflow De-
scription of the AVC Constrained Baseline Profile De-
coder,” in Proceedings of ICIP’09, Nov. 2009.

