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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Model Order Reduction based on Proper Generalized
Decomposition for the Propagation of Uncertainties in Structural

Dynamics

Mathilde Chevreuil∗ and Anthony Nouy

LUNAM Université, Université de Nantes, École Centrale Nantes, GeM, UMR CNRS 6183

SUMMARY

A priori model reduction methods based on separated representations are introduced for the prediction
of the low frequency response of uncertain structures within a parametric stochastic framework.
The Proper Generalized Decomposition method is used to construct a quasi-optimal separated
representation of the random solution at some frequency samples. At each frequency, an accurate
representation of the solution is obtained on reduced bases of spatial functions and stochastic functions.
An extraction of the deterministic bases allows for the generation of a global reduced basis yielding a
reduced order model of the uncertain structure which appears to be accurate on the whole frequency
band under study and for all values of input random parameters. This strategy can be seen as an
alternative to traditional constructions of reduced order models in structural dynamics in the presence
of parametric uncertainties. This reduced order model can then be used for further analyses such as the
computation of the response at unresolved frequencies or the computation of more accurate stochastic
approximations at some frequencies of interest. The dynamic response being highly nonlinear with
respect to the input random parameters, a second level of separation of variables is introduced for the
representation of functions of multiple random parameters, thus allowing the introduction of very fine
approximations in each parametric dimension even when dealing with high parametric dimension.

key words: Uncertainty propagation; Spectral stochastic methods; Structural dynamics;

Model reduction; Proper Generalized Decomposition; Tensor product approximation; Separated

representations

1. INTRODUCTION

The quantification of uncertainties and the prediction of their impact appear to be essential
for the robust design of mechanical systems. Uncertainty in structural dynamics have
predominantly been tackled in fields of application such as the optimisation of structures
as regards their natural modes or the identification of models from modal type or more
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generally frequency type experimental data. In this context of structural dynamics, the
random response can be severely disturbed by low variabilities on the model. The impact
of random variabilities are traditionally estimated using sampling techniques such as Monte
Carlo simulations. Nevertheless, sampling techniques turn out to be computationally expensive
since they require numerous solutions of deterministic problems in order to estimate accurately
statistical quantities of interest. For the characterization of the natural frequencies and mode
shapes of uncertain dynamical systems, perturbation-based methods have extensively been
used but give good results only for small variation ranges of the input parameters [13]. Some
works have contributed to improve these methods (see e.g. [20, 1]).

Alternative approaches have emerged for the modeling and propagation of uncertainties
which adopt a functional point of view in stochastic analyses, where random quantities are
systematically seen as functions of random parameters representing basic uncertainties. This
parametric vision, combined with approximation theory and numerical analysis, brought to
the so-called spectral stochastic methods [10, 33, 18, 23, 36, 16]. These methods provide an
explicit representation of the random response in terms of basic random parameters, and
as a by-product, they can be favorably used for parametric analyses such as optimisation,
identification or sensitivity estimation. They also allow for fast post-processing to retrieve
many quantities of interest (such as the envelope of the frequency response function, sensitivity
with respect to input parameters...), sometimes unprecise or even unreachable with classical
sampling techniques. Non-parametric methods shall also be mentioned among the strategies
of uncertainty quantification in dynamic analysis. These latter methods enable to take the
model error into account and have recently been associated to parametric modeling of the
uncertainties [31, 32].

This paper is devoted to the computation of the random frequency response of dynamical
models in the low frequency band and in the presence of stochastic parametric uncertainties.
The dynamic response of uncertain structures is usually a highly non regular functional of input
random parameters. Therefore, when adopting a functional point of view, it proves necessary
to use very fine approximation spaces for the accurate representation of this response (or
eventually to use enriched polynomial approximation spaces [9, 11, 26]), which make classical
spectral stochastic approaches inefficient for the computation of the frequency response over
a whole frequency band, especially when dealing with complex mechanical models.

Model reduction techniques are classically introduced to make random dynamic analyses
affordable. They can be substructuring or reduced basis type strategies. For the mid-
frequencies, adapted frequency-domain model reduction techniques have been developed (see
e.g. [30]). In the low frequency range, the usual modal superposition is classically used.
Stochastic Reduced Basis Methods [19, 6] have also provided a mean of searching the response
on a reduced basis of random vectors associated with a stochastic Krylov subspace that need
to be computed first and independently for each frequency of interest. Let us note that the
resulting reduced order model is not conventional since it is a projection on a stochastic reduced
basis.

In this article, we present a model order reduction strategy based on Proper Generalized
Decomposition (PGD) for the prediction of the low frequency response of uncertain structures
within a parametric stochastic framework. PGD methods have been recently introduced for
the a priori construction of separated representations of the solution of variational problems
defined in tensor product spaces [14, 3, 4, 29, 8, 24]. They have been introduced in [21, 22] in
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the context of uncertainty propagation under the name Generalized Spectral Decomposition
(GSD). These methods can be seen as generalizations of spectral decompositions (Karhunen
Loève decompositions or Singular Value Decompositions) for the a priori construction of
separated representations. In the present context, PGD methods are extended to the complex
framework and are first used for the construction of a low rank separated representation of the
random solution at some frequency samples:

u(x, ξ) ≈
m∑

i=1

wi(x)λi(ξ) (1)

with the wi(x) being complex-valued deterministic functions and the λi (called stochastic
functions) being scalar valued functions of random parameters ξ modeling the uncertainties .

At each computed frequency, an accurate representation of the solution is obtained on a
reduced basis of spatial functions and stochastic functions. An extraction of the deterministic
bases then allows for the generation of a global reduced basis yielding a reduced order model of
the uncertain structure which appears to be accurate on the whole frequency band under study
and for all values of input random parameters. This strategy can be seen as an alternative
to traditional constructions of reduced order models in structural dynamics in the presence
of parametric uncertainties. The obtained reduced order model can then be used for further
analyses such as the computation of the response at unresolved frequencies or the computation
of more accurate stochastic approximations at some frequencies of interest.

As mentioned before, the dynamic response being a highly non regular function of input
random parameters, a fine stochastic approximation is usually necessary to well represent
the random response. Two strategies are finally presented to control the accuracy of the
representation of the random response. The first one is an adaptive stochastic approximation
strategy. The second one is a more tractable approach to handle multidimensional problems
involving a large number of parameters ξ = (ξ1, · · · , ξr) and fine stochastic approximations in
potentially all dimensions. It is based on the introduction of a second level of separation of
variables for the representation of multiparametric functions:

λ(ξ) ≈
Z∑

k=1

φ0
kφ1

k(ξ1) · · ·φr
k(ξr). (2)

In this article, we propose a construction of these representations with a multidimensional PGD
method, introduced in [25] in the context of uncertainty quantification. We show the feasibility
of this parametric splitting in the context of structural dynamic analyses and we illustrate the
behavior of different definitions of PGD. Note that other definitions and algorithms have been
recently proposed for the construction of such separated representations of multiparametric
stochastic functions [7, 12].

The paper is organized as follows. Section 2 presents the dynamic model problem and the
associated partial differential equations defined on a tensor product space (product of functions
of the space variables and functions of the random parameters). Section 3 introduces the PGD
method for the construction of a low-rank separated representation (1) of the solution at a
fixed frequency. Several definitions have been proposed for PGD [27, 28, 25]. Different variants
of PGD are here introduced and the so called Galerkin PGD is retained and illustrated on two
numerical examples. We then take an interest in the computation of the frequency response
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over a low frequency band in Section 4, where we propose a strategy for the construction of a
global reduced basis of deterministic modes valid for the entire frequency band under study.
This reduced basis appears to be relatively insensitive to the approximation at the parametric
level. We then show that it can be obtained using a coarse stochastic approximation, and
consequently with a reduced computational effort, and that it yields to the construction of an
accurate reduced order model which can be reused for more accurate computations. On that
occasion a third numerical example is inserted. Finally, Section 5 introduces the two possible
strategies for the obtention of very accurate stochastic approximations: an adaptive stochastic
approximation technique and a method for the construction of separated representations (2)
of stochastic parametric functions. For the construction of such representations, we introduce
and compare different multidimensional versions of PGD, namely Galerkin PGD or Minimal
Residual PGD.

2. STOCHASTIC STRUCTURAL DYNAMICS PROBLEM

2.1. A model problem in structural vibration analysis

We consider a forced vibration problem of a damped elastic structure defined on a domain
Ω. ΓD and ΓN denote the Dirichlet and Neumann boundaries, with ΓD ∩ ΓN = ∅ and
ΓD ∪ ΓN = ∂Ω. In the first part of the paper, we consider the frequency response for a fixed
frequency ω ∈ I, with I = (ωmin, ωmax) being the low frequency band of interest. Equations
of the forced vibration problem at frequency read

div(σ(u)) + f = −ω2ρu on Ω

u = 0 on ΓD

σ(u) · n = g on ΓN

(3)

where f and g are volume and surface load densities, and where σ(u) is the stress field related
to the displacement field u by the following constitutive relation:

σ(u) = (1 + iωη)K : ε(u)

where K is the Hooke’s elasticity tensor and where η is the damping parameter, eventually
frequency dependent. In the following, we omit the dependence on ω of functions of the
frequency for the sake of clarity.

2.2. Uncertainty modeling

Uncertainties are supposed to be represented with a finite number of random variables
ξ = (ξ1, . . . , ξr) which are random parameters of the continuous mechanical model. We let
(Ξ, B, Pξ) the associated probability space, where Ξ ⊂ Rr is the range of ξ, B is the associated
σ-algebra and Pξ is the probability measure of ξ. Material uncertainties are introduced by
considering random parameterized material parameters K(ξ), ρ(ξ), η(ξ). Uncertainties on the
forcing terms are also introduced by considering random loads f(ξ) and g(ξ).

Preprint
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2.3. Finite element model

A spatial-weak formulation of the vibration problem (3) reads

u(ξ) ∈ V, Re (a(u(ξ), v; ξ)) = Re( b(v; ξ)) ∀v ∈ V (4)

where Re(·) denotes the real part and where a and b are respectively sesquilinear and antilinear
forms defined by

a(u, v; ξ) =

∫

Ω

ε(v) : (1 + iωη(ξ))K(ξ) : ε(u)dx −
∫

Ω

ω2ρ(ξ)v · udx (5)

b(v; ξ) =

∫

Ω

v · g(ξ)dx +

∫

Γ2

v · f(ξ)ds (6)

where v denotes the complex conjugate of v. V is the following complex Hilbert space:

V = {v ∈ (H1(Ω))d; v = 0 on Γ1} (7)

We now introduce a finite element approximation space VN = {vN =
∑N

i=1 ϕivi; vi ∈ C} ⊂ V.
The Galerkin approximation uN ∈ VN of u is then defined by

uN(ξ) ∈ VN , Re
(
a(uN(ξ), v; ξ)) = Re

(
b(v; ξ)) ∀v ∈ VN (8)

resulting in the following system of equations for the components u(ξ) = (u1(ξ) . . . uN (ξ)) ∈
CN of approximation uN :

Re
(
vHA(ξ)u(ξ)

)
= Re(vHb(ξ)) ∀v ∈ C

N (9)

where vH = vT denotes the conjugate transpose of v ∈ CN and where A(ξ) is a random
matrix defined by

A(ξ) = −ω2M(ξ) + iωC(ξ) + K(ξ)

with M, K and C being the so-called mass, stiffness and damping matrices respectively.
These matrices can be random. In the following, we only consider the finite element system
of equations (9). Let us note that these equations may be associated with other types of
mechanical linear models (beam, plate, ...) such as those introduced in the numerical examples,
or also to other types of physical models.

2.4. Spectral stochastic methods

Under suitable regularity assumptions on random parameters of the continuous model, a weak
solution of (9) is searched in L2

Pξ
(Ξ; CN ), the space of real valued square integrable functions

defined on the probability space (Ξ, B, Pξ) which can be identified with the tensor product
space C

N ⊗ S, with S = L2
Pξ

(Ξ; R). We then introduce the following weak formulation of (9):

u ∈ C
N ⊗ S, 〈v,Au〉 = 〈v,b〉 ∀v ∈ C

N ⊗ S (10)

with 〈·, ·〉 defined for u,v ∈ CN ⊗ S by

〈v,u〉 =

∫

Ξ

Re(v(y)Hu(y))dPξ(y) := E
(
Re

(
v(ξ)Hu(ξ)

))
(11)



6 M. CHEVREUIL AND A. NOUY

where E(·) denotes the mathematical expectation. Spectral stochastic methods consist in
searching an approximation of the solution under the form of a decomposition u(ξ) =∑P

α=1 uαHα(ξ), where {Hα(ξ)}P
α=1 designates a basis of an approximation space SP ⊂ S.

This approximation can be classically defined with a Galerkin projection:

u ∈ C
N ⊗ SP , 〈v,Au〉 = 〈v,b〉 ∀v ∈ C

N ⊗ SP (12)

For every frequency, searching the approximation therefore implies the solution of (12), which
is a system of N × P equations in the complex field. For dynamic problems, the number of
degrees of freedom N can be large if we want to capture rather small scales features of the
solution. Furthermore, the solution can be a highly non-linear function of the random variables
ξ and it may require the use of very fine approximation spaces SP (such as finite element [5]
or wavelets [15]). In this context, classical Krylov type iterative algorithms for the solution of
(12) can become prohibitive.

3. PROPER GENERALIZED DECOMPOSITION

In this section, we present a Proper Generalized Decomposition method (PGD) for the solution
of problem (12) at a given frequency ω. The idea is to exploit the tensor structure of the solution
u ∈ CN ⊗ SP and to look for an optimal separated representation of u under the form

um(ξ) =

m∑

i=1

wiλi(ξ) (13)

where the wi ∈ CN are deterministic vectors and the λi ∈ SP are stochastic functions.
Separated representation um is constructed without knowing the solution u but only the
equation (12) it is solution of. In the context of uncertainty propagation, this method is
also known as Generalized Spectral Decomposition method (GSD). In [21, 22, 25], different
definitions and algorithms were proposed for generating the approximate representations (13)
of the solution. These definitions can be seen as generalizations of Karhunen-Loève expansion
where optimality is defined with non usual criteria. Some of these definitions are here extended
to the complex framework in order to solve the stochastic problem at each frequency.

3.1. Progressive PGD

Here, we introduce a progressive definition of the PGD which consists in constructing the
decomposition (13) progressively, where a rank-one element wmλm is added to a previously
computed decomposition um−1 to obtain a rank-m approximation um = um−1 + wmλm.

3.1.1. Progressive Minimal Residual PGD Problem (12) can be reformulated as an
optimization problem by introducing a minimal residual formulation. Knowing um−1, a new
couple wmλm can be defined by

‖b− A(um−1 + wmλm)‖2 = min
w∈CN ,λ∈SP

‖b− A(um−1 + wλ)‖2 (14)

Preprint
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where ‖·‖ is the norm associated with the inner product 〈·, ·〉 defined by (11). Necessary
conditions of optimality of a couple (wm, λm) are

wm = Fm(λm) = arg min
w∈CN

‖A(wλm) − b + A(um−1)‖2
(15)

λm = fm(wm) = arg min
λ∈SP

‖A(wmλ) − b + A(um−1)‖2
(16)

Denoting rm = b− Aum−1, equations (15) and (16) can be rewritten
〈
w̃mλm,AHAwmλm

〉
=

〈
w̃mλm,AHrm

〉
∀w̃m ∈ C

N (17)
〈
wmλ̃m,AHAwmλm

〉
=

〈
wmλ̃m,AHrm

〉
∀λ̃m ∈ SP (18)

In fact, equations (17) and (18) are necessary but not sufficient conditions for the optimality
for wmλm, which belongs to the set of rank-one elements {wλ;w ∈ CN , λ ∈ SP } which is not
a linear subspace (nor a convex subset) of CN ⊗ SP . An optimal couple (wm, λm) must thus
verify (15) and (16) simultaneously, i.e.

wm = Fm(λm) and λm = fm(wm) (19)

Remark 1. In this finite dimensional framework, random matrices A and AH are interpreted
as linear operators from CN ⊗ SP to CN ⊗ SP .

The downside of this definition of the PGD, though robust for non symmetric problems, is
that it may lead to a slow convergence of the decomposition um. Furthermore, tensor based
methods capitalize on the separated representation of the operator and right-hand side. In this
minimal residual formulation, the operator and right-hand are AHA and AHb and present a
dramatically higher rank than the initial operator A and right-hand side b.

3.1.2. Progressive Galerkin PGD Knowing um−1, the progressive Galerkin PGD consists in
defining a new rank-one element wmλm that verifies two Galerkin orthogonality criteria

〈
w̃mλm,Awmλm

〉
=

〈
w̃mλm,b− Aum−1

〉
∀w̃m ∈ C

N (20)
〈
wmλ̃m,Awmλm

〉
=

〈
wmλ̃m,b− Aum−1

〉
∀λ̃m ∈ SP (21)

Such as for Minimal Residual PGD, we introduce mappings Fm : SP → CN and fm : CN → SP ,
respectively defined by

〈
w̃mλm,AF(λm)λm

〉
=

〈
w̃mλm, rm

〉
∀w̃m ∈ C

N (22)
〈
wmλ̃m,Awmfm(wm)

〉
=

〈
wmλ̃m, rm

〉
∀λ̃m ∈ SP (23)

with rm = b − Aum−1. A new couple (wm, λm) is thus defined as the optimal couple which
verifies simultaneously

wm = Fm(λm) and λm = fm(wm) (24)

This definition is not associated with an optimality criteria. However, in the case of a self-
adjoint operator A (which is not the case here), this problem could be classically reformulated
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as a minimization problem of a quadratic convex functional. Equations (22) and (23) would
then be necessary (but not sufficient) conditions for optimality of a couple (wm, λm) and
optimality of such a couple would be naturally defined from the underlying minimization
problem. Although not based on an optimization criterion for general operators A, this
PGD definition based on Galerkin orthogonality proves efficient to capture good rank-one
approximations in many cases. The following interpretation as a pseudo eigenproblem allows
to give a meaning to optimality.

3.2. Interpretation as a generalized spectral decomposition

In [22], it is shown that problem (19), and problem (24) for the case of a self-adjoint operator
A, can be interpreted as a pseudo eigenproblem where wm (respectively λm) is the dominant
pseudo eigenfunction of the mapping Tm = Fm ◦ fm (respectively T ∗

m = fm ◦ Fm). Mappings
Tm and T ∗

m can be respectively interpreted as right and left (pseudo) correlation operators
of the solution u, this solution being interpreted as an operator from CN to SP . The couple
(wm, λm) can be further interpreted as a couple of right and left (pseudo) singular vectors of
u, thus leading to a generalized singular value decomposition um =

∑m

i=1 wiλi. We can prove
that in the case of a deterministic matrix A, these definitions exactly coincide with a classical
definition of a singular value decomposition of u (Karhunen Loève decomposition), up to a
change of basis in CN (the decomposition being optimal with respect to the metric on CN

induced by ATA for the minimal residual PGD, and A for the Galerkin PGD). In the general
case of a non self-adjoint operator A, problem (24) which defines potentially optimal elements
can still be interpreted as a pseudo eigenproblem. A couple (wm, λm) satisfying (24) can be
interpreted as eigenfunctions of mappings Tm and T ∗

m. Optimality, however not clearly defined,
could still be associated with the upper spectrum of these mappings, which would justify the
behavior of the algorithm proposed below. For a detailed discussion on these interpretations,
see [22].

3.3. Algorithm

An alternated direction algorithm for solving (19) or (24) is used to find the approximation
of an optimal couple (wm, λm). Starting from an initial function λ0 ∈ SP (chosen randomly),
iterates {wk, λk}k≥1 are recursively defined by

wk+1 = Fm(λk) and λk+1 = fm(wk+1), (25)

where mappings Fm and fm are defined by equations (20) and (21) for the Galerkin PGD,
and by equations (15) and (16) for the Minimal Residual PGD. Based on the interpretation
of section 3.2, the above algorithm corresponds to a power-type algorithm to solve the pseudo
eigenproblem which defines an optimal couple (wm, λm). The resulting construction of the
separated representation (13) can then be interpreted as a power-type method with deflation
for the computation of the generalized singular value decomposition†. In practice, only few
iterations are sufficient to obtain a good estimation of an optimal couple (wm, λm).

†Note that for the case of a deterministic operator A, when the obtained separated representation coincides with
a classical SVD of u, the proposed algorithm is exactly a power algorithm with deflation for the computation
of this SVD.
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Below, we detail the computational aspects of the application of mappings Fm and fm in
the case of Galerkin PGD. Note that applications of these mappings for Minimal Residual
PGD can be simply obtained by replacing A by AHA and b by AHb.

3.3.1. Application of mapping Fm For a given λ, the calculation of w = Fm(λ), with Fm

defined in (22), appears as a simple deterministic problem of size n (2n in the real field)

Re
(
w̃HAλw

)
= Re

(
w̃Hrm

λ

)
∀w̃ ∈ C

N (26)

where, in the case of a Galerkin PGD, Aλ = E(Aλλ) and rm
λ = E(rmλ). Considering the real

and imaginary parts of the quantities, equation (26) can be written under the form
[
E(ARλ2) −E(AIλ

2)
E(AIλ

2) E(ARλ2)

] [
wR

wI

]
=

[
E(rm

R λ)
E(rm

I λ)

]
(27)

where (·)R and (·)I denote the real and imaginary parts of a quantity (·). Concerning operator
A, we have AR = K− ω2M and AI = ωC.

3.3.2. Application of mapping fm For a given w, the calculation of λ = fm(w), with fm

defined in (23), appears as a simple stochastic algebraic equation approximated in SP (problem
of size P )

E

(
λ̃Awλ

)
= E

(
λ̃rm

w

)
∀λ̃ ∈ SP (28)

where, in the case of a Galerkin PGD,

Aw(ξ) = Re(wHA(ξ)w) =

[
wR

wI

]T [
AR(ξ) −AI(ξ)
AI(ξ) AR(ξ)

] [
wR

wI

]
(29)

rm
w (ξ) = Re(wHrm(ξ)) =

[
wR

wI

]T [
rm

R (ξ)
rm

I (ξ)

]
(30)

3.4. Updated progressive PGD

In order to improve the convergence of the progressive PGD, an update of the stochastic
functions can be performed [22]. Let us suppose that a rank-m decomposition um =

∑m

i=1 wiλi

has been obtained and let us introduce the notation

um(ξ) = WΛ(ξ) (31)

where W = (w1 · · ·wm) ∈ CN×m and Λ = (λ1 · · ·λm)T ∈ (SP )m denote the sets of
deterministic vectors and stochastic functions respectively. Given the deterministic basis W

of this rank-m decomposition um, stochastic functions Λ can be updated by solving
〈
WΛ̃,AWΛ

〉
=

〈
WΛ̃,b

〉
∀Λ̃ ∈ (SP )m (32)

In other terms, it can be seen as a stochastic problem projected on the reduced basis W,
WHAW and WHb being respectively the reduced operator and right hand side. More
precisely, the obtained approximation um = WΛ is a Galerkin projection of the solution
u on the subspace span{wi}n

i=1 ⊗ SP of CN ⊗ SP .
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3.5. Illustration

3.5.1. Example 1

Description of the example, stochastic modeling and approximation. The method
is applied on a slightly damped elastic structure made of two plates represented in figure 1. It is
subjected to homogeneous Dirichlet boundary conditions on the part Γ1 of the boundary and to
a harmonic loading on the part Γ2 of the boundary. The complementary part of the boundary
is a free boundary. At the space level, a finite element approximation is used, where the mesh is
composed of 1778 DKT plate elements and the discrete deterministic model contains N = 5556
degrees of freedom.

(a) (b)

Figure 1. Description of example 1: elastic plate structure under harmonic bending load. Geometry
and boundary conditions (a) and finite element mesh (b)

The non-dimensional analysis considers a unitary mass density. The Young modulus E is
chosen as a uniform random variable on (0.9, 1.1) and is expressed as a function of a uniform
random variable ξ1 on Ξ1 = (0, 1) (E = 0.9 + 0.2ξ1). We take the damping η = 0.005 2ξ2 ,
with ξ2 a uniform random variable on Ξ2 = (0, 1). It corresponds for η to a log-uniform
distribution on (0.005, 0.01). Sources of uncertainty are thus represented with 2 independent
uniform random variables ξ = (ξ1, ξ2) with values in Ξ = Ξ1×Ξ2 = (0, 1)2. Figure 2 shows some
realizations of the frequency response function of the out of plane displacement of the upper
right node of the structure. In figure 3 are plotted some realizations of the solution u of (9) for
a given frequency. These two figures show that different values of input random parameters
yield completely different dynamic behaviors of the structure, turning a resonance frequency
to an anti-resonance frequency for instance. In order to well describe these irregularities with
respect to parameters, we introduce an approximation space SP = S1

P1
⊗ S2

P2
where Sl

Pl
are

finite element spaces with 32 elements (uniform partition of Ξ1) and polynomial degree 4 for
l = 1 and with 1 element and polynomial degree 2 for l = 2. The dimension of the stochastic
approximation space is P = 480.

Preprint
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Figure 2. Samples of the frequency response function of the modulus of the out of plane displacement
of the upper right node of the two-plate structure

(a) E = 0.91, η = 0.0075 (b) E = 0.97, η = 0.0055 (c) E = 1.09, η = 0.0095

Figure 3. Samples of the solution at frequency ω = 0.67rad.s−1 (colors represent the modulus of the
displacement field)

Convergence of PGD. We study the convergence of the progressive Galerkin PGD
with respect to the rank m of the decomposition for three frequencies ω = 0.41 rad.s−1,
0.67 rad.s−1 and 0.84 rad.s−1. We choose as the reference solution the semi-discretized solution
uref ∈ CN ⊗ S. The convergence of the rank-m PGD um is estimated with the relative error

ǫm =
‖uref − um‖

‖uref‖
(33)

where ‖v‖2
= E(Re(vHv)). This norm is estimated with Monte-Carlo simulations with 1000

samplings which correspond to a converged estimation of the error indicator ǫm. Figure 4
shows the relative error ǫm with m for three frequencies. Only the first part of the curve before
the plateau illustrates the convergence of the PGD, the plateau being the residual error due
to the stochastic approximation. A good convergence is observed for each frequency, even for
ω = 0.67 rad.s−1 and ω = 0.84 rad.s−1, which are frequencies in the resonance zones of the
structure. For these two frequencies, a relative error of the order of magnitude of the error
due to stochastic approximation is rapidly reached with m ≈ 4. We observe an even faster
convergence for ω = 0.41 rad.s−1, which is a frequency outside of the resonance zones. In
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fact, away from the resonances, the response is much smoother with respect to ξ than in the
resonance zones. Figure 5 illustrates the convergence with m of um for one realization of input

1 2 3 4 5 6 7 8 9 10
10

−5
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−2

10
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10
0

m

L2  e
rr
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ω=0.41 rad.s−1

ω=0.67 rad.s−1

ω=0.84 rad.s−1

Figure 4. Convergence with m of um for three frequencies ω = 0.41 rad.s−1, 0.67 rad.s−1 and
0.84 rad.s−1. Error indicator ǫm estimated with Monte-Carlo simulations

parameters and for different frequencies.

Figure 5. Convergence with m of PGD approximation um. From left to right, the solutions are plotted
for three different frequencies and a given sample of random parameters. The top line represents the
reference solution and the following lines represent rank-m PGD approximations for ranks m = 1,

m = 2 and m = 10

We now consider the response surfaces of the out of plane displacements of the top right node
of the structure. Figure 6 (resp. 7) shows the response surfaces for the reference solution and for
the rank-10 PGD approximation, for the frequency ω = 0.67rad.s−1 (resp. ω = 0.84rad.s−1).
These figures illustrate the strong irregularity of the response with respect to the random
parameters (more specifically with respect to ξ1). The PGD is able to capture and well describe
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these irregularities with low rank decompositions.
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(b) u10

Figure 6. Response surface of the modulus of the out of plane displacement |u| of the upper right node
of the two-plate structure for ω = 0.67 rad.s−1
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(b) u10

Figure 7. Response surface of the modulus of the out of plane displacement of the upper right node
of the two-plate structure for ω = 0.84 rad.s−1

.

Figure 8 compares the displacement of the top right node obtained with the reference
solution and the rank-10 PGD approximation for the three studied frequencies and for a
fixed value of η = 0.005. As mentioned earlier, we can observe that the solution is much
smoother for ω = 0.41 rad.s−1 (outside of the resonance zones) than for ω = 0.67 rad.s−1 and
ω = 0.84 rad.s−1 (inside the resonance zones). Again, we observe a good concordance between
the reference solution and the rank-10 PGD approximation.

3.5.2. Example 2 We now study the frequency response of the 3D structure presented in
figure 9 with homogeneous Dirichlet boundary conditions on Γ1 and a harmonic load density



14 M. CHEVREUIL AND A. NOUY

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
10

−3

10
−2

10
−1

10
0

10
1

10
2

E

|u
|

 

 
Reference
PGD

(a) ω = 0.41 rad.s−1
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(b) ω = 0.67 rad.s−1
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(c) ω = 0.84 rad.s−1

Figure 8. Modulus of the out of plane displacement of the upper right node of the two-plate structure
as a function of random variable E and for a fixed value of η = 0.005. Comparison of the rank-10

PGD u10 with the reference solution uref for different frequencies ω.

on Γ2. At the spatial level, a tetrahedral mesh composed of 9363 elements is used and the
model contains N = 6186 degrees of freedom. We consider a unit mass density and a damping
η = 0.001. The Young modulus E is chosen as a uniform random variable on (0.8, 1.2) (that
is to say a variability of ±20% around the mean value) and is expressed as a function of a
uniform random variable ξ with values in Ξ = (0, 1) (E = 1 + 0.4(ξ − 1

2 )). At the stochastic
level, a finite element type approximation is used with a partition of Ξ into 16 elements with
polynomial degree 4 (P = 80).

(a) Model problem (b) Finite element mesh

Figure 9. Description of example 2. Geometry and boundary conditions (a) and finite element mesh
(b)

Figure 10 illustrates some realizations of the frequency response of a particular output degree
of freedom of the 3D structure.

For ω = 1.67rad.s−1 in a resonance zone of the structure, a PGD approximation is computed.
We focus on the displacement in the direction of the excitation of the output node (located
in figure 9(a)). The semi-discretized solution, denoted uref is taken as the reference solution.
It is compared in figure 11 to the rank-4 PGD approximation u4. Once more, a very low rank
PGD approximation is able to capture and well describe the irregularity if the response.
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Figure 10. Samples of the frequency response function of the output degree of freedom of the 3D
structure
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Figure 11. Modulus of the output degree of freedom of the 3D structure as a function of random
variable E(ξ). Comparison of the PGD approximation u4 with the reference solution uref for the

frequency ω = 1.67 rad.s−1
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4. MODEL REDUCTION STRATEGY FOR BAND ANALYSIS

In this section, we take an interest to the computation of the frequency response over a certain
frequency band. We propose a model reduction strategy based on PGD for the efficient solution
of problem (12) over the whole frequency band. The PGD method introduced in section 4 can
be seen as a strategy for the a priori construction of a reduced basis of functions which is
optimal for the representation of the solution at a given frequency. However, these reduced
bases can then be exploited for the generation of a global reduced order model which appears
to be valid on the whole frequency band of interest.

4.1. Construction of a global reduced basis

Let {wi}M
i=1 denote the global reduced basis and let introduce the associated matrix

W = (w1, . . . ,wM ) ∈ C
N×M

For a new frequency ω, we proceed as follows. We compute a first approximation

uM =

M∑

i=1

wiλi(ω, ξ) := WΛ(ω, ξ)

which is defined as the Galerkin projection of the solution u(ω, ξ) on the reduced approximation
space associated with W. That means that stochastic functions Λ = (λ1, . . . , λM )T ∈ (SP )M

are defined as the solution of the following problem:

E(Λ̃
T
AWΛ) = E(Λ̃

T
bW) ∀Λ̃ ∈ (SP )M (34)

with AW(ω, ξ) = Re(WHA(ω, ξ)W) and bW(ω, ξ) = Re(WHb(ω, ξ)). The precision of the
solution uM (ω, ξ) = WΛ(ω, ξ) is then evaluated by the following error indicator

εres(uM ) =
‖b − AuM‖

‖b‖ (35)

If the approximation uM does not satisfy a desired precision, the PGD method is used in order
to build a higher rank decomposition

uM+K = uM +

M+K∑

i=M+1

wiλi

with K such that uM+K satisfies the error criterion. The global reduced basis W is then
enriched with the new computed vectors {wi}M+K

i=M+1, thus leading to the augmented global
reduced basis

W = (w1, . . . ,wM ,wM+1, . . . ,wM+K)

We finally denote by m(ω) = M +K the rank of the obtained approximation. Let us note that
for a given desired precision, the required rank m(ω) depends on the way the frequency band
is scanned. In the following examples, we choose to scan the frequencies by increasing values.
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4.1.1. Example 1 We consider the example 1 described in section 3.5.1 and we choose a
frequency band which contains the 10 first eigenmodes of the mean structure (mean value of
parameters). We compute the response for 50 frequency samples {ωβ}50

β=1 uniformly distributed

over the frequency band. For each frequency, we solve the problem with a precision εres ≤ 10−3.
The problem is first solved for each frequency independently. Figure 12(a) shows the rank

m(ω) obtained at each frequency. When a resonance appears, the representation of the solution
clearly requires a higher rank decomposition (i.e. a richer basis of deterministic modes). A total
of 265 deterministic modes have been computed to represent the random dynamic response
when considering the 50 frequencies separately (

∑50
β=1 m(ωβ) = 265).

We now consider the strategy using the global reduced basis. For the same required precision
10−3, figure 12(b) shows the number of deterministic modes added to the global basis at
each frequency and the evolving size M of the reduced basis W. We recall that we scan the
frequency band from the left to the right, which explains the increase of M with ω. We notice
that enrichment of the global basis coincides with the resonances of the frequency response,
for which new features which are not present in the global basis are detected in the solution.
A total of only 30 deterministic modes are here computed for the prediction of the random
dynamic response over the whole studied frequency band. The reuse of the reduced basis W

enables to considerably reduce the computation cost.
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(a) Without reuse of the basis
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(b) With reuse of the basis

Figure 12. Example 1. (a) rank m(ω) of the PGD approximation for each of the 50 independently
computed frequencies and (b) progression of the rank M of the decomposition by reusing the
deterministic basis over 50 computed frequencies, and number of added modes at each frequency

(frequencies are computed from the left to the right)

4.1.2. Example 2 We proceed likewise with the second example described in section 3.5.2. The
considered frequency band contains the first 10 eigenmodes of the 3D structure. We compute
the response for 50 frequency samples {ωβ}50

β=1 uniformly distributed over the frequency band.

For each frequency, we solve the problem with a precision εres ≤ 10−3.
The problem is first solved for each frequency independently. Figure 13(a) shows the rank

m(ω) obtained at each frequency. A total of 232 deterministic vectors are generated for the
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analysis of the response over the frequency band (
∑50

β=1 m(ωβ) = 232).

We now consider the strategy using the global reduced basis. For the same required precision
10−3, figure 13(b) shows the number of deterministic modes added to the global basis at each
frequency and the evolving size M of the reduced basis W. The resulting global reduced basis
has a dimension M = 32.
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(a) Without reuse of the basis

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

20

25

30

35

 

 
Added functions
Total dimension M

(b) With reuse of the basis

Figure 13. Example 2. (a) rank m(ω) of the PGD approximation for each of the 50 independently
computed frequencies and (b) progression of the rank M of the decomposition by reusing the
deterministic basis over 50 computed frequencies ω, and number of added modes at each frequency

(frequencies are computed from the left to the right)

Figure 14 shows some deterministic modes of the reduced basis W. We can easily have
access to the envelope of the frequency response over the frequency band with a simple post-
processing. Figure 15 illustrates the very good quality of the envelope (quantiles of orders 0.1%
and 99.9%) obtained with the fine stochastic approximation (see section 3.5.2). We can see
that the Monte-Carlo simulations plotted on the same figure are inside the envelope.

Figure 14. Some deterministic modes of the global reduced basis W
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We have finally obtained a global reduced basis W with small dimension 32 that defines
a reduced order model of an uncertain structure which gives an accurate representation of
the dynamic response on the whole frequency band. It is further illustrated in the following
section.

Figure 15. Envelope of the frequency response of the 3D structure: quantiles of orders 0.1% and 99.9%.
Envelope of PGD approximation associated with a residual error of 10−3 and samples of the reference

solution.

4.2. Robust model order reduction

In the previous section, we have introduced a way of constructing a global reduced deterministic
basis W which is valid for a frequency band. This basis allows for the construction of a
reduced order model which can be reused for computing non computed frequencies of the
frequency band of interest and also for computing more accurate stochastic approximations of
the solution. Actually, the global basis can be constructed with a reduced computational
cost using a coarse stochastic approximation, and reused for computing a fine stochastic
approximation of the associated reduced order model. More precisely, a fine approximation
uM (ω, ξ) ∈ CN ⊗ SP on the frequency band can be computed in two steps:

• First, a global basis W is computed using a coarse stochastic approximation (P =
Pcoarse) and q frequency samples {ωβ}q

β=1 uniformly distributed over the frequency band
I.

• Then, for any other frequency of interest in I, uM is calculated by just updating the
stochastic functions Λ by solving equation (34) with a fine stochastic approximation
(P = Pfine).

As illustrated below, it appears that the global reduced basis W which is obtained by using
a coarse stochastic approximation is very close to the one obtained by using directly a fine
stochastic approximation. This can be interpreted as a property of robustness with respect to
stochastic approximation.

4.2.1. Illustration on example 1 Let us consider the two-plate structure of example 1. In the
following, I is the frequency band containing the first 10 eigenmodes. q = 50 frequency samples
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over I are used for the construction of the global deterministic bases. Figure 16 shows two
global deterministic bases W which are obtained with the same required precision εres ≤ 10−3

and with the respective dimensions of stochastic approximation spaces P = 4 and P = 240.

.
(a) (b)

Figure 16. Global deterministic bases W of the two plate structure obtained with two different
stochastic approximations: (a) P = 4 and (b) P = 240

The angle between the subspaces spanned by the two global bases is 0.39rad (very close
subspaces). Furthermore, we can note that the angle between the subspaces spanned by the
modal basis made of the 10 first modes of the mean structure on the one hand and by W on
the other hand is 4.10 10−10rad (resp. 2.04 10−10rad) with W = WP=240 (resp. W = WP=4),
that is to say the supspace spanned by the modal basis of the mean structure is a subspace of
that spanned by W. PGD expansions using a coarse stochastic approximation are thus able
to capture a good approximation of the global reduced basis.

To support this observation, a separated representation u30 = WΛ ∈ CN ⊗ SPfine
is

now computed into two steps: we first generate the global basis W using a coarse stochastic
approximation P = Pcoarse = 4. Then, we update for each frequency the stochastic functions
Λ using the fine approximation P = Pfine = 240. Figure 17 shows the response surface of the
approximation thus obtained before and after updating the stochastic functions with the fine
stochastic approximation for three frequencies which belong to the set of frequencies used for
the construction of W. The approximation u30 matches perfectly the reference solution after
the stochastic functions are updated using the fine stochastic approximation.

The global reduced basis of dimension 30 has been computed using 50 frequency samples (and
a coarse stochastic approximation). Using this reduced basis, the approximation u30 = WΛ

is now calculated by updating the stochastic functions Λ for the 50 frequency samples used
for the construction of W on the one hand and for 200 other frequency samples on the other
hand. The envelopes of the frequency response (quantiles of orders 0.1% and 99.9%) are then
post-processed and plotted in figure 18. The envelope obtained in figure 18(b) is of very good
quality even though the frequencies for which the approximation u30 is computed are not those
used in the construction of W. The envelope is notably well computed for the low frequencies
ω < 0.1rad.s−1.
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(a) ω = 0.41 rad.s−1
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(b) ω = 0.67 rad.s−1
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(c) ω = 0.84 rad.s−1

Figure 17. Modulus of the out of plane displacement of the upper right node of the two-plate
structure as a function of random variable E and for a fixed value of η = 0.005. Comparison between
the reference solution uref and the PGD approximation using the global basis W for frequencies
(a)ω = 0.41 rad.s−1, (b)ω = 0.67 rad.s−1 and (c)ω = 0.84 rad.s−1. W is computed with P = 4 and

with 50 frequency samples.

(a) Update of the stochastic functions on 50 frequency
samples

(b) Update of the stochastic functions on 200 frequency
samples

Figure 18. Envelopes (quantiles of orders 0.1% and 99.9%) of the frequency response of the modulus
of the output degree of freedom for the approximation u30 = WΛ. W is first computed with 50
frequency samples and using a coarse stochastic approximation, and Λ is updated at the same 50
frequency samples (a) or at 200 different frequency samples (b), using a fine stochastic approximation.

Black curves represent samples of the reference response surface.

In conclusion, it is possible to compute the global reduced basis of deterministic modes W

with a coarse stochastic approximation and a coarse frequency sampling, and then to update a
global basis of stochastic functions using a suited refined stochastic approximation (the global
basis W can be enriched if needed). This construction of the reduced basis enables considerable
computational savings and has proved robust.

4.2.2. Illustration on example 2 Similar observations can be done on the 3D structure. We
define I the frequency band containing the 10 first eigen modes of the mean structure.
q = 50 frequency samples are used for the construction of W with a coarse stochastic
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approximation P = Pcoarse = 12. The stochastic functions are then updated with a fine
stochastic approximation P = Pfine = 80. The parametric response surface thus obtained
matches very well the reference solution once the stochastic functions are updated with the
fine stochastic approximation, as illustrated in figure 19.
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Figure 19. Modulus of the output degree of freedom of the 3D structure as a function of random variable
E(ξ). Comparison between the reference solution uref and the approximation using the global basis
W for the frequency ω = 1.67 rad.s−1. W is first computed with P = Pcoarse = 12 and with 50

frequency samples.

4.2.3. Illustration on example 3 Let us introduce a third example which consists of a 3D
elastic structure presented in figure 20. Homogeneous Dirichlet conditions are imposed at the
base of the arch and the structure is excited on its left vertical face with a normal harmonic
load density. The structure has four cylindrical inclusions with a random Young modulus for
each of them. At the spatial level, a tetrahedral mesh composed of 8159 elements is used and
the model contains N = 5346 degrees of freedom.

We choose the mass density ρ = 1 and the damping coefficient η = 0.01. We denote
by E1 to E4 the Young moduli of the four inclusions distributed clockwise looking at
figure 20(a), E1 corresponding to the Young modulus of the bottom left inclusion. Ej , with
j = {1, 2, 3, 4}, are uniform random variables on [0.95, 1.05]. The sources of uncertainties are
then represented with 4 independent uniform random variables ξ = {ξ1, ξ2, ξ3, ξ4} with values
in Ξ = ×4

j=1Ξj = (0, 1)4 and Ej = 1 + 0.1(ξj − 1
2 ). Figure 21 shows samples of the frequency

response function of a degree of freedom over the frequency band containing the first 9 eigen
modes of the mean structure.

Here we take an interest in the narrow frequency band I = [0.25rad.s−1, 0.32rad.s−1] that
contains the eigen modes 6 to 9 of the mean structure and for which variabilities of the input
parameters are of important incidence on the frequency response. We construct a global basis
W over this frequency band with a precision εres ≤ 10−3. It is generated using q = 10
increasing frequency samples uniformly spread over I and a coarse stochastic approximation
consisting in a degree 1 polynomial approximation in each dimension (Pj = 2), yielding a
total dimension of P = 16. We finally obtain a reduced basis W = WP=16 of 75 deterministic
modes.
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(a) Model problem (b) Finite element mesh

Figure 20. Description of example 3: mesh and boundary conditions of a 3D elastic arch structure.
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Figure 21. Random frequency response functions of the arch structure: horizontal displacement of a
node situated at the top of the structure.

This reduced basis is compared with the modal bases Vs made of the eigen modes 6 to 9 of
the deterministic structures associated with different realizations of the input parameters ξs

by computing the angles between the subspaces spanned by W and Vs. Using 100 samplings
we find a maximum angle of 1.82 10−6rad. We can conclude that the subspace spanned by the
global basis W contains almost surely all the subspaces spanned by the modal bases Vs of the
deterministic structures. This reduced basis W thus generated proves to be an accurate basis
for the computation of the frequency response for a frequency ω ∈ I as will be seen in section
5.2.2.
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5. STRATEGIES FOR FINE STOCHASTIC APPROXIMATIONS

Since the dynamic response may happen to be highly nonlinear with respect to the random
variables, the dynamic analysis requires a fine stochastic approximation. This points out
the need for strategies for fine stochastic approximation to improve the accuracy of the
representation of the random response. We here propose and discuss two strategies for fine
stochastic approximation.

5.1. Adaptive stochastic approximation

Various strategies of adaptive approximation can be considered. The strategy used here is
a simple h-adaptive finite element approximation. Let {Ξi}N

i=1 be a partition of Ξ into N

non-overlapping elements. The error estimation per element on the partition {Ξi}N
i=1 of Ξ

is evaluated based on two solutions computed with different polynomial degrees. Let us
denote by u

p
M and u

p+q
M the rank M approximations computed with a previously constructed

deterministic basis W of M modes and an update of the stochastic functions with polynomial
degree respectively p and p + q, with q > 0. Considering u

p+q
M as the reference solution, the

global error estimation on Ξ is defined by

ǫ =

∥∥up+q
M − u

p
M

∥∥
L2

Pξ
(Ξ;Cn)

∥∥up+q
M

∥∥
L2

Pξ
(Ξ;Cn)

(36)

and the error estimation per element is defined by

ǫi =

∥∥up+q
M − u

p
M

∥∥
L2

Pξ
(Ξi;Cn)

√
Pi

∥∥up+q
M

∥∥
L2

Pξ
(Ξ;Cn)

(37)

where

‖v‖2
L2

Pξ
(Ξi;Cn) =

∫

Ξi

Re(vHv)dPξ

and Pi is the probability measure of the ith element. It comes out that providing ǫi < e ensures
that ǫ < e. Thus an element is splitted if the error ǫi on the element is higher than a refinement
tolerance e. Conversely two adjacent elements i and i + 1 are merged if

Piǫ
2
i + Pi+1ǫ

2
i+1

Pi + Pi+1
<

(
e

γ

)2

with γ > 1 (38)

where Piǫ
2
i represents the error contribution of element i.

The adaptive strategy is illustrated on example 1 for which the most sensitive stochastic
dimension is the first dimension. For this dimension, we set p = 4 and q = 1. Let γ = 10. The
resulting partition of Ξ1 for a relative precision of e = 10−3 and the response surface in terms
of ξ1 of the out of plane displacement are illustrated in figure 22 for frequencies ω = 0.41Hz,
ω = 0.67Hz and ω = 0.84Hz.

Adaptive strategies provide appropriate stochastic approximation spaces as regards the
response surfaces. Naturally, bigger elements are obtained when the response is smooth and
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(a) ω = 0.41 rad.s−1, P = 30
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(b) ω = 0.67 rad.s−1, P = 150
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(c) ω = 0.84 rad.s−1, P = 75

Figure 22. Comparison between the h-adapted approximate solution and the reference solution uref

(top figures) and final partition of Ξ1 and error ǫi per element (bottom figures).

smaller elements are needed where the response presents irregularities, which leads to a
high dimension of the stochastic approximation space. The authors refer to [34, 35, 17, 2]
for an efficient assessment of the error estimation and some improvements of the adaptive
methods. However, these adaptive strategies become untractable when increasing the stochastic
dimension even for a moderate stochastic dimension. It then proves necessary to propose
alternative approaches.

5.2. Separated representation in the parametric space

In this section, we leave aside the concerns about the choice of the most adapted stochastic
approximation. The motivation is to use a straightforward and sufficiently fine stochastic
approximation. So far, the stochastic algebraic equations (32) (resp. (28)) have been solved
using a classical spectral stochastic approximations which requires the solution of a system
of respectively M × P (resp. P ) equations, with a possibly very high P . Here, we exploit the
tensor product structure of the stochastic space SP = S1

P1
⊗ . . . ⊗ Sr

Pr
and we introduce a

method for the a priori construction of a separated representation of the stochastic functions
Λ ∈ RM ⊗ SP under the form

Λ(ξ) ≈ ΛZ(ξ) =
Z∑

k=1

φ0
kφ1

k(ξ1) . . . φr
k(ξr), (39)

with φ0
k ∈ RM and φ

j
k ∈ S

j
Pj

for j = 1 . . . r, and where Z denotes the rank of the decomposition.
This type of representation allows for high dimensional stochastic problems to be dealt with
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(see [25]). Note that it can be interpreted as a generalized spectral expansion

ΛZ(ξ) =

Z∑

k=1

φ0
kHk(ξ) (40)

with basis functions Hk(ξ) = φ1
k(ξ1) . . . φr

k(ξr) which are not selected a priori but constructed
in an optimal way.

5.2.1. PGD method For the presentation of the methodology, we consider the solution of
problem (32), equivalently rewritten as follows:

Λ ∈ R
M ⊗ SP ,

〈
Λ̃,BΛ

〉
=

〈
Λ̃,d

〉
∀Λ̃ ∈ R

M ⊗ SP (41)

where random matrix B(ξ) and random vector d(ξ) are defined by

B(ξ) = Re(WHA(ξ)W) ∈ R
M×M , d(ξ) = Re(WHb) ∈ R

M

Remark 2. Note that the solution of equation (28) can be also recasted in the same format
by considering B(ξ) = Re(wHA(ξ)w) ∈ R and d(ξ) = Re(wHrm) ∈ R.

Minimal residual PGD. We first introduce a progressive definition of separated
representation (39) based on a Minimal Residual PGD. We suppose that a rank-
(Z − 1) separated representation ΛZ−1 has been computed. A new rank-one element
φ0

Zφ1
Z(ξ1) . . . φr

Z(ξr) is then defined by the optimization problem

‖B(ΛZ−1 + φ0
Zφ1

Z . . . φr
Z) − d‖2 = min

φ0,φ1,...,φr
‖B(ΛZ−1 + φ0φ1 . . . φr) − d‖2 (42)

The following r + 1 coupled equations are necessary conditions of optimality of the new rank
one element φ0

Zφ1
Z . . . φr

Z :

< φ̃
0
φ1

Z . . . φr
Z ,BTBφ0

Zφ1
Z . . . φr

Z >=< φ̃
0
φ1

Z . . . φr
Z ,BTd >, ∀φ̃

0 ∈ R
M

< φ0
Z φ̃1 . . . φr

Z ,BTBφ0
Zφ1

Z . . . φr
Z >=< φ0

Z φ̃1 . . . φr
Z ,BTd >, ∀φ̃1 ∈ S

1
P1

· · ·
< φ0

Zφ1
Z . . . φ̃r,BTBφ0

Zφ1
Z . . . φr

Z >=< φ0
Zφ1

Z . . . φ̃r
Z ,BTd >, ∀φ̃r ∈ S

r
Pr

An alternated minimization algorithm is then used to construct a rank-one element solution
of (42), consisting in minimizing successively on φ0, φ1, ... φd.

Galerkin PGD. A definition based on Galerkin orthogonality criteria can also be
introduced, by searching a new rank one element φ0

Zφ1
Z . . . φr

Z that satisfies simultaneously:

< φ̃
0
φ1

Z . . . φr
Z ,Bφ0

Zφ1
Z . . . φr

Z >=< φ̃
0
φ1

Z . . . φr
Z ,d >, ∀φ̃

0 ∈ R
M

< φ0
Z φ̃1 . . . φr

Z ,Bφ0
Zφ1

Z . . . φr
Z >=< φ0

Z φ̃1 . . . φr
Z ,d >, ∀φ̃1 ∈ S

1
P1

· · ·
< φ0

Zφ1
Z . . . φ̃r,Bφ0

Zφ1
Z . . . φr

Z >=< φ0
Zφ1

Z . . . φ̃r
Z ,d >, ∀φ̃r ∈ S

r
Pr
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A new rank-one element is then computed by applying an iterative algorithm for solving the
above system of equations (see [25] for details). Such as for the PGD in 2 dimensions presented
in section 3, optimality of a rank-one element can be clearly defined only for symmetric
problems associated with an optimization problem. This definition however proves efficient
for many applications. Below, this definition is compared with the Minimal Residual definition
on our problem of interest.

Remark 3. In [25], the author introduces additional update steps that can be carried out
in some or all of the dimensions in order to improve the convergence of the separated
representation. In the following example, we perform one updating step along each dimension
(see [25] for details).

5.2.2. Illustration

Example 1. The methodology is applied to example 1 reusing the global basis W = WP=4

constructed in section 4.2.1. The set of stochastic functions ΛZ is constructed with the
definition above where the approximation spaces are those defined in section 3.5.1. We then
search ΛZ(ξ1, ξ2) ∈ RM ⊗ S1

P1
⊗ S2

P2
with M = 30, P1 = 160 and P2 = 3. We study the

convergence of ΛZ with respect to the rank Z. In the same way as in section 3.5.1, the
convergence is illustrated with the relative error between uZ = WΛZ and the semi-discretized
solution uref ∈ CN ⊗ S

ǫZ =
‖uref − uZ‖

‖uref‖
(43)

Figure 23 depicts the relative error ǫZ with Z for the three frequencies, ω = 0.41 rad.s−1,
ω = 0.67 rad.s−1 and ω = 0.84 rad.s−1, using a Galerkin PGD and a Minimal Residual PGD
for the definition of the separated representation ΛZ . Only the Minimal Residual PGD proves
robust for all three of the frequencies. The relative error reaches the plateau (observed before
in figure 4) representing the error due to the stochastic approximation with Z = 22. The
progressive Galerkin PGD happens to finally converge only for relatively smooth parametric
responses but fails for the construction of a separated representation of a highly nonlinear
parametric response. In figure 24, are plotted the response surfaces of the displacement uZ

with Z = 5, 10 and 30 obtained with the Minimal Residual PGD. They have to be compared
to those of figures 6 and 7.

Example 3. The strategy is now applied on example 3 where the global basis W = WP=16

constructed in section 4.2.3 is reused. The set of stochastic functions ΛZ is constructed with
the Minimal Residual PGD. We introduce the approximation spaces S

j
Pj

of finite element type

with 40 elements (uniform partition of Ξj) and polynomial degree 4 for j = {1, 2, 3, 4} and
ΛZ is searched in RM ⊗ S1

P1
⊗ S2

P2
⊗ S3

P3
⊗ S4

P4
with M = 75 and P1 = ... = P4 = 200. ΛZ

is computed for the frequency which corresponds to the seventh eigen frequency of the mean
structure (ω ≈ 0.27 rad.s−1) and which is not in the set of q = 10 frequencies used for the
construction of W. The separated approximation uZ = WΛZ for Z = 50 is compared to
the semi-discretized solution uref ∈ CN ⊗ S in figure 25 for 4 samples of ξ. The separated
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Figure 23. Convergence with Z of uZ . Error indicator ǫZ estimated with Monte-Carlo simulations

approximation thus obtained matches the reference solution and defining the residual error by

εres(ΛZ) =
‖d − BΛZ‖

‖d‖ (44)

we have εres(Λ50) = 1.7 10−3.
These results support the observation made in section 4.2 of the ability to construct a good

quality reduced basis W over a frequency band I that can be reused for the computation of
frequency responses in I.
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(a) ω = 0.67 rad.s−1, Z = 5
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(b) ω = 0.84 rad.s−1, Z = 5
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(c) ω = 0.67 rad.s−1, Z = 10
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(d) ω = 0.84 rad.s−1, Z = 10
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(e) ω = 0.67 rad.s−1, Z = 30
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(f) ω = 0.84 rad.s−1, Z = 30

Figure 24. Response surface of the modulus of the out of plane displacement of the upper right node
of the two-plate structure (for the separated approximation uZ) for ω = 0.67 rad.s−1 (left figures)

and ω = 0.84 rad.s−1 (right figures), and for an increasing rank Z from top to bottom figures
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(a) uref

(b) u50

Figure 25. Samples of the solution at frequency ω ≈ 0.27 rad.s−1, from left to right ξ =
{0.01, 0.71, 0.20, 0.47}, {0.80, 0.52, 0.70, 0.80}, {0.25, 0.37, 0.11, 0.71}, {0.19, 0.59, 0.13, 0.04}. Reference
solution uref (a) and separated approximation u50 (b) (colors represent the modulus of the

displacement field).
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6. CONCLUSION

In this paper, we have first shown that the PGD method enables to automatically generate
a quasi-optimal separated representation of the frequency response of a structure on a
reduced basis of deterministic modes and stochastic functions. A global reduced basis of
deterministic modes valid for a low frequency range can be constructed progressively with
a reuse and enrichment of bases extracted from PGD expansions at some frequency samples.
This global basis appears to be robust with respect to stochastic approximation and it allows
the construction of an accurate reduced order model that can be reused for further analyses.
In particular, it can be used for computing the dynamic response at unresolved frequency
samples. It can also be used for computing more accurate stochastic approximations, by using
adaptive stochastic approximation methods or a further separated representation method
for the representation of multiparametric stochastic functions. This latter method enables
to tackle multidimensional parametric problems with fine approximation in each parametric
dimension. For the construction of these separated representations, a Minimal Residual PGD
method has been introduced. It has proved robust but it yields to a rather slow convergence of
separated representations. This points out the need for further investigations and the possible
introduction of more efficient definitions of PGD for the present context of structural dynamics.
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