-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

HAL

archives-ouvertes

Combinatorial rigidity of multicritical maps
Wenjuan Peng, Lei Tan

» To cite this version:

Wenjuan Peng, Lei Tan. Combinatorial rigidity of multicritical maps. 30 pages. 2011. <hal-

00601631>

HAL Id: hal-00601631
https://hal.archives-ouvertes.fr /hal-00601631
Submitted on 6 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://core.ac.uk/display/53011217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00601631

Combinatorial rigidity of multicritical maps *

Peng Wenjuan & Tan Lei
April 20, 2011

Abstract

In this paper, we combine the KSS nest constructed in [KSS] and the analytic
method in [AKLS] to prove the combinatorial rigidity of multicritical maps.

1 Introduction

Rigidity is one of the fundamental and remarkable phenomena in holomorphic dy-
namics. The general rigidity problem can be posed as

Rigidity problem [L]. Any two combinatorially equivalent rational maps are
quasi-conformally equivalent. Except for the Lattes examples, the quasi-conformal
deformations come from the dynamics of the Fatou set.

In the quadratic case, the rigidity problem is equivalent to the famous hyper-
bolic conjecture. The MLC conjecture asserting that the Mandelbrot set is locally
connected is stronger than the hyperbolic conjecture (cf. [DH]). In 1990, Yoccoz
[Hu] proved MLC for all parameter values which are at most finitely renormaliz-
able. Lyubich [L] proved MLC for infinitely renormalizable quadratic polynomials
of bounded type. In [KSS], Kozlovski, Shen and van Strien gave the proof of the
rigidity for real polynomials with all critical points real. In [AKLS], Avila, Kahn,
Lyubich and Shen proved that any unicritical polynomial f. : z — 2% 4+ ¢ which
is at most finitely renormalizable and has only repelling periodic points is combi-
natorially rigid, which implies that the connectedness locus (the Multibrot set) is
locally connected at the corresponding parameter values. The rigidity problem for
the rational maps with Cantor Julia sets is totally solved (cf. [YZ], [Z]). In [Z],
Zhai took advantage of a length-area method introduced by Kozlovski, Shen and
van Strien (cf. [KSS]) to prove the quasi-conformal rigidity for rational maps with
Cantor Julia sets. Kozlovski and van Strien proved that topologically conjugate
non-renormalizable polynomials are quasi-conformally conjugate (cf. [KS]).

In the following, we list some other cases in which the rigidity problem is re-
searched (see also [Z]).

(i) Robust infinitely renormalizable quadratic polynomials [Mcl1].
(ii) Summable rational maps with small exponents [GS].

(iii) Holomorphic Collet-Eckmann repellers [PR].

(iv) Uniformly weakly hyperbolic rational maps [Ha].

In [PT], we have discussed the combinatorial rigidity of unicritical maps. In this
paper, we will give a proof of the combinatorial rigidity of multicritical maps (see
the definition in section 2).

In the proof, we will exploit the powerful combinatorial tool called ”puzzle” and
a sophisticated choice of puzzle pieces called the KSS nest constructed in [KSS]
(see Theorem 7.11). To get the quasi-conformal conjugation, we adapt the analytic
method in [AKLS] (see Lemma 3.2).

The paper is organized as follows. In section 2, we introduce the definition of the
multicritical maps which we study in this paper and present the results of this paper,
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Theorems 2.1, 2.2, 2.3. In section 3, we apply the Spreading Principle appeared in
[KSS] to prove Theorem 2.1. In section 4, we resort to the quasiconformal surgery
to prove Theorem 2.2. Proof of Theorem 2.3 (a) is given in section 5. We reduce
Theorem 2.3 (b) to Main Proposition in section 6. The proof of Main Proposition is
presented in section 7. In subsection 7.1, we reduce Main Proposition to Proposition
7.3. The proof of Proposition 7.3 is given in subsection 7.2.

2 Statement

The Set up. V = L1V is the disjoint union of finitely many

U is compactly contained in V,
and is the union of finitely many Jordan domains with disjoint closures;
f:U — V is a proper holomorphic map with all critical points
contained in Ky := {z € U| f"(2) € U Vn},
with each V-component containing at most one connected component of Ky
containing critical points.

Jordan domains in the complex plane C with disjoint and quasi-circle boundaries,

Denote by Crit(f) the set of critical points of f and by P := U, Ucecrir ) {/"(¢)}
the postcritical set of f.

Let intKy denote the interior of Ky. For x € Ky, denote by K¢(x) the compo-
nent of Ky containing the point x. We call a component of K a critical component
if it contains a critical point. The map f maps each component of K; onto a com-
ponent of Ky. A component K of Ky is called periodic if fP(K) = K for some
p > 1, wandering if f{(K) N fI(K) =0 for all i # j > 0.

Two maps in the set-up (f : U — V), (f : U — V) are said to be c-equivalent
(combinatorially equivalent), if there is a pair of orientation preserving homeomor-
phisms hg,hy : V — V such that

hi(U) = U and by (P) =P

hy is isotopic to hg rel OV U P

hoofohf1|ﬁ:f (1)
hl’V\U is Cp-qc (an abbreviation of quasi-conformal) for some Cy > 1,

h1

VouUu % UcV
in particular fl I f commutes.
V — V
ho

This definition is to be compared with the notion of combinatorial equivalence
introduced by McMullen in [Mc2]. Notice that this definition is slightly different
from the definitions of combinatorial equivalence in [AKLS] and [KS], since we define
it without using the external rays and angles.

We say that f and f are qc-conjugate off Ky if there is a qc map H : V\Ky —
V\K; so that Ho f = fo H on U\Ky,

U\K; -5 U\K;
ie. f| L f commutes.
V\K;, - V\K 7



We say that f and f are gc-conjugate off intKy if there is a qc map H: V-V
so that Ho f = f o H on U\intKy,

U\intK¢ A, fJ\inth
ie. f lf commutes.
V\intK ¢ — V\intK ;

We say that f and f are qc-conjugate if there is a qc map H' : V — V so that

H of=foH onU,

vou . gcv
i.e. fl l f commutes.
vV — V
HI

Theorem 2.1. Let f, f be two maps in the set-up. Suppose f and f are gc-conjugate
off Ky by a qc map H. Assume that f satisfies the following property (x):

For every critical component K¢(c) of Ky, ¢ € Crit(f), and every integer n > 1,
there exists a puzzle piece Qn(c) containing ¢ such that:

(i) For every critical component K¢(c), the pieces {Qn(c)}n>1 form a nested
sequence with (), Qn(c) = Ky(c) (the depth of Qn(c) may not equal to n).

(it) For each n > 1, the union |J.coy(p) @n(c) is a nice set.

(iii) There is a constant C, such that for each pair (n,K(c)) with n > 1, a
critical component Ky(c), the map H|aq, () admits a C-qc extension inside Qn(c).

Then the map H extends to a qc map from 'V onto V which is a conjugacy off
inth.

See Definition 1 (1) and (2) in the next section for the definitions of a puzzle
piece, the depth of it and a nice set.

Theorem 2.2. Let f be a map in the set-up. Then for any component D of intKy,
fAD)N fI(D) =0 for alli#j > 0.

Theorem 2.3. Let f, f be two maps in the set-up. Then the following statements
hold.

(a) If f and f are c-equivalent, then they are qc-conjugate off Ky.

(b) Suppose H : V\K; — V\K]; is a qc conjugacy off Ky. Assume that for
every critical component K (c), ¢ € Crit(f), satisfying that f/(K¢(c)) is a critical
periodic component of Ky for some |l > 1, there are a constant M. and an integer
N. > 0 such that for each n > N., the map H]apn(c) admits an M.-qc extension
inside Pp(c), where P,(c) is a puzzle piece of depth n containing c. Then the map
H extends to a qc conjugacy off intKy. Furthermore, if for every component K of
K with non-empty interior, H|px extends to a gc conjugacy inside K, then f and
f are qc-conjugate by an extension of H.

3 Proof of Theorem 2.1

Suppose that f and f are qc-conjugate off Ky by a Cp-qc map H. Starting from
the property (*), we will prove that H admits a qc extension across K¢ which is a
conjugacy off intKy.



Definition 1. (1) For every n > 0, we call each component of f~™"(V) a puzzle
piece of depth n for f. Similarly, we call each component of f*”(\?) a puzzle piece
of depth n for f Denote by depth(P) the depth of a puzzle piece P.

We list below three basic properties of the puzzle pieces.

(a) Every puzzle piece is a quasi-disk and there are finitely many puzzle pieces
of the same depth.

(b) Given two puzzle pieces P and Q with depth(P) > depth(Q), either P CC Q
or PN @ = 0.

(c) For x € Ky, for every n > 0, there is a unique puzzle piece of depth n
containing x. Denote the piece by P,(x). Then Pni1(z) CC Py(z) and Np>oPp(x)
is exactly the component of Ky containing x.

(2) Suppose X C V is a finite union of puzzle pieces (not necessarily of the same
depth). We say X is nice if for any z € 0X and anyn > 1, f"(2) ¢ X as long as
f"(z) is defined, that is, for any component P of X, for any n > 1, f™*(P) is not
strictly contained in X. For example, if X has a unique component, obviously it is
a nice set.

(8) Let A be an open set and z € A. Denote the component of A containing z
by Comp,(A).

Given an open set X consisting of finitely many puzzle pieces, let
DX)={2€V |3k >0,f"z) € X} =Upsof "(X).

Forz € D(X)\X, let k(z) be the minimal positive integer such that f**)(z) € X.
Set
£:(X) 1= Comp, (7 (Comp pie) ) (X))).

Obviously, () (L.(X)) = Compfk(z)(z) (X).

Lemma 3.1. Suppose X is a finite union of puzzle pieces. The following statements
hold.

(1) For any z € D(X)\X, L.(X), f(L(X)), -, fFO-YL(X)) are pairwise
disjoint.

(2) Suppose X is nice and z € D(X)\X. Then for all0 <i < k(z), fH{(L.(X))N
X = 0. In particular, if X D Crit(f), then L,(X) is conformally mapped onto a
component of X by the iterate of f**).

Proof. (1) Assume there exist 0 < i < j < k(2) with fH(L£,(X)) N f7(L.(X)) # 0.
Then fi(L£.(X)) CC f/(L£.(X)) and

FHOTI(FLX))) cc fFETI((L.(X))) = fHELX)) = Comp piey (X))

So fR=)=i+i(2) € X. But 0 < k(2) — j + i < k(z). This is a contradiction with the
minimality of k(z).

(2) Assume there is some 0 < iy < k(2) with f(£,(X))N X # 0. We can show
that f(L£,(X))NX CC f(L,(X)). In fact, when iy # 0, this is due to the mini-
mality of k(z); when ig = 0, it is because z ¢ X. Let P be a component of X with
P CC f0(£.(X)). So fHE-i0(P) cC fHA0(fio(£.(X))) = Comp ey (X)- Tt
contradicts the condition that X is nice. O

The corollary below follows directly from the above lemma.



Corollary 3.2. Suppose X is a finite union of puzzle pieces. The following state-
ments hold.

(i) For any z € D(X)\X, {£.(X), f(L.(X)),---, fFE1(L (X))} meets every
critical point at most once and

deg(fk(z) Ly (X) — Compfk(z)(z) (X)) < ( max degc(f))#Crit(f)
ceCrit(f)

(ii) Suppose X is nice and z € D(X)\X. Then L,(X) = L,(X) for all w €
L.(X) and Ly(X)NLLUX) =0 for all w' & L,(X).
(iii) Suppose X is nice and z € D(X)\X. Then for all0 < i < k(z), f{(L.(X)) =
L i (X).
fi(2)

Let K be a critical component of Ky and c1,¢2,-- -, ¢ be all the critical points
on K. Then P,(c1) = P,(c2) = -+ = P,(¢;) and

deg(f’Pn(cl)) = (degcl (f) - 1) +oee (degcl(f) - 1) +1

for all n > 0. We can view K as a component containing one critical point of degree
deg(f|p,(c;))- Hence in the following, we assume that each V-component contains
at most one critical point.

Now we will combine the property (x) and the Spreading Principle appeared in
[KSS] to prove Theorem 2.1.

Proof of Theorem 2.1. First fix n > 1. We shall repeat the proof of the Spreading
Principle in [KSS] to get a qc map H, from V onto V.

Set Wr, := U.ecrit(f) @n(c). Then by Lemma 3.1 (2), each component of D(Wy,)
is mapped conformally onto a component of W,, by some iterate of f.

For every puzzle piece P, we can choose an arbitrary qc map ¢p : P — P with
oplop = Hlgp since H is a qc map from a neighborhood of 9P to a neighborhood
of AP and OP,dP are quasi-circles (see e.g. [CT], Lemma C.1). Note that by the
definition of W,,, there are finitely many critical puzzle pieces not contained in W,.
So we can take C/ to be an upper bound for the maximal dilatation of all the qc
maps ¢p, where P runs over all puzzle pieces of depth 0 and all critical puzzle pieces
not contained in W,,.

Given a puzzle piece P, let 0 < k < depth(P) be the minimal nonnegative
integer such that f*(P) is a critical puzzle piece or has depth 0. Set 7(P) = f*(P).
Then f* : P — 7(P) is a conformal map and so is f¥ : P — 7(P), where P is
the puzzle piece bounded by H(AP) for f and 7(P) = f*(P). Given a qc map
q:7(P)— T(P), we can lift it through the maps f* and f*, that is, there is a qc
map p : P — P such that fk op = qo f*. Notice that the maps p and ¢ have the
same maximal dilatation, and if q|s,(p) = H|s-(p), then plop = H|sp.

Let Yy = V denote the union of all the puzzle pieces of depth 0. Set Xy = 0.
For j > 0, we inductively define X1 to be the union of puzzle pieces of depth j +1
such that each of these pieces is contained in Y; and is a component of D(W,,); set
Yiy1 = (Y; N f~UFD(V)\ X;11. We have the following relations: for any j > 0,

Yj = (\fU (V) U X UV, Vi CCYj, Xpn X =0 for any j' # j .

Given any component @ of Yjii, we claim that 7(Q) is either one of the finitely
many critical puzzle pieces not contained in W,,, or one of the finitely many puzzle
pieces of depth 0. In fact, for such @, either @ N D(W,,) = 0 or Q N D(W,,) # 0.
In the former case, since Crit(f) C W,, € D(W,,), Q is mapped conformally onto a



puzzle piece of depth 0 by the iterate of f4Pth(@) So 7(Q) is a puzzle piece of depth
0. In the latter case, if @ N D(W,,) CC D(W,,), then @ is compactly contained in
a component of D(W,,), denoted by @', and Q" CC X/ for some j' < j+ 1. But
QcCcCcY;ccY1cC--CcCYyand X;NY; =0, X;_1NY;_1 =0, , XoNYy = 0.
This is a contradiction. Hence @ N D(W,) CC Q. If there is a critical point
c € QN D(W,), then the component of W,, containing ¢ is compactly contained in
Q and 7(Q) = Q. Otherwise, 7(Q) must be a critical puzzle piece not contained in
Wh.
Define H® = ¢p on each component P of Y. For each j > 0, assuming that
HU) is defined, we define HUTY as follows:

HU) on V\Y;
Uty ) H on Y;\f~UD(V)
the univalent pullback of ¢ on each component of X, 4

the univalent pullback of ¢, ) on each component @ of Yj1,

where the map ¢ is the qc-extension obtained by the assumption (k).

Set C,, = max{Cp,C’,,C}. The {HW};5q is a sequence of Cp,-qc maps. Hence
it is precompact in the uniform topology.

By definition, H() = HUTD outside Y;. Thus, the sequence {H()} converges
pointwise outside

(VY = {z € Ky [ f(2) ¢ W, k> 0}

This set is a hyperbolic subset, on which f is uniformly expanding, and hence has
zero Lebesgue measure, in particular no interior. So any two limit maps of the
sequence {H (3)}]20 coincide on a dense open set of V, therefore coincides on V to
a unique limit map. Denote this map by H,. It is Cy-qc.

By construction, H,, coincides with H on V\((L]; X;) U (N;Y;)) is therefore

Co-qc there; and is C-qc on L]j X;. It follows that the maximal dilatation of H,,
is bounded by max{Cy, C’} except possibly on the set ; Yj. But this set has zero

Lebesgue measure. It follows that the maximal dilatation of H,, is max{Co,é'},
which is independent of n.

The sequence H, : V — V has a subsequence converging uniformly to a limit
qc map H' : V — V, with H’|V\Kf = H. Therefore H' is a qc extension of H. On
the other hand, Ho f = fo H on U\K;. So H' o f = f o H' holds on U\intK
by continuity. Therefore H' is a qc-conjugacy off intKy. This ends the proof of
Theorem 2.1. O

4 Proof of Theorem 2.2

In this section let f: U — V be a map in the set-up. Let ¢ > 1 denote the number
of components of V. Enumerate the V-components by V1, Va,---, V.

Lemma 4.1. Let W be an open round disk centered at 0 with radius > 1 containing
V. The map f:U — V extends to a map F on V so that

—on each component V; of V, the restriction Fly, : Vi — W s a quasi-reqular
branched covering;

~every component of U is a component of F~1(V);

~the restriction F on F~1(V) is holomorphic.



Proof. Part I. Fix any component V; of V such that V; N U # (). We will extend
flv;nu to a map F on V; with the required properties. It will be done in three steps.
Refer to Figure 1 for the construction of F' on V;.

Figure 1 The construction of F' on V;. In this figure, ¢ = 2,7 = 1.

Step 1. The first step is to construct a Blaschke product G : D — D of degree
d;, where ID denotes the unit disk and d; is determined below.
For every component V; of V, we define

¢ij = #{U a component of U | U C V;, f(U) =V;}

Set ¢; = max; g;;. Then ¢; > 1 and

#{components of UNV;} = Z qij <q-¢ -
J

We construct a Blaschke product G : D — D, as well as a set D which is the
union of ¢ Jordan domains in D with pairwise disjoint closures, as follows:

e If V; does not contain critical points of f, then set G(z) = 2%, and choose D
to be a collection of ¢ Jordan domains compactly contained in D\{0} with pairwise
disjoint closures. Set d; = ¢;. Note that each component of D has exactly g¢;
preimages. So

#{components of G (D)} =¢q- ¢
> #{components of UNV;} .

e Otherwise, by assumption in the set-up, the set Crit(f) intersects exactly one
component U of UNV,. Set d; = ¢ + deg fl[y — 1. Choose G so that it has
degree d;, and has two distinct critical points u; and ug such that deg, (G) = g;,
deg,, (G) = deg(f|v) and G(u1) # G(uz2).? Set v; = G(u;), i = 1,2. Now choose D

2One way to construct such a map G is as follows: Consider the map z — 2% together with a preimage
x €]0,1] of 1/2. Cut D along [z, 1], glue in deg(f|y) consecutive sectors to define a new space D . Define



to be a collection of ¢ Jordan domains compactly contained in D\{v; } with pairwise
disjoint closures and with vy € D. Note that the preimage of any D-component
not containing ve has d; components, whereas the preimage of the D-component
containing vy has d; — deg(f|y) + 1 = ¢; components. So

#{components of G™1(D)} = (¢ — 1)d; + ¢
=(q—1)(gi+degflv — 1)+ ¢
=q-qi+(qg—1)(deg flo — 1)
>q-qi
> #{components of UNV;} .

In both cases G : D\G~}(D) — D\D is a proper map with a unique critical
point.

Step 2. Make U,V ’thick’.

In W, take ¢ Jordan domains with smooth boundaries ‘7}, j=1,---,q, such
that each V is compactly contained in W, V; C V for each j =1,--- ,¢q, and all of
the V have pa1rw1se disjoint closures. Denote V= U V]

In V;, take U to be a union of #{components of G L(D)} (which is greater than
the number of U-components in V;) Jordan domains with smooth boundaries with
the following properties:
~Uis compactly contained in V;;

- (UNYV,) is compactly contained in U;
— each component of U contains at most one component of (U N V;);
— the components of U have pairwise disjoint closures.

There exists a qc map ¥y : W — D such that Wy(V) = D.

Let now U be any component of U. There is a unique component Uof U
containing U. Also f(U) =V, C V for some j, and \IJQ(V) is a component, denoted
by D(U), of D. See the followmg dlagram.

UcU GY(D(U))
L G
V,cV =% D)

There is a qc map ¥y : V — D so that U4 (U) = G~1(D) and, for any component
U of V; N U, the set ¥, (U) is a component of G~ YD(U)). Then we can define a
quasiregular branched covering F : V; \U — W\V of degree d; to be

\Pgl o G|E\G—1(D) oy .

Step 3. Glue. R
Define at first F' = f on V; N U. For each component E of U not containing
a component of U, take a Jordan domain F with smooth boundary compactly

1
a new map that maps each sector homeomorphically onto D\[ﬁ’ 1], and agrees with z — 2% elsewhere.

This gives a branched covering G from D onto D with two critical points and two critical values. Use G
to pull back the standard complex structure of D turn Din a Riemann surface. Uniformize D by a map
¢:D — D. Then G = G o ¢ suites what we need.



contained in E. Then F maps OF homeomorphically onto 8‘//} for some j. Define
F to be a conformal map from E onto V; by Riemann Mapping Theorem and F
extends homeomorphically from E onto V ;.

Notice that the map F' is defined everywhere except on a disjoint union of annular
domains, one in each component of U. Furthermore F maps the two boundary
components of each such annular domain onto the boundary of 17]\‘/] for some j,
and is a covering of the same degree on each boundary component.

This shows that F' admits an extension as a covering of these annular domains.
As all boundary curves are smooth and F' is quasi-regular outside the annular do-
mains, the extension can be made quasi-regular as well.

Part II. We may now extend F' to every V component intersecting U following
the same procedure as shown in Part I. Assume that V; is a V-component disjoint
from U. We define F' : V; — W to be a conformal homeomorphism and we set
d; = 1. We obtain a quasi-regular map F': V — W as an extension of f: U — V.
By construction, F' is holomorphic on F~1(V). O

Lemma 4.2. There is an integer d so that for the map g : z — 2%, the map
F has an extension on W\V so that F : W\V — g(W)\W s a quasi-reqular
branched covering, coincides with g on OW and is continuous on W. In particular

F~YW) =V and F is holomorphic on F~2(W) = F~1(V).

Proof. Set d = Y"1, d;, where the d;’s are defined in the proof of Lemma 4.1. See
Figure 2 for the proof of this lemma.

9(W)

Figure 2

The domain V is defined as in the proof of the previous lemma. Now take a
Jordan domain W with smooth boundary such that W cC W cC g(W).
Let
P(z) = (z = a1)™ (2 = ap)® - (2 — ag)™,

where a1, az,- -+, a4 € C are distinct points.



Note that for each 1 < i < ¢, we have P(a;) = 0, and qa; is a critical point of P
whenever d; > 1.

Take 7 > 0 small enough and R > 0 large enough such that {0 < |z| < r}U{R <
z| < 0o} contains no critical value of P. Obviously P: P~1({r < |z| < R}) — {r <
|z| < R} is a holomorphic proper map of degree d.

Note that P~1({|z| < R} is a closed Jordan domain, and the set P~1({|z| < r})
consists of ¢ disjoint closed Jordan domains, each containing exactly one of the a;’s
in the interior.

There exist qc maps ®; : W — P~ L1({|z| < R}), @3 : (W) — {|2|] < R} such
that for i = 1,--- ,q, the set ®;(V;) is equal to the component of P~1({|z| < r})
containing a;, and <I>2(€\V) = {]z| < r}, and that

P(<I>1(z)) = @2(9(2)), z € OW.

Set F = ®;' 0 Po®, on W\V.

Fix any ¢ = 1,---,¢q. Both maps F : oV, — OW and F : oV; — OW are
coverings of degree d;. We may thus extend as before F' to a qusiregular covering
map from V;\V; onto W\W.

This ends the construction of F. O

Proof of Theorem 2.2. Extend the map F in Lemma 4.2 to C by setting F = g on
C\W.

This F is quasi-regular, and is holomorphic on (C\W)UF~2(W). So every orbit
passes at most twice the region W\F~2(W). By Surgery Principle (see Page 130
Lemma 15 in [Ah]), the map F' is qc-conjugate to a polynomial h. The set Kg can
be defined as for h and the two dynamical systems F|k, and h|k, are topologically
conjugate.

Theorem 2.2 holds for the pair (h,Kj) (in place of (f,Ky)) by Sullivan’s no-
wandering-domain theorem. It follows that the result also holds for (F,Kp). But
K is an F-invariant subset of Ky with every component of Ky being a component
of Kp, and with F|k, = f|k,. So the theorem holds for the pair (f,Kjy). O

5 Proof of Theorem 2.3 (a)

We just repeat the standard argument (see for example Appendix in [Mc2]).
Assume that f, f are c-equivalent. Set U = Uy, and U,, = f~"(V). The same

objects gain a tilde for f. For t € 0,1], let hy : V — V be an isotopy path linking

h() to hl. s
Then there is a unique continuous extension (¢, z) +— h(t, 2), [0, 00[xV — V such

that

0) each h; : z — h(t, z) is a homeomorphism,

1) helovup = holovup, Vt € [0, +o0],

2) forn > 1,t > n and = € V\U,, we have hy(z) = h,(x),

3) for t € [0,1] the following diagram commutes:

10
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—5

U, U,
Lf Lf
u, Mo,
Lf Lf
AV v

Set then Q@ = |J,>; V\U, = V\Ky, and Q= V\KJ; Then there is a qc
map H : Q — Q such that H(z) = hy(z) for n > 1 and = € V\U,, and that
Ho flonu = f o H|gng, i-e. H realizes a qc-conjugacy from f to f off K;. The qc
constant of H is equal to Cp, the qc constant of h; on V\U.

6 Proof of Theorem 2.3 (b)

Main Proposition. Let f be a map as in the set-up. Assume that for every
critical component K ¢(c), ¢ € Crit(f), satisfying that f'(Ky(c)) is a critical periodic
component of Ky for some | > 1, there are a constant M. and an integer N. > 0
such that for each m > N., the map H]apn(c) admits an M.-qc extension inside
P, (c), where P,(c) is a puzzle piece of depth n containing c. Then f satisfies the
property () stated in Theorem 2.1.

We will postpone the proof of Main Proposition in the next section. Here we
combine this proposition and Theorem 2.1 to give a proof of Theorem 2.3 (b).

Proof of Theorem 2.3 (b). Combining Main Proposition and Theorem 2.1, we have
a qc conjugacy off Ky admits a qc extension across Ky which is a conjugacy off
intK f- ]

7 Proof of Main Proposition

In this section, we always assume f is a map in the set-up with the assumption that
each V-component contains at most one critical point.

7.1 Reduction of Main Proposition

Definition 2. (1) For z,y € Ky, we say that the forward orbit of x combinato-
rially accumulates to y, written as x — vy, if for any n > 0, there is j > 1 such
that fi(z) € Py(y).

Clearly, if t - y and y — z, then x — z.

Let Forw(z) = {y € Ky |z — y} for v € Ky.

(2) Define an equivalence relation in Crit(f) as follows:

for c1,c9 € Crit(f),c1 ~ cg <= c1 = ca, or ¢ — c2 and ca — cy.

Let [c] denote the equivalence class containing ¢ for ¢ € Crit(f).

It is clear that [c] = {c} if ¢ /> c.

11



(3) We say that [c1] accumulates to [ca], written as [c1] — [c2], if
3¢} € [e1],3 &y € [ea] such that ¢} — .

It is easy to check that if [c1] — [ca], then
V € e1],3 & € [ea] such that ] — cf.

It follows from this property that if [c1] — [ca], [ca] — [c3], then [c1] — [es].
(4) Define D(f) := Crit(f)/ ~. Define a partial order < in D(f):

[c1] < [e2] = [e1] = [ea] or [eo] — [en].

We can decompose the quotient D( f) as follows. Let Dy(f) be the set of elements
in D(f) which are minimal in the partial order <, that is, [¢] € Dy(f) if and only
if [¢] doesn’t accumulate to any element in D(f)\{[c]}. For every k > 0, assume
Di(f) is defined, then Dyy1(f) is defined to be the set of elements in D(f) which
are minimal in the set D(f) \ (Dr(f) U Di—1(f) U---UDy(f)) in the partial order
<.

For the construction above, we can prove the properties below.

Lemma 7.1. (P1) There is an integer M > 0 such that D(f) = |_|]k\/[:0 Dr(f).

(P2) For every k > 0, given [c1], [c2] € Dr(f),[c1] # [ca], we have [c1] £~ [c2] and
[ca] 7 [ea]-

(P3) Let [c1] € Ds(f), [c2] € Di(f) with s <t. Then [c1] / [ca).

(P4) For every k > 1, every [c] in Di(f) accumulates to some element in

Dy—1(f).

Proof. (P1) holds because D(f) is a finite set and D;(f) N D;(f) = 0 for i # j.

(P2) and (P3) follow directly from the minimal property of the elements in Dy( f)
for every 0 < k < M.

(P4) Let k = 1. If there is some element [c1] € D;i(f) such that it doesn’t
accumulate to any element in Dy(f), then combining with (P2) and (P3), we have
[c1] doesn’t accumulate to any element in D(f)\{[c1]}. Consequently, [c1] € Do(f).
But [¢1] € Di(f) and by (P1), Do(f) N D1(f) = 0. We get a contradiction. So any
element in D;(f) will accumulate to some element in Dy(f).

Now we suppose k > 2 and (P4) holds for Di(f),Da(f), -+ ,Dr—1(f). Assume
(P4) is not true for Dg(f), that is, there is some [cx] € Dk(f) such that [c;] doesn’t
accumulate to any element in Dy_1(f).

If [cx] doesn’t accumulate to any element in U?;[?Dj(f), then by (P2) and (P3),
we conclude that [cx] € Do(f) which contradicts the condition that [cx] € Di(f)
and the fact that Dy (f) N Dy(f) = 0 by (P1).

Let 0 < i < k — 2 be an integer satisfying that [c;x] won’t accumulate to any
element in Uf Zl+1D (f) and [cg] accumulates to some element in D;(f). Then [cx]
won’t accumulate to any element in Uj M 1D (/)\{[cr]} and hence [c] € Div1(f).
But notice that i + 1 < k — 1 and [cg] 6 Dr(f). A contradiction. O

Combining with the transitive property stated in Definition 2 (3), we can con-
secutively apply (P3) above and prove the following.

Corollary 7.2. For every k > 1, every [c] in Di(f) accumulates to some element

We will deduce Main Proposition from the following result.
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Proposition 7.3. Assume that for every critical component K¢(c), ¢ € Crit(f),
satisfying that fY(Ks(c)) is a periodic critical component of K¢ for some I > 1,
there are a constant M. and an integer N. > 0 such that for each n > N., the map
Hlyp, () admits an M.-qc extension inside Py(c), where Py(c) is a puzzle piece of
depth n containing c. Then for every ¢ € [co] and every integer n > 1, there is a
puzzle piece K, (c) containing ¢ with the following properties.

(i) For every c € [co)], the pieces {Ky(c)}n>1 s a nested sequence.

(it) For each n 2 1, cjq Kn(c) is a nice set.

(ii) There is a constant M = M ([co)), such that for eachn > 1 and each ¢ € [cq),
Hlpk, () admits an M-qc extension inside K,(c).

We will postpone the proof of Proposition 7.3 to the next subsection. Here
we prove the following lemma and then use it and Proposition 7.3 to prove Main
Proposition.

Lemma 7.4. Let [c1] and [c2] be two distinct equivalence classes. Suppose that for
each 1 = 1,2, W; is a nice set consisting of finitely many puzzle pieces such that
each piece contains a point in [¢;].
(1) If [c1] # [ca] and [c2] /> [c1], then W1 UWs is a nice set containing [c1]U[ca].
(2) Suppose [ca] 4 [c1] and

min depth(Py) > max depth(P),
P> a comp. of Wa P1 a comp. of W1

i.e., the minimal depth of the components of W is not less than the maximal depth
of those of W1. Then W1 U Wy is nice.

Before proving this lemma, we need to give an assumption for simplicity. Notice
that given two critical points ¢,d, if ¢ 4 ¢, then there is some integer n(c, )
depending on ¢ and ¢’ such that for all 5 > 1, for all n > n(c,c), f/(c) & P.(c).
Since #Crit(f) < oo, we can take ng = max{n(c, ) | ¢,c € Crit(f)}. Without loss
of generality, we may assume that ng = 0, that is to say we assume that

(xx) for any two critical points ¢, c, for all j > 1, f/(c) & Py(c') if ¢ 4 €.
In the following paragraphs until the end of this article, we always assume ()

holds.

Proof of Lemma 7.4. (1) According to Definition 2 (3) and the assumption (xx), we
know that

[c1] /5 [e2] <= V) € [a1],Veh € [ea], ¢1 7 65
— VY, € [c1],Vd, € [ea],Vn > 0,Y] >0, fI(c}) & Pulch)

<= VY a puzzle piece P > ¢},¥n > 0,Vj > 0, f7(P) N Py(ch) = 0.

In particular, for any ¢} € [c1], any ¢ € [ca], for the component P; of W; containing
¢} and the component P, of Wy containing cj, for any j > 0, f/(P1) N Py = (. Tt is
equivalent to say that for any component P of Wy, for any j > 0, f/(P) N Wy = (.
Similarly, from the condition that [c2] # [c1], we can conclude that for any
component Q of Wy, for any j > 0, f7(Q) N Wy = 0. Hence W1 U W is a nice set.
(2) On one hand, from the proof of (1), we know that [co] /4 [c1] implies that
for any component Q of Wa, for any j > 0, f/(Q) N Wy = 0.
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On the other hand, for any component P of W1, for any j > 0, we have

depth(f(P) = depth(P) - j
< depth(P;) — j
- P acgl’lnap}.(of Wy P ( 1) J
< min depth(P)

P> a comp. of Wy

and then f7(P) can not be strictly contained in Ws.
Hence W7 U Wy is nice. ]

Now we can derive Main Proposition from Proposition 7.3.

Proof of Main Proposition. (i) follows immediately from Proposition 7.3 (i).

(ii) For every [¢] € D(f) and every ¢ € [¢], let {K,,(¢)}n>1 be the puzzle pieces
obtained in Proposition 7.3.

Given [co] € Di(f), 0 < k < M, let Ai([co]) = {lc] € Dr41(f) | [c] = [co]}-
Clearly, #Ag([co]) < o0.

Recall that D(f) = UM D;(f). For every [co] € Du(f), set Qn(c) = Kp(c) for
each ¢ € [co].

Now consider [co] € Dpr—1(f).
If Apr—1([co]) = 0, then set Q,(c) = Ky(c) for each ¢ € [co].
Otherwise, there exists a subsequence {l,,},>1 of {n} such that

min depth(K;, (¢')) > max  depth(Q,(c))

c’€leo] — [eAm-1([eo))
because min¢(q, depth(K,(c')) increasingly tends to the infinity as n — oc.

We repeat this process consecutively to Das—a(f), -+ ,Do(f) and then all @,(c)
are defined. Combining the properties (P2), (P3) stated in Lemma 7.1 and Lemma
7.4, we easily conclude that U.ccyit(s)@n(c) is a nice set for every n > 1.

(iii) Since #D(f) < oo, we can take the constant C' = max{M([c]) | [d] €
(/). =

7.2 Proof of Proposition 7.3

First, we need to introduce a classification of the set Crit(f) and several preliminary
results.

Definition 3. (i) Suppose ¢ — c. For ci,ca € [c], we say that P, 1 (c1) is a child of
Po(ca) if f*(Payi(cr)) = Pu(ca) and f*1: Puyr1(f(c1)) — Pu(ca) is conformal.
c is called persistently recurrent if for every n > 0, every ¢ € [¢|, P,(c) has
finitely many children. Otherwise, c is said to be reluctantly recurrent.
It is easy to check that if c is persistently recurrent, then so is every ¢ € [¢| and
this is also true for a reluctantly recurrent c.

(ii) Let
Crity(f) = {ce Crit(f)|c s for any ¢ € Crit(f)},
Crite(f) = {ce Crit(f) | c+ ¢ and 3 ¢ € Crit(f) such that ¢ — '},
Crit,(f) = {ce€ Crit(f) | ¢ — ¢ and c is reluctantly recurrent},
Crity(f) = {ce€ Crit(f) | c — ¢ and c is persistently recurrent}.

Then Crit(f) = Crit, (f)UCrite(f)UCrit, (f)UCrity(f) is a classification of Crit(f).



In this section, we will use sometimes the combinatorial tool — the tableau defined
by Branner-Hubbard in [BH]. The reader can also refer to [QY] and [PQRTY] for
the definition of the tableau.

For x € K¢, the tableau 7 (x) is the graph embedded in {(u,v) | v € R™,v € R}
with the axis of u pointing upwards and the axis of v pointing rightwards (this is
the standard R? with reversed orientation), with vertices indexed by —N x N, where
N ={0,1,---}, with the vertex at (—m,0) being P,,(x), the puzzle piece of depth
m containing z, and with f7(P,,(z)) occupying the (—m + j,j)th entry of 7 (x).
The vertex at (—m + j, j) is called critical if f7(P,,(x)) contains a critical point. If
f7(Pn(z)) contains some y € K¢, we call the vertex at (—m + 7, ) is a y-vertex.

All tableau satisfy the following three basic rules (see [BH], [QY], [PQRTY]).

(Rule 1). In 7T (x) for x € Ky, if the vertex at (—m,n) is a y-vertex, then so is
the vertex at (—i,n) for every 0 < i < m.

(Rule 2). In 7 (x) for x € Ky, if the vertex at (—m,n) is a y-vertex, then for
every 0 < i < m, the vertex at (—m +4,n + 1) is a vertex being P_,,.;(f*(y)).

(Rule 3) (See Figure 3). Given z1,z2 € K. Suppose there exist integers mgy >
1,n9 > 0,49 > 1,n1 > 1 and critical points ¢y, co with the following properties.

(i) In 7 (21), the vertex at (—(mo+1),np) is a c;-vertex and (—(mo+1—1ig), no+
i0) is a cg-vertex.

(ii) In 7 (x2), the vertex at (—mg, n1) is a c¢i-vertex and (—(mo + 1),n1) is not
critical.

If in 7 (1), for every 0 < i < ig, the vertex at (—(mo — i), ng +¢) is not critical,
then in 7 (x2), the vertex at (—(mo + 1 —ig),n1 + io) is not critical.

T(x1) : no no + io T (x2) : ni ni + io

—(mo — o) —(mo — io)
—(mo + 1 — o) —(mo + 1 —o)
—myo —myo
—(mo+1) fF------- c1 —(mo +1)

Figure 3

Recall that in subsection 7.1, we make the assumption (x*). Here, we translate
that assumption in the language of the tableau. It is equivalent to assume that for
¢, € Crit(f), ¢-vertex appears in 7 (c) iff ¢ € Forw(c).

Lemma 7.5. 1. Let K¢(c) be a periodic component of Ky with period p. Then the
following properties hold.
(1) FK/() € (K (), K (€))7 (K (6))}, Ve € Forw(e), i > 0.
(2) Forw(c) = [¢].
(3) c € Crity(f).
2. Let c € Critp(f) with K¢(c) non-periodic. Then the following properties hold.
(1) Forw(c) = [¢].
(2) For every ¢’ € [c], ¢ € Crity(f) with K¢(c') non-periodic.
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Proof. 1. Notice that K¢ (c) is periodic iff there is a column in 7 (¢)\{0-th column}
such that every vertex on that column is a c-vertex. According to this and using
the tableau rules, it is easy to check that the statements in Point 1 are true.

2. (1) This property is the same as Lemma 1 in [QY]. For self-containedness,
we introduce the proof here.

Assume there is some ¢ € Crit(f) with ¢ — ¢’ but ¢’ /4 ¢. In the following, all
the vertices we discuss are in 7 (¢). One may refer to Figure 4 for the proof.

T(c): 0 m; ni +m; n; +m; +t;

c2(1) € [d]

ST EETEE R ¢ ¢

—(ni ;) f--mmmfm -

Figure 4

If there exists a column such that every vertex on it is a ¢’-vertex, then ¢ — ¢
because ¢ — ¢. Hence there are infinitely many ¢’-vertices {(—n;, m;)};>1 such that
(—(n; + 1), m;) is not critical and lim;_,o n; = oco.

By the tableau rule (Rule 2) and the assumption (xx), we can see that there
are no vertices being critical points in [¢] on the diagonal starting from the vertex
(—n;,m;) and ending at the O-th row. Since ¢ — ¢, from the vertex (0,n; + m;),
one can march horizontally ¢; > 1 steps to the right until the first hit of some
co(i)-vertex in [¢]. Then by (Rule 1), there are no vertices being critical points in
[c] on the diagonal from the vertex (—t;,n; + m;) to the vertex (0,n; + m; + t;).
Therefore, there are no vertices being critical points in [c] on the diagonal from the
vertex (—(n; +t;), m;) to the vertex (0,n; + m; + t;), denote this diagonal by 1.

If there exists a point ¢ € Forw(c)\[c] on the diagonal I, then by the assumption
(xx), every vertex, particularly the end vertex (0,n; + m; + t;) of I, can’t be a
¢-vertex for any ¢ € [¢]. This contradicts the choice that the vertex (0, n; +m; + t;)
is a co(i)-vertex for cy(i) € [c].

Consequently, there are no critical points in Forw(c) on the diagonal I. Com-
bining with the assumption (x%), we know that there are no critical points on the
diagonal I.

Follow the diagonal from the vertex (—(n; + t;),m;) left downwards until we
reach a critical vertex Wi (7) (such Wi (i) exists since the 0-th column vertex on that
diagonal is critical). Let ¢1(7) be the critical point in Wi (7). Then ¢1(7) € [¢] follows
from the fact that (0,n; +m;+t;) is a ca(i)-vertex for ca(i) € [¢] and the assumption

()
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Therefore, W1 (i) is a child of Py(c2(7)). Notice that the depth of W (7) is greater
than n;. As c2(i) lives in the finite set [¢] and n; — oo when i — 0o, some point in
[c] must have infinitely many children. This is a contradiction with the condition
that ¢ € Crit,(f).

(2) follows directly from Point 1 (1) and Point 1 (2). O

Set
Critper(f) = {c € Crit,(f) | K¢(c) is periodic}.

Lemma 7.6. (i) If ¢ € Crity(f) U Crit,(f), then [c] € Do(f); if c € Crite(f), then
] & Do(f).

(ii) For every co € Crit(f), one of the following cases will occur.
Case 1. Forw(co) N (Crity(f) U Crit,(f)) # 0.
Case 2. Forw(cp) C Critp(f).
Case 3. For any ¢ € Forw(cp), either ¢ € Crit,(f) or, ¢ € Crite(f) and Forw(c)
contains a critical point in Crity(f), and the latter ¢ always exists.

Proof. (i) By the definitions of Crit,(f) and Crite(f), we easily see that if ¢ €
Crity(f), [¢] = {c} € Do(f) and if ¢ € Crite(f), [c] = {c} & Do(f). If ¢ € Crity(f),
then by the previous lemma, we know that Forw(c) = [c] and then [c] € Dy(f).

(ii) Suppose that Case 1 and Case 2 do not happen. Let ¢ € Forw(cp) with
¢ ¢ Critp(f). Notice that Crit(f) = Crity(f) U Crit.(f) U Critp(f) U Crite(f). So
¢ € Crite(f) and then by (i), [c] € Di(f) for some k > 1. It follows from Corollary
7.2 that [c] = {c} accumulates to some element [¢] € Dy(f).

Since Case 1 does not happen, we conclude that for every [¢] € Do(f) with [co] —
[¢], every point in [¢] belongs to Crit,(f). Note that [co] — [¢] — [¢] and [¢] € Dy(f).
Hence every point in [¢] belongs to Crit,(f), particularly, é € Crit,(f). O

Recall that in section 3, for an open set X consisting of finitely many puzzle
pieces, we define the set D(X) and £,(X) for z € D(X)\X. The following is a
property about £,(X) when X consists of a single piece.

Lemma 7.7. Let P be a puzzle piece and the set {x1, -+ ,xm} C V be a finite set
of points with each x; € D(P)\P for 1 < i < m. Let f*¥(L,,(P)) = P for some
k; > 1. Then

(1) for every 1 <i <m, every 0 < j < k;, either

fH(Le,(P)) = Ly, (P) for some 1 < s <m,
or 4
J7(Ly,(P)N Ly, (P)=0 for all1 <t <m;
(2) U™ Ly, (P)UP is a nice set.
Proof. (1) (by contradiction). Assume that there are integers 1 < igp < m, 0 < jp <
ki,, and there is some Ly, (P) for 1 < i3 < m, such that
F(Lasy (P) # Lay, (P) and f7(Ly, (P)) N Ly, (P) # 0.

Then either fjo(ﬁxio (P)) CC Ly, (P) or fo (La;, (P)) DD Ly, (P).

We may assume f70 (Lg;, (P)) CC Ly, (P). The proof of the other case is similar
to this case.

On one hand , since fFio=%0 . fjo(ﬁziO(P)) — P and f*i . Ly, (P) — P, we
have kio —Jo > kil.
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On the other hand, we know that k;, — jo is the first landing time of the points in
flo (Ls;, (P)) to P because ffo (Lay, (P)) = Efjo(xio)(P) by Corollary 3.2 (3), while
from the assumption that f°(Ls, (P)) CC Ly, (P), we have k;, is also the first
landing time of the points in fjo(ﬁ;vi0 (P)) to P. So ki, — jo = ki,. A contradiction.

(2) For any ¢ > 1 (as long as depth(f?(P)) > 0),

depth(f9(P)) < depth(P) < depth(L,(P))

for every 1 < s < m. So f?(P) can not be strictly contained in U]" L, (P) for all
q=1

Fix 1 <i <m. For 1 < j < k;, by (1), we know that f7(L,,(P)) is not strictly
contained in U”,L,, (P). Since P is a single puzzle piece and then it is nice, by
Lemma 3.1 (2), we have f/(L,,(P))N P = 0. When j > k;, notice that as long as
depth(f7(Ly,(P))) > 0, we have

depth(f1(L,,(P))) < depth(P) < depth(Ly, (P))

for every 1 < s < m which implies that f7(L,,(P)) is not strictly contained in
U L (PYU P, .

Lemma 7.8. Let Q,Q’, P, P’ be puzzle pieces with the following properties.
(a) @ CC Q, co € P CC P forcy € Crit(f).
(b) There is an integer | > 1 such that f/(Q) = P, f{(Q') = P'.
(¢) (P'\P) N (UeeRorw(co) Un>0 {f"(c)}) = 0.
Then for all 0 <i <1, (f*(Q)\f'(Q)) NForw(co) = 0.

Proof. If fI=1(Q")\ f'~1(Q) contains some ¢ € Forw(cp), notice that f(f'=1(Q)) = P
and deg(f : f=YQ") — P') = deg.(f), then f(c) € P'\P. It contradicts the
condition (c).

For the case [ = 1, the lemma holds.

Now assume that [ > 2.

We first prove that (f=2(Q")\f""2(Q)) NForw(co) = 0.

I (F1-1(@)\ (@) N (Crit(f)\Forw (cn)) = 0, then

o fmHQNTHQ) — PI\P.

If F772(Q")\f2(Q) contains some ¢’ € Forw(cp), notice that f(f72(Q)) = f1(Q)
and deg(f : f12(Q") — f(Q) = degu(f), 50 (') € FH Q)N f1(Q) and then
f2(c') € P'\P which contradicts the condition (c). Hence under the assumption
that (f=1(Q)\f=HQ)) N (Crit(f)\Forw(cy)) = 0, we come to the conclusion that
(F2(Q@\2(Q)) N Forw(co) = 0.

Otherwise, fI=1(Q")\f'""1(Q) contains some c; € Crit(f)\Forw(cg). Since ¢1 ¢
Forw(cp), c1 & Forw(c) for any ¢ € Forw(cp). By the assumption (*x*), we conclude
that (f~*(Q")\f""*(Q)) N Forw(co) = 0.

Continue the similar argument as above, we could prove the lemma for all 0 <
1 <l—3. O

The analytic method we will use to prove Proposition 7.3 is the following lemma
on covering maps of the unit disk.

Lemma 7.9. (see [AKLS] Lemma 3.2)
For every integer d > 2 and every 0 < p < r < 1 there exists Ly = Lo(p,r,d)
with the following property. Let g,g : (D,0) — (D,0) be holomorphic proper maps
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of degree at most d, with critical values contained in D,. Let n,n" : T — T be
two homeomorphisms satisfying g on' = no g, where T denotes the unit circle.
Assume that n admits an L-qc extension & : D — D which is the identity on D,.
Then n' admits an L'-qc extension & : D — D which is the identity on D,, where
L' = max{L, Lo}.

In the following, we will discuss Critper(f), Crity(f), Crity(f) U Crit.(f) and
Crite(f) successively.

For any ¢ € Critpe(f), by the condition of Proposition 7.3, there are a constant
M, and an integer N, such that the map H extends to an M_.-qc extension inside
P,(c) for all n > N,.

The following lemma can be easily proved by Lemma 7.7.

Lemma 7.10. Given a point co € Critper(f) and set N := max{N,c € [co]}. Let
K, (co) = Pyyn(co) and for every c € [co]\{co}, let Kn(c) = Ppynti(c), where I,
is the smallest positive integer such that f'«(K(c)) = K¢(co). Then Uceleo) Kn(c)
is nice for every n > 1.

Set
b= #Crit(f) and 6 = max deg.(f) (2)
ceCrit(f)

and oty ([eo]) = Upzg Urcieg {7(6)} for co € Crit(f)
The following theorem is proved in [PQRTY].

Theorem 7.11. Given a critical point c¢o € Crity(f)\Critper(f). There are two
constants S and Ag > 0, depending on b, § and i (see below), and a nested sequence
of critical puzzle pieces Kp(co) CC Kn—1(co), n > 1, with Ko(co) to be the critical
puzzle piece of depth 0, satisfying

(i) each K,(co), n > 1, is a pullback of K,_1(cy), that is fPr(K,(co)) =
K, _1(co) for some p, > 1, and deg(fP" : K, (co) — Kn—1(co)) < S,

(ii) each K,(co), n > 1, contains a sub-critical piece K, (co) such that

mod (K (co)\ Ky (co)) > Ag and (Kn(co)\Kn (co)) Norby([co]) = 0.
Here
i = min{mod(Py(co)\W) | W a component of U contained in Py(co)}. (3)

Lemma 7.12. Given a critical point c¢o € Crit,(f)\Critper(f). Let (Kn(co), K, (€0))n>1
be the sequence of pairs of critical puzzle pieces constructed in Theorem 7.11. For
¢ € [eo)\{co}, let Kp(c) := L(Kn(co)). Then

(1) for every c € [co] and every n > 1, Hl|pk, () admits a qc extension inside
K, (c) with the mazimal dilatation independent of n;

(2) for each n > 1, Uegieo Kn(c) is nice.

Proof. (1) We first prove that H|yg, (c,) admits an L'-qc extension inside Ky (co)
where L’ is independent of n. This part is similar to the proof of Proposition 3.1 in
[PT].

Since H preserves the degree information, the puzzle piece bounded by H (90K, (cp))
(resp. H(OK; (co))) is a critical piece for f, denote it by K, (é) (resp. H(OK;, (¢))),
¢o € Crit(f).

Notice that H]aKl(CO) has a qc extension on a neighborhood of 9Ki(cp). It
extends thus to an Li-qc map Kj(co) — K1(¢), for some Ly > 1 (see e.g. [CT],
Lemma C.1).



In the construction of the sequence in Theorem 7.11, the operators I', A, B are
used. As they can be read off from the dynamical degree on the boundary of the
puzzle pieces, and H preserves this degree information, Theorem 7.11 is valid for
the pair of sequences (K, (¢), K, (¢0))n>1 as well, with the same constant S, and

probably a different A as a lower bound for mod (K, (¢)\ Ky ().

Recall that for each i > 1, p; denotes the integer such that fPi(K;(co)) =
Ki-1(co). We have fPi(K;(¢o)) = Ki-1(¢o), and fP* : K;(co) — Ki-1(co) and
fPi: Ki(ép) — K;—1(¢p) are proper holomorphic maps of degree S.

Fix now n > 1.

Set v, = c¢g, and then, for i = n — 1,n — 2,---,1, set consecutively v; =
fpi+1+...+pn (CO)-

Since (K;(co)\K; (co)) Norby([co]) = 0, all the critical values of fPi+1 |k, . (co)s
as well as v;, are contained in K, (cg), 1 <i<n—1.

Let v : (Ki(co),vi) — (D,0) be a bi-holomorphic uniformization, i = 1,--- , n.
For ¢ = 2,---,n, let ¢ = ¥;—1 0 fPio @D;l. These maps fix the point 0, are
proper holomorphic maps of degree at most S, with the critical values contained in
Yie1 (K (c0))-

Let 9;(K; (cp)) = ;. Since mod(D \ ©;) = mod(K;(co))\K; (co)) > Ao > 0
and Q; > ¥;(v;) =0, 1 < i < n, these domains are contained in some disk Dy with
s =8(Ag) < 1. So the critical values of g; are contained in ;1 C Dy, 2 <1i < n.

The corresponding objects for f will be marked with tilde. The same assertions
hold for g;. Then all the maps ¢g; and g; satisfy the assumptions of Lemma 7.9, with
d < S, and p = max{s, 5}.

"Z’n - wn

(D,0) < (Kn(co);vn) (Kn(Co), D)  —  (D,0)
gn | L fe el ) L gn
0,00 “ (Kpoi(co)vn1)  (Kno1(@),on1) == (D,0)
gn-1 | | fpomt fror ] 1 Gn
g3 | L s frel s
D,0) <2 (Ksy(co), o) (Ka(Go),32) 2 (D,0)
g2 | L P 7l e
D,0) X (Ki(co),v1) (K@), 51) 2% (D,0)

Note that each of v;,1; extends to a homeomorphism from the closure of the
puzzle piece to D.

Let us consider homeomorphisms 7; : T — T given by 7; = ¢; o H lori(co) © V5 L
They are equivariant with respect to the g-actions, i.e., 7;,_1 0 g; = g; o ;.

Due to the qc extension of H |y, (), We know that 7, extends to an Li-qc map
D — D. Then 7 is a Lj-quasisymmetric map. Fix some r with p < r < 1. We
conclude that n; extends to an L-qc map & : D — D which is the identity on D,
where L depends on L1, p and r.

Let Lo = Lo(p,7,S) be as in Lemma 7.9, and let L' = max{L, Lo}. For i =
2,3, -+ ,n, apply consecutively Lemma 7.9 to the following left diagram (from below
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to top):

T o7 D,0) =% (D,0)
9n l l gn gn l l gn
T ™o D,0) =2 (D,0)
In—1 l :Lgn—l 7 we get In—1 l .lgn—l
T = T 0,0) = (D,0)
92 1 1 92 g ] | go
m
Tt D,0) <5 (D,0)
so that for ¢ = 2,...,n, the map 7; admits an L’-qc extension &; : D — I which is

the identity on ;.. The desired extension of H|y,, () inside Ky (co) is now obtained
by taking ¢! o &, 0 1.

Now we show that for ¢ € [co]\{co}, for each n > 1, H|yg, () admits an L'-qc
extension inside K, (c) with the constant L’ independent of n.

Fixn > 1.

Let fo(Ky(c)) = Ky(co). Since Ky, (co))\K,, (co) Norby([co]) = 0, all the critical
values of f|r () are contained in K (co).

Let op, : (Kp(co), f1(c)) — (D,0) and A, : (K, (c),c) — (D, 0) be bi-holomorphic
uniformizations. Set 7, = ,0fI" o\, 1. This map fixes the point 0, are proper holo-
morphic maps of degree at most 6°, with the critical values contained in o, (K (co)).

Since

mod(D \ ¢, (Ky (co))) = mod(K,,(co)\Krn (cg)) > Ao >0

and ¢, (f9(c)) = 0 belongs to ¢, (K, (co)), the set ¢, (K, (¢p)) is contained in the
disk Ds (here s is exactly the number defined for the case of ¢y in this proof). So
the critical values of 7, are contained in ¢, (K, (¢)) C Ds.

0,0) & (Ku(c).o) (Ba(@,0) = (D,0)
T | L f~qn ! ) L7
(D,0) = (Ku(co), f7(c))  (Ku(f), f™(@) - (D,0)

Let K, (¢), ¢ € Crit(f) be the puzzle piece bounded by H (9K, (c)). The corre-
sponding objects for f will be marked with tilde. The same assertions hold for 7.
Then all the maps 7, and 7, satisfy the assumptions of Lemma 7.9, with d < 6°,
and p = max{s, §}.

Note that each of v, @n, Ay, An extends to a homeomorphism from the closure
of the puzzle piece to D.

Let us consider homeomorphisms oy, : T — T and 3, : T — T given by oy, =
@n o Hlak, (co) © ot and B, = A\, 0 Hlog, () © At Then B, 0 m, = 7 0 an,.

Due to the L’-qc extension of Hpk, (cy), We know that a, extends to an L'-qc
map D — D. We still fix the number r with p < r < 1. We can extend «,, to be an
L-qc map tn o D — D which is the identity on D,., where L depends on L, p and r.



Let Lo = Lo(p,7,6%) be as in Lemma 7.9, and let L' = max{L, Ly}. We apply
Lemma 7.9 to the following left diagram:

T P (D,0) 2~ (D,0)
T | I T, we get T | | T
T 2% T (D,0) % (D,0)

so that the map (3, admits an L'-qc extension vy, : D — D which is the identity on D;..
The desired extension of H|k, () inside K,(c) is obtained by taking A, Lou, 0 M.
(2) The set Ugeleo) Kn(c) is nice follows directly from Lemma 7.7. O

Lemma 7.13. Given ¢y € Crity(f) U Crit,(f). Then there exist a puzzle piece P
of depth ng, a topological disk T CC P, and a nested sequence of puzzle pieces
containing c, denoted by {Ky(c)}n>1, for each ¢ € Crit(f) with ¢ = ¢y or ¢ — cp,
satisfying the following properties.

(1) Every K,(c) is a pullback of P, that is f*"(K,(c)) = P for some s, > 1,
deg(f*" : Kn(c) — P) < 6°*, and all critical values of the map f** : K,(c) — P
are contained in T'.

(2) Hlok, () admits a qc extension inside K, (c) with the mazimal dilatation
independent of n.

(3) For every n > 1, U1, Kn(c) is a nice set.

Proof. (1) Suppose ¢y € Crit,(f) and then [co] = {co}. In T (cp)\{0-th column},
every vertex is non-critical. So for each n > 1,

deg(f™ : Pa(co) — Po(f"(c0))) = deg,,(f) < 0.

Since there are finitely many puzzle pieces of the same depth, we can take a subse-
quence {uy, }n>1 such that f»(P,, (co)) = P for some fixed puzzle piece P of depth
0.

Given ¢ — ¢, ¢ € Crit(f), let f'»(Lc(Py, (co)) = Py, (co). Then

deg(f* """ : Lo(Pu,(co)) — P)

= deg(f" : Lc(Py,(co0)) = Pu,(co)) - deg(f*" : Py, (co) — P)
< 5.4

For ¢y € Crit(f), we set K, (co) = Py, (co) and s, = u,. For ¢ — cg, ¢ € Crit(f),
set Ky (c) = Lo(Py, (co)) and s, = vy + .

Now suppose ¢ € Crit,(f) and ¢ — ¢o,c € Crit(f). Since 7 (co) is reluctantly
recurrent, there exist an integer ng > 0, ¢1, ¢2 € [co] and infinitely many integers l,, >
1 such that {P,, 4, (c2) }n>1 are children of P,,(c1) and then deg(f™ : P,y 4, (c2) —

Pno(cl)) = degcz(f) < 4. Suppose fkn(‘cc(Pno-‘rln(CQ))) = n0+ln(62) for k, > 1.
Then

eg(fln+k n0+ln+kn( ) - P’no (Cl))

= deg(fkn (Pno-i-ln (62)) no+in (02)) : deg(fln : Pno-i-ln (02) - Pno (cl))
< &4

Take a strictly increasing subsequence of [,,, still denoted by 1, such that { P41, (¢2) }n>1

is a nested sequence of puzzle pieces containing cg and then { P, 1, 1, (¢)}n>1 is a
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nested sequence of puzzle pieces containing c. Set P = P, (c1). For ¢ = ¢, set s, =
I, and K, (c) = Py, (¢); for ¢ # ca, set s, = ky, + 1, and Ky, (¢) = Phytr,+1, (€).

Now fix ¢ € Crity(f) U Crit,(f). Take a topological disk 7' CC P such that T
contains all the puzzle pieces of depth ng+1. For each ¢ = ¢y or ¢ — ¢g, ¢ € Crit(f),
each n > 1, all critical values of f*"| Kn(c) are contained in the union of puzzle pieces
of depth ng + 1 because Crit(f) C Ky and f(Ky) = K;. Consequently, the set T’
contains all the critical values of the map f*"[f, (c)-

(2) We will use Lemma 7.9 to construct the qc extension.

Fix c=c¢y or ¢ — ¢y and n > 1.

Let P and K,(&) be the puzzle pieces for f bounded by H(8P) and H (9K, (c))
respectively. Since H preserves the degree information, for the map f , we also have
the similar statement as for f in (1), more precisely, f*»(K,(¢)) = P, deg(f*" :
K,(&) — P) < 6"*!, and all critical values of the map f* : K,(¢) — P are
contained in 7', where T is a topological disk in P containing all puzzle pieces for f
of depth ng + 1 in P. -

Let mod(P\T) = A; and mod(P\T) = A;.

Let ¢ty : (P, f*(c)) — (D,0) and 6,, : (K,(c),c) — (ID,0) be bi-holomorphic
uniformizations. Let h, = t, o f*" 0 6-1. Then h,, fixes the point 0, is a proper
holomorphic map of degree at most 6°7!, with all the critical values contained in
tn(T). B

Since mod(D \ ¢,,(T")) = mod(P\T) = A1 > 0 and t,(T) 3 tn(f*"(c)) = 0, we
have ¢, (T') C D; with ¢ = t(A1) < 1. So the critical values of h, are contained in
ln (T) C Dy.

The corresponding objects for f will be marked with tilde. The same assertions
hold for h,. Then the maps h,, and h, satisfy the assumptions of Lemma 7.9, with
d < 6"t and p = max{t,}.

On On
— —

(D,0) (En(c),0)  (Ka(€),0) (D, 0)
i | Lfer T
(D,0) <= (P.f"(c)) (P.f"(@) — (D,0)

Note that each of ¢y, I, On, én extends to a homeomorphism from the closure of
the puzzle piece to D.

Let us consider homeomorphisms &, : T — T and o, : T — T given by k, =
inoHl|ppot,! and o, = 0,, o Hlpg,(c) © 01 respectively. Then &y, o h,, = hy, 0 0.

Notice that H|gp has a Kj-qc extension in P for some K7 > 1. The number K;
is independent of n because the choice of P does not depend on n. Fix some r with
p < r < 1. We conclude that k,, extends to a K-qc map w, : D — D which is the
identity on D,., where K depends on Kj, p and r.

Let Ko = Ko(p,r,0°1) be as in Lemma 7.9 and let K’ = max{K, Ko}. Apply
Lemma 7.9 to the following left diagram :

T 2% T (D,0) <% (D,0)
hn | Lhn | weget ol | By
T = T (D,0) <% (D,0)

so that the map o, admits a K’'-qc extension (, : D — D which is the identity
on D;. The desired extension of H|yg, () inside Kp(c) is now obtained by taking

é;loCnOHn.

23



24

(3) Fix n > 1.

For ¢y € Crity(f), since [co] = {co}, we know that Ueciq Kn(c) = Kn(cp) and
obviously K, (cp) is nice.

For the case that ¢y € Crit,(f), we apply Lemma 7.7 to

U K = CE[CO]\{C2}‘C( n0+ln CQ UpnoJrln(C?)

ce Co]
and easily get the conclusion. O

Lemma 7.14. Suppose ¢y € Crite(f). Then

(1) there is a nested sequence of puzzle pieces containing ¢y, denoted by { Ky (co) tn>1,
such that for each n > 1, H|yg, ;) admits a qc extension inside Ky(co) with the
mazimal dilatation independent of n,

(2) for every n > 1, U.¢(q, Kn(c) is a nice set.

Proof. Suppose ¢y € Crite(f). Recall that
Forw(cg) = {c € Crit(f) | co — ¢}

and in Lemma 7.6 (ii), we distinguish three cases for Forw(cp). In the following, we
will discuss the three cases.

In Case 1, i.e., Forw(cg)N(Crity (f)UCrit,(f)) = 0, by using Lemma 7.13, we can
get a nested sequence of puzzle pieces containing co, denoted by { Ky (co)}n>1, and
H|yk, (¢ admits a qc extension inside Ky, (co) whose maximal dilatation independent
of n.

We divide Case 2 (Forw(cg) C Crity(f)) into two subcases.

Subcase 1. There is a critical point ¢; € Forw(co) N (Crity(f)\Critper(f)). Let
(Kn(c1), K, (c1))n>1 be the sequence of pairs of critical puzzle pieces constructed
in Theorem 7.11.

For n > 1, set

Ky (c0) = Lo (K (e1)), [ (K (c0)) = K (1) and Ky (co) = Compy, (f7 (Kn(c1)))-

Clearly, (K,(co)\K,, (co)) N Crit(f) = 0. Since (Ky,(c1)\K, (c1)) Norbs([c1]) =
() and Forw(c1) = [c1], by Lemma 7.8, we conclude that for all 1 < i < 7y,

(f*(Kn(co))\ [ (K7 (co))) N Forw(er) = 0.

We claim that for every n > 1 and every 1 < i < r,,
(f'(Kn(co)\F (K, (c0))) [ \(Crit(f)\Forw(cy)) = 0.
If not, there is some n such that

{f(En(co)\f(Ky (co)) -, f7H(Enlco)\f" (K, (co)}

meets some critical point, say co € Crit(f)\Forw(ci). See Figure 5.

Then ¢y — c2 — ¢1. Since Forw(cp) C Crity(f), we have ¢z € Crity(f) and then
Forw(cz) = [e2]. So ¢1 — c2. It contradicts ca & Forw(cy).

Hence for every n > 1 and every 0 < i < rp,

(f* (Kn(co))\f' (K ﬂ Crit(f) = 0. (4)
From the equation (4) and K, (co) = L, (K, (c1)), we conclude that for n > 1,

deg(f™ : Kn(co) — Kn(er)) < 6%



T (co) :

Kn(er)

Ky (c1)

[21%

Kn(co) fan

Ky (co)

Figure 5

Again by the equation (4), we know that all critical values of the map f™ : K,,(cy) —
K, (c1) are contained in K, (c1).

Using the similar method as in the proof of Lemma 7.12 (1), we could obtain
the uniformly qc extension of H|, () inside K;(co). We omit the details here.

Subcase 2. Suppose Forw(cg) C Critper(f).

If f{(K¢(co)) is periodic for some I > 1, then there is some critical periodic
component in the periodic cycle of it. By the condition of Proposition 7.3, there is
an integer Ne, such that Py, +n(co) has an M., extension, where M, is independent
of n. Set Ky(co) := PN, +n(co). It is done.

Now we suppose K(co) is wandering. For each ¢ € Forw(cp), by the condition
of Proposition 7.3, there are a constant M; and an integer N; such that the map H
extends to an Mz-qc extension inside P,(c) for all n > Nz. Set N := max{N;,¢ €
Forw(cg)}.

We claim that

Claim 1. There exist a point ¢; € Forw(co), a topological disk Z CC Pn(c1) and a
nested sequence of puzzle pieces containing co, denoted by {Ky(co)}n>1, satisfying
that for everyn > 1, f¥(K,(co)) = Pn(c1) for some wy, > 1, deg(f*" : K, (co) —
Py(c1)) < 6° and all critical values of the map T K (o) are contained in the set
Z.

Proof. Suppose ¢ € Forw(cg). Refer to the following figure for the proof.

Since K(co) is wandering, in 7 (cg), there are infinitely many vertices {(—(IN +
My), kn)}n>1 such that (—(N + my,), ky) is the first vertex being ¢ on the m,-th
row, (—(N + my, + 1), ky,) is not critical and lim, . m, = co. Then

PR Loy (Pr+m, (€))) = P, (€)

and deg(f*" : P ym, k,(c0) = Pnym,(c)) < 8.

Let p be the period of K¢(c). Then in 7(c), for every 0 < j < p, either
(—(N+my—j), ) is not critical or (—(N +m,,+1—j), ) is critical. Using (Rule 3)
several times, we conclude that there are no critical vertices on the diagonal starting
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T (co) : 0 kn mn + kn My + kn + ln
|
i
i
|
-N :
! c1(n) € Forw(co)
—(N+1)
—(N +mn)
—(N+mn+1)
—(N 4+ mn + kn)

—(N +mn + kn +1n)

from the vertex at (—(N +m, + 1), k,) to the vertex at (—(N + 1), m,, + k). From
the vertex (—N,m, + ky), march horizontally l,, > 1 steps until the first hit of
some c1(n) vertex for some cq(n) € Forw(cp). Then there is no critical vertex on
the diagonal starting from the vertex (—(N + m, + kn + I, — 1),1) to the vertex
(=(N +1),my, + kp + 1, — 1). Therefore

deg(f™ Tt s Pry gy skt (c0) — Pr(ci(n))) < 60

Since ¢1(n) belongs to the finite set Forw(cg) and m,, — oo as n — oo, we could
find a subsequence of n, say itself, such that { Pnym, +&,+1,(co) }n>1 form a nested
sequence and ¢1(n) = ¢1. Set wy, = N +my, + kp, + [

Similarly to the proof of Lemma 7.13 (1), one take a topological disk Z CC
Py (c1) such that all the puzzle pieces of depth N + 1 are contained in Z and
particularly, all of the critical values of fmn+kntin| Pty 41 41, (c) @T€ contained in
Z. O

Using the similar method in the proof of Lemma 7.13 (2), we could show that
Hlpk, (cy) @dmits a qc extension inside K, (co) whose maximal dilatation is indepen-
dent of n.

In Case 3, we will first draw the similar conclusion to Lemma 7.13 (1).

Take arbitrarily a point ¢ € Crite(f) NForw(cp) such that Frow(c) contains some
point in Crit,(f). In T'(co), let {(0,t,)}n>1 be all the c-vertices on the 0-th row
with 1 <t; <tg<---.

Since ¢y € Crite(f) and then ¢y /4 co, by the assumption (xx), the co-vertex
will not appear in 7 (cp)\{0-th column}, in particular, for each n > 1, there are no
co-vertices on the diagonal starting from the vertex (—(t, — 1),1) and ending at the
vertex (—1,t, — 1). Denote that diagonal by J,. Since ¢ 4 ¢, by the assumption
(x%), there are no c-vertices on the diagonal .J,,.

We claim that for every n > 1, the diagonal .J,, meets every point in Crit(f)\{co, c}
at most once. In fact, if not, then there is some n’ and some ¢’ € Crit(f) such that
the diagonal J], meets ¢ at least twice. By the assumption (x), we can conclude
that ¢cg — ¢ — ¢ — c. See Figure 6. By the condition of Case 3 and ¢ — ¢/, we
know that ¢ € Crit,(f) and then Forw(c) = [¢] by Lemma 7.5. Thus ¢ — ¢’ and
then ¢ — ¢. This contradicts ¢ € Crite(f).
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7 (co) : s

Figure 6

By the argument above, one easily find that {P;, (cp)}n>1 is a nested sequence
of puzzle pieces containing ¢y and deg(f* : Py, (co) — Po(c)) < 671, Let Ty be a
topological disk compactly contained in Py(c) such that 75 contains all the puzzle
pieces of depth 1 in Py(c). Notice that all the critical values are contained in the
union of all the puzzle pieces of depth 1 in Py(c), so they are also contained in T.

Set Ky(co) := P, (co) and then we get similar objects as in Lemma 7.13 (1).
Using the similar method in the proof of Lemma 7.13 (2), we could also show
that H|pk, (c,) admits a qc extension inside K (cp) whose maximal dilatation is
independent of n.

(2) Since ¢y € Crite(f) and then [co] = {co}, we know that Uec[e Kn(c) = Kn(co)
and obviously K,(cg) is nice. O

Summarizing Lemmas 7.12, 7.13 and 7.14, we have proved Proposition 7.3.

A An application of Theorem 2.3

Cui and Peng proved the following result in [CP] (see Theorem 1.1 in [CP]).

Theorem A.1. Let U be a multiply-connected fized (super)attracting Fatou com-
ponent of a rational map f. Then there exist a rational map g and a completely
invariant Fatou component V' of g, such that
(1) (f,U) and (g9,V ) are holomorphically conjugate, i.e., there is a conformal map
mapping from U onto V' and conjugating f to g,
(2) each Julia component of g consisting of more than one point is a quasi-circle
which bounds an eventually superattracting Fatou component of g containing at most
one posteritical point of g.
Moreover, g is unique up to a holomorphic conjugation.

We call (g, V') is a holomorphic model for (f,U).

To show the uniqueness of the model (g, V'), they divided the proof into two
parts. First they proved the following proposition (see also Proposition 1.3 in [CP]).
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Proposition A.2. Suppose g, § are two rational maps and V,V are two completely
invariant Fatou components of g and g respectively satisfying the conditions (1) and
(2) in Theorem A.1. Then there is a qc map from the Riemann sphere C onto itself
conjugating g and § on C and this conjugation is conformal on the Fatou set of g.

The other part is to show the Julia set of the model g carries no invariant line
fields (see Proposition 1.4 in [CP]).

In this appendix, we will apply Theorem 2.3 (b) to give an another proof of
Proposition A.2.

Proof of Proposition A.2. First starting from (g,V) and (g, V), we construct (g :
U — V) and (§ : U — V) satisfying the conditions as in the set-up.

We may assume that the fixed points of g and § in V and V are the infinity
point. By Koenigs Linearization Theorem and Bottcher Theorem, we can take a
disk Dy = {|z| > r} C V such that
(1)D0 CcC g_l(D()),

(2)0Dq ﬂ(Unzl UeceCrit(g) {fa)}) = 0,
where Crit(g) denotes the critical point set of g.

Let D,, be the connected component of g~"(Dy) containing Dy for each n > 1.
Then D, CC Dypq1 and V = (J,2, Dy. There is an integer Ny satisfying that
for any n > 0, g7"(Dy,) has only one component, the set Crit(g) is contained in
g ™"(Dy,) and every component of C\ Dy, contains at most one component of C\V
having critical points.

By Theorem A.1 (1), there is a conformal map H : V — V with jo H = Hog
on V. Set V := C\Dy,, V := C\H(Dy,) and U := g~1(V) and U := 5~ (V).
One can check that (¢ : U — V) and (§ : U — V) satisfying the conditions as in
the set-up.

Clearly, K, = C\V and K; = C\V. Since H : V — V is a qc conjugacy from
g to g and V := C\Dy,, V := C\H(Dy,), we know that H : V\K, — V\K;
is a qc conjugacy off K,. Let E be a periodic critical component of K, which
is mapped to a periodic critical component of K, under some forward iterate of
g. According to Theorem A.1 (2), E is a quasi-circle which bounds an eventually
superattracting Fatou component containing a critical point ¢. In the proof of
Proposition 4.4 in [CP], a qc map hg is constructed. That map is defined on a
puzzle piece P, ,(c) containing E. From the definition of that map, one can easily
check that hE\aan+n(c) = H for all n > 0. Set N. := ng and let M. be the
maximal dilatation of the map hg. Then by Theorem 2.3 (2), H extends to a qc
conjugacy off intK,. Notice that every component of intK, is a bounded eventually
superattracting Fatou component and vice versa. So H can extend to a conformal
map in every component of intK, which is again a conjugacy (refer to the proof of
Claim 4.1). Hence H extends to a qc conjugacy on V, that is, H extends to a qc
conjugacy on C which is conformal on the Fatou set of g. O
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