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Riesz measures and Wishart laws

associated to quadratic maps

By Piotr Graczyk and Hideyuki Ishi

Abstract. We introduce a natural definition of Riesz measures and
Wishart laws associated to an Ω-positive (virtual) quadratic map, where
Ω ⊂ R

n is a regular open convex cone. We give a general formula for
moments of the Wishart laws. Moreover, if the quadratic map has an
equivariance property under the action of a linear group acting on the
cone Ω transitively, then the associated Riesz measure and Wishart law
are described explicitly by making use of theory of relatively invariant
distributions on homogeneous cones.

§1. Introduction.

Riesz measures and distributions on convex cones form one of fundamental tools

of harmonic analysis and of the theory of the wave equation, cf. [4] in the case of

symmetric cones and [6], [11] for homogeneous cones. Moreover, exponential fam-

ilies generated by Riesz measures are composed of Wishart laws and are of great

significance in random matrix theory and in statistics.

Wishart laws are probability distributions on symmetric or Hermitian matrices

with very important applications in multivariate statistics. Their role in statistics

is due to two reasons:

– they are probability distributions of the maximum likelihood estimator(MLE)

of the covariance matrix in a multivariate normal sample ([20], [1]).

– in Bayesian statistics, Wishart laws form a Diaconis-Ylvisaker family ([3]) of

prior distributions for the covariance parameter in a covariance selection model

([19]).

On the other hand, recent developments in random matrix theory of chiral Gauss-

ian ensembles containing Wishart laws, are intense and motivated by applications
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in mathematical physics, cf. [16] and references therein.

These numerous modern applications of Wishart laws make it necessary to de-

velop the theory of Wishart laws and Riesz measures on more general cones than

in the classical case of the symmetric cones of real symmetric or complex Hermit-

ian matrices. For example, in an r-dimensional Gaussian model X , if the marginal

variables Xi and Xj are known to be conditionally independent given all the other

variables, the statistical analysis of the covariance matrix of X must be done on

the cone P of positive definite symmetric matrices Y with Yij = Yji = 0 and on

its dual cone Q ([19]). The cones P and Q are usually no longer symmetric. This

led to some important papers in recent statistical and probabilistic literature about

Wishart laws on more general cones: homogeneous cones ([1]) or cones related to

graphical models ([19]). In these papers, Wishart laws are introduced via their den-

sity functions (see Section 3.8).

In our paper we construct and study Riesz measures and Wishart laws on regular

convex cones via quadratic maps. For a regular open convex cone Ω ⊂ Rn and

an Ω-positive quadratic map q : Rm → Rn, the Riesz measure associated to q is

defined as the image of the Lebesgue measure dx on Rm by q. Wishart laws studied

in this paper are obtained from R
m-valued normal random vectors X as the law

of Y := q(X)/2. This is a classical natural approach to Riesz measures ([4]) and

Wishart laws ([20],[4]) and we propose to extend it to a much more general setting.

In Section 2 of the paper we explain the details of the quadratic construction

of Riesz measures on regular convex cones and next we define the corresponding

Wishart laws. We compute their Laplace transforms, what is the starting point

to get formulas for their expectation, covariance and higher moments (Theorems

2.5 and 2.6). More general Riesz and Wishart distributions associated to virtual

quadratic maps are introduced in Section 2.3. Moments formulas are generalized

(Theorem 2.9). Group equivariance of Wishart laws is studied at the end of the

section.

Section 3 of the article is thoroughly devoted to the case when Ω is a homogeneous

cone and the quadratic map q is homogeneous. A crucial role in the analysis of

these maps and of related Riesz measures and Wishart laws is played by a matrix

realization of any homogeneous cone, coming from [14] and explained in Section 3.2.
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It allows, among others, to define basic and standard quadratic maps in Sections

3.3 and 3.4. They play a role of generators for homogeneous quadratic maps q

needed to construct all Riesz measures and Wishart laws on Ω. Next we apply the

results of [11] on Gindikin-Riesz distributions on Ω and on the orbit decomposition

of Ω, the closure of Ω. We explain the relation between Riesz measures related to

homogeneous quadratic maps and the Gindikin-Riesz distributions on Ω (Theorem

3.9). In Section 3.7, we prove the Bartlett decomposition for the Wishart laws on

homogeneous cones (Theorems 3.11 and 3.13).

Families of Wishart laws that we construct and study in Section 3 comprise

Wishart distributions studied in papers [1] and [19] (homogeneous case) and are

significantly bigger: we describe all singular Wishart laws and many more abso-

lutely continuous Wishart laws than in papers [1] and [19]. For the symmetric cone

case, our Wishart laws cover the ones studied in [10] as well. All the results of

Section 2 apply to them, in particular the formulas for the moments.

Throughout the paper and from its very beginning all our concepts are illustrated

on important examples, including a non-homogeneous cone (Example 1 Section 2),

symmetric cones of positive definite real symmetric matrices Πr(Example 2 Section

2), 4-dimensional Lorentz cone(Example 5 Section 3), and non-symmetric but ho-

mogeneous Vinberg cone and its dual(Example 3 Section 2).

Acknowledgement. We thank Professors Gerard Letac and Yoshihiko Konno for

discussions on the topic of the article.

§2. Riesz measure and Wishart law on a convex cone.

2.1. Regular cones and quadratic maps. In this paper, an open convex cone

Ω ⊂ Rn is always assumed to be regular, that is, Ω ∩ (−Ω) = {0}, where Ω denotes

the closure of Ω. Then the dual cone Ω∗ :=
{
η ∈ (Rn)∗ ; 〈y, η〉 > 0 (∀y ∈ Ω \ {0})

}

is a regular open convex cone again in the dual vector space (Rn)∗, and we have

(Ω∗)∗ = Ω. An Rn-valued quadratic map q : Rm → Rn is said to be Ω-positive if

(i) q(x) ∈ Ω for all x ∈ R
m, and (ii) q(x) = 0 implies x = 0. These (i) and (ii) are

restated in a single condition q(x) ∈ Ω \ {0} (∀x ∈ Rm \ {0}). For the quadratic

map q, we define the associated linear map φ = φq : (R
n)∗ → Sym(m,R) in such a

way that
txφ(η)x = 〈q(x), η〉 (η ∈ (Rn)∗, x ∈ R

m).
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Then the Ω-positivity of q is equivalent to the following property of φ:

(2.1) η ∈ Ω∗ ⇒ φ(η) is positive definite.

Example 1. Let Ω be the open convex cone in R3 defined by

Ω :=






t1





0
0
1



+ t2





1
0
1



 + t3





1
1
1



+ t4





0
1
1



 ; t1, t2, t3, t4 > 0







=











y1
y2
y3



 ∈ R
3 ; y1 > 0, y2 > 0, −y1 + y3 > 0, −y2 + y3 > 0






.(2.2)

If we identify (R3)∗ with R
3 by 〈y, η〉 := y1η1 + y2η2 + y3η3 (y, η ∈ R

3), we have

Ω∗ =






t1





1
0
0



 + t2





0
1
0



+ t3





−1
0
1



+ t4





0
−1
1



 ; t1, t2, t3, t4 > 0







=











η1
η2
η3



 ∈ R
3 ; η3 > 0, η1 + η3 > 0, η1 + η2 + η3 > 0, η2 + η3 > 0






,

see [13]. Let q : R4 → R3 be the quadratic map given by

q(x) := (x1)
2





0
0
1



 + (x2)
2





1
0
1



 + (x3)
2





1
1
1



 + (x4)
2





0
1
1



 (x ∈ R
4).

Clearly, this q is Ω-positive. By a simple calculation, we have

φ(η) =







η3 0 0 0
0 η1 + η3 0 0
0 0 η1 + η2 + η3 0
0 0 0 η2 + η3







(η ∈ (R3)∗).

Example 2. Let Πr be the set of positive definite real symmetric matrices of size

r. Then Πr is a regular open convex cone in the vector space Sym(r,R) of real

symmetric matrices. If we identify the space Sym(r,R) with its dual vector space

by the inner product 〈y, η〉 := tr (yη) (y, η ∈ Sym(r,R)), then the dual cone Π∗
r

coincides with Πr. We define qr,s : Mat(r, s;R) → Sym(r,R) by

qr,s(x) = x tx (x ∈ Mat(r, s;R)).
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Then qr,s is Πr-positive. We denote the (i, j) component of x ∈ Mat(r, s;R) by

xr(j−1)+i, so that Mat(r, s;R) is identified with Rrs. Then we have for η ∈ Sym(r,R)

φ(η) =







η
η

. . .
η







∈ Sym(rs,R),

where η is put s times. In this case, the map φ : Sym(r,R) → Sym(rs,R) is a

Jordan algebra representation, and q is exactly the quadratic map associated to the

representation ([4, Chapter IV, Section 4]).

Example 3. Let Z be a subspace of Sym(r,R), and put P := Z ∩ Πr. Then P
is a regular open convex cone in Z. Let Q ⊂ Z∗ be the dual cone of P. We shall

construct a Q-positive quadratic map qZ : Rr → Z∗ whose associated linear map

φZ : Z → Sym(r,R) equals the inclusion map. Let us define the surjective linear

map πZ∗ : Sym(r,R) → Z∗ by

〈y, πZ∗(S)〉 := tr yS (y ∈ Z, S ∈ Sym(r,R)).

Then the quadratic map qZ : Rr → Z∗ is given by qZ(x) := πZ∗(xtx) (x ∈ Rr). In

fact, for x ∈ R
r \ {0} and y ∈ P we have

(2.3) 〈y, qZ(x)〉 = tr (yxtx) = txyx > 0

because y is positive definite. Therefore we get qZ(x) ∈ Q \ {0}, so that qZ is Q-

positive. Keeping the natural isomorphism (Z∗)∗ ≃ Z in mind, we see from (2.3)

that φZ(y) = y (y ∈ Z). Soon later, we shall consider the cases

(2.4) Z :=











y11 0 0
0 y22 y32
0 y32 y33



 ∈ Sym(3,R) ; y11, y22, y32, y33 ∈ R







and

(2.5) Z :=











y11 0 y31
0 y22 y32
y31 y32 y33



 ∈ Sym(3,R) ; y11, y21, y31, y22, y33 ∈ R







as concrete examples. Actually, in the latter case (2.5), the cones Q and P are called

the Vinberg cone and the dual Vinberg cone respectively, which are the lowest dimen-

sional non-symmetric homogeneous cones ([23]). We shall see another realization of

the Vinberg cone Q in (3.6) and the last paragraph of Section 3.3.
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Let I = {i1, i2, . . . , ik} be a subset of {1, . . . , r} with 1 ≤ i1 < i2 < · · · < ik ≤ r,

and define

(2.6) RI := {x ∈ R
r ; xi = 0 if i /∈ I } .

We denote by qIZ the restriction of qZ to the space RI ⊂ Rr. Clearly qIZ : RI → Z∗

is Q-positive. The associated linear map φqI
Z
: Z → Sym(k,R) gives a submatrix of

elements y ∈ Z, that is, φqI
Z
(y) = (yiαiβ), which we denote by yI .

2.2. Riesz measures and Wishart laws associated to quadratic maps. For

a regular open convex cone Ω ⊂ Rn and an Ω-positive quadratic map q : Rm → Rn,

let µq be the image of the Lebesgue measure dx on Rm by q. Namely, the measure

µq on Rn is defined in such a way that

(2.7)

∫

Rn

f(y)µq(dy) =

∫

Rm

f(q(x)) dx

for a measurable function f on Rn. The Ω-positivity of q implies that the support

of µq is contained in the closure Ω of the cone Ω. By analogy to [4, Proposition

VII.2.4], we call µq the Riesz measure associated to q.

Lemma 2.1. Let φ : (Rn)∗ → Sym(m,R) be the linear map associated to q.

Then, for η ∈ Ω∗, the Laplace transform Lµq
(−η) :=

∫

Rn e
−〈η,y〉µq(dy) of µq equals

πm/2(detφ(η))−1/2.

Proof. By definition, we have Lµq
(−η) =

∫

Rm e−
txφ(η)x dx. Since φ(η) is positive

definite, the assertion follows from a formula of the Gaussian integral. �

Definition 2.2. The members of the exponential family {γq,θ}θ∈−Ω∗ generated by

µq are called the Wishart laws on Ω associated to q. Namely,

(2.8) γq,θ(dy) :=
e〈y,θ〉

Lµq
(θ)

µq(dy) (y ∈ R
n).

Remark 2.3. By (2.7), (2.8) and Lemma 2.1, we have for a measurable function f

on Rn

∫

Rn

f(y)γq,θ(dy) = π−m/2(detφ(−θ))1/2
∫

Rm

f(q(x))e−
txφ(−θ)x dx.
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Putting Σ := φ(−θ)−1 and replacing the variable x by x/
√
2, we rewrite the right-

hand side as

(2π)−m/2(det Σ)−1/2

∫

Rm

f(q(x)/2)e−
txΣ−1x/2 dx.

Therefore, ifX is an Rm-valued random variable with the normal law N(0, φ(−θ)−1),

then γq,θ is nothing else but the law of Y := q(X)/2. In particular, the classical

Wishart law as defined in [20, Definition 3.1.3] coincides with our γq,θ in Example

2.

Proposition 2.4. Let Y be an Rn-valued random variable with the Wishart law γq,θ.

Then the Laplace transform Lγq,θ(η) = E(e〈Y,η〉) of γq,θ is given by

Lγq,θ(η) = det(Im + φ(−θ)−1φ(−η))−1/2

for η ∈ −θ − Ω∗.

Proof. By definition, we have Lγq,θ(η) = Lµq
(θ)−1Lµq

(η + θ). Thus the formula

follows from Lemma 2.1 and the observation that (detφ(−θ))−1 detφ(−η − θ) =

det
(
φ(−θ)−1(φ(−θ) + φ(−η))

)
= det(Im + φ(−θ)−1φ(−η)). �

We shall consider the mean and the covariance of the Wishart law γq,θ. First

we fix a notation for the directional derivative of a function, and recall some basic

formulas. For a (vector-valued) function f on a domain U ⊂ RN , a point a ∈ U

and a vector v ∈ RN , we denote by Dvf(a) the directional derivative of f at a

given by Dvf(a) := ( d
dh
)h=0f(a + hv). Now we consider some functions and their

derivatives on the domain −Πm in the vector space Sym(m,R). First we set f(x) =

log det(−x) ∈ R for x ∈ −Πm. Then we have

(2.9) Dvf(a) = −tr (−a)−1v (a ∈ −Πm, v ∈ Sym(m,R)).

Next we observe the case f(x) = (−x)−1 ∈ Sym(m,R) for x ∈ −Πm. Then

(2.10) Dvf(a) = (−a)−1v (−a)−1 (a ∈ −Πm, v ∈ Sym(m,R)).

Theorem 2.5. Let Y be an Rn-valued random variable with the Wishart law γq,θ.

(i) For η ∈ (Rn)∗, one has

E(〈Y, η〉) = trφ(−θ)−1φ(η)/2.

(ii) For η, η′ ∈ (Rn)∗, one has

E((〈Y, η〉 −M)(〈Y, η′〉 −M ′)) = trφ(−θ)−1φ(η)φ(−θ)−1φ(η′)/2,

where M := E(〈Y, η〉) and M ′ := E(〈Y, η′〉).
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Proof. Since {γq,θ}θ∈−Ω∗ is the exponential family generated by µq, it is well known

([18]) that the mean E(〈Y, η〉) is given by the derivative Dη logLµ(θ), while the co-

variance E((〈Y, η〉 −M)(〈Y, η′〉 −M ′)) equals DηDη′ logLµ(θ). Thus the formulas

follow from Lemma 2.1, (2.9) and (2.10) because φ(θ) ∈ −Πm. �

Let us discuss higher moments of the Wishart law γq,θ. The computation is

reduced to the derivations of the Laplace transform Lµq
(θ) = πm/2(detφ(−θ))−1/2.

Namely we have for η1, . . . , ηN ∈ (Rn)∗

E(〈Y, η1〉〈Y, η2〉 . . . 〈Y, ηN〉) =
Dη1Dη2 . . .DηNLµq

(θ)

Lµq
(θ)

.

On the other hand, if f(x) = det(−x)−p for x ∈ −Πm, where p is a real constant,

the derivative Dv1Dv2 . . .DvNf(a) (a ∈ −Πm, v1, . . . , vN ∈ Sym(m,R)) is given in

[8, Lemma 5]. We review the formula briefly. For an element π of the symmetric

group SN , we write C(π) for the set of cycles of π. For y ∈ Πm, we denote by rπ(y)

the multilinear form of v1, . . . , vN given by

rπ(y)(v1, . . . , vN) :=
∏

c∈C(π)

tr
(∏

j∈c
yvj

)

.

Then we have

Dv1Dv2 . . .DvNf(a) = f(a) ·
∑

π∈SN

p♯C(π)rπ((−a)−1)(v1, . . . , vN),

which is deduced from (2.9) and (2.10) by induction (see [8]). Making use of the

formula, we obtain

Theorem 2.6. Let Y be an Rn-valued random variable with the Wishart law γq,θ.

For η1, η2, . . . , ηN ∈ (Rn)∗, one has

E(〈Y, η1〉〈Y, η2〉 . . . 〈Y, ηN〉) =
∑

π∈SN

(1

2

)♯C(π)
rπ(φ(−θ)−1)(φ(η1), φ(η2), . . . , φ(ηN))

=
∑

π∈SN

(1

2

)♯C(π)
∏

c∈C(π)

tr
(∏

j∈c
φ(−θ)−1φ(ηj)

)

.

2.3. Wishart laws associated to virtual quadratic maps. We shall consider

virtual quadratic maps, that is a ’formal linear combination’ of quadratic maps,

and the associated Wishart laws. First we introduce the notion of direct sum of

quadratic maps. Let qi : R
mi → R

n (i = 1, . . . , s) be Ω-positive quadratic maps.

Then the direct sum q = q1 ⊕ q2 ⊕ · · · ⊕ qs is an Rn-valued quadratic map on
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Rm1 ⊕ Rm2 ⊕ · · · ⊕ Rms given by

q(x) := q1(x1) + q2(x2) + · · ·+ qs(xs)
(

x =

s∑

k=1

xi, xi ∈ R
mi

)

.

It is easy to see that q is also Ω-positive. If q1 = q2 = · · · = qs, then the direct sum

q is denoted by q⊕s
1 .

The linear map φ : (Rn)∗ → Sym(m,R) (m :=
∑s

i=1mi) associated to the direct

sum q =
∑⊕ qi is given by

(2.11) φ(η) =







φ1(η)
φ2(η)

. . .

φs(η)







(η ∈ (Rn)∗).

Conversely, if a symmetric matrix φ(η) is expressed by φ1(η), . . . , φs(η) as above for

all η ∈ (Rn)∗, then the corresponding quadratic map q is the direct sum of q1, . . . , qs.

In Example 1, the quadratic map q : R4 → R3 is the direct sum of 4 quadratic maps

qi : R ∋ x 7→ x2vi ∈ R3 (i = 1, . . . , 4), where

v1 :=





0
0
1



 , v2 :=





1
0
1



 , v3 :=





1
1
1



 , q4 :=





0
1
1



 .

In Example 2, we see that qr,s : Mat(r, s;R) → Sym(r,R) is naturally identified with

q⊕s
r,1 . In Example 3 with Z given by (2.4), we have qZ = q

{1}
Z ⊕ q

{2,3}
Z , while we do

not have such a decomposition for the case (2.5).

Let qi : R
mi → R

n (i = 1, 2) be Ω-positive quadratic maps, and q the direct

sum q1 ⊕ q2. Then it is easy to see that the measure µq equals the convolution

µq1 ∗µq2. Thus, for θ ∈ −Ω∗ we have Lµq
(θ) = Lµq1

(θ)Lµq2
(θ) and γq,θ = γq1,θ ∗ γq2,θ.

In general, if we set q = q⊕s1
1 ⊕ q⊕s2

2 ⊕ · · · ⊕ q⊕st
t for Ω-positive quadratic maps

qi : R
mi → Rn (i = 1, 2, . . . , t) and positive integers s1, s2, . . . , st, then we have

(2.12) Lµq
(θ) =

t∏

i=1

Lµi
(θ)si (θ ∈ −Ω∗).

Now we remark that, even though si’s are not positive integers, there may exist

a positive measure µq on Ω for which the relation (2.12) holds. In general, for real

numbers s1, . . . , sr, we shall call a formal sum q = q⊕s1
1 ⊕q⊕s2

2 ⊕· · ·⊕q⊕st
t a virtual Ω-

positive quadratic map. The measure µq satisfying (2.12) is called the Riesz measure

associated to q. By the injectivity of the Laplace transform, the associated Riesz

measure µq is unique if it exists. In this case, the Wishart laws γq,θ (θ ∈ −Ω∗) are

defined again as members of the exponential family generated by µq.
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Proposition 2.7. Let qi : R
mi → Rn (i = 1, . . . , t) be Ω-positive quadratic maps.

Assume that there exists a measure µq associated to the virtual quadratic map q =

q⊕s1
1 ⊕ · · · ⊕ q⊕st

t for certain s1, . . . , st ∈ R. Let Y be an Rn-valued random variable

with the Wishart law γq,θ. Then the Laplace transform Lγq,θ(η) = E(e〈Y,η〉) of the

law γq,θ is given by

Lγq,θ(η)=
t∏

i=1

Lγqi,θ
(η)si =

t∏

i=1

det(Imi
+ φi(−θ)−1φi(−η))−si/2

for η ∈ −θ − Ω∗.

Proof. We have Lγq,θ(η) = Lµq
(θ)−1Lµq

(η + θ) by definition, and the right-hand

side equals
∏t

i=1

(
Lµi

(θ)−1Lµi
(η+ θ)

)si by (2.12). Since Lγqi, θ
(η) = Lµi

(θ)−1Lµi
(η+

θ), we obtain the first equality. The second equality follows from Proposition 2.4. �

Since we see immediately from (2.12) that

logLµq
(θ) =

t∑

i=1

si logLµi
(θ),

the virtual versions of Theorem 2.5 is given as follows:

Proposition 2.8. Under the same assumption of Proposition 2.7, one has

(i) E(〈Y, η〉) =∑t
i=1 si trφi(−θ)−1φi(η)/2 for η ∈ (Rn)∗,

(ii) E((〈Y, η〉 − M)(〈Y, η′〉 − M ′)) =
∑t

i=1 si trφi(−θ)−1φi(η)φi(−θ)−1φi(η
′)/2 for

η, η′ ∈ (Rn)∗, where M := E(〈Y, η〉) and M ′ := E(〈Y, η′〉).

As for higher moments, we generalize the formula in Theorem 2.6 as follows:

Theorem 2.9. Under the same assumption of Proposition 2.7, one has

E(〈Y, η1〉〈Y, η2〉 . . . 〈Y, ηN〉)

=
∑

π∈SN

(1

2

)♯C(π)
∏

c∈C(π)

{
t∑

i=1

si tr
(∏

j∈c
φi(−θ)−1φi(ηj)

)
}

.(2.13)

for η1, η2, . . . , ηN ∈ (Rn)∗.

Theorem 2.9 easily follows from Theorem 2.6 when s1, . . . , st are positive integers,

that is, q is a true quadratic map. Indeed, we can consider the associated linear
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map φ = φq in this case, and we have

tr
(∏

j∈c
φ(−θ)−1φ(ηj)

)

=
t∑

i=1

si tr
(∏

j∈c
φi(−θ)−1φi(ηj)

)

by virtue of (2.11). To prove (2.13) for general case, it is enough to verify that the

quantity E(〈Y, η1〉〈Y, η2〉 . . . 〈Y, ηN〉) is a polynomial of s1, . . . , st. For this purpose,

we make some calculations involving the semi-invariants or the cummulants (cf.

[18]).

For η ∈ (Rn)∗, θ ∈ −Ω∗ and a positive integer k, we denote by Sk(θ; η) the k-th

derivative of logLµq
(θ) in the direction η:

Sk(θ; η) = (Dη)
k logLµq

(θ) =
( dk

dhk

)

h=0
logLµq

(θ + hη).

Similarly to Proposition 2.8, we get

(2.14) Sk(θ; η) =
(k − 1)!

2

t∑

i=1

si tr
(

φi(−θ)−1φi(η)
)k

.

On the other hand, since the function Lµq
(θ) is analytic, we have

logLµq
(θ + hη) = logLµq

(θ) +

∞∑

k=1

hk

k!
Sk(θ; η).

Taking the exponential, we have

(2.15)

Lµq
(θ + hη) = Lµq

(θ) exp
( ∞∑

k=1

hk

k!
Sk(θ; η)

)

= Lµq
(θ)

∞∑

ℓ=0

1

ℓ!

( ∞∑

k=1

hk

k!
Sk(θ; η)

)ℓ

.

Let Y be an R
n-valued random variable with the Wishart distribution γq,θ. Then

we have

E(〈Y, η〉N) = (Dη)
NLµq

(θ)

Lµq
(θ)

,

so that

(2.16) Lµq
(θ + hη) = Lµq

(θ)

∞∑

N=0

hN

N !
E(〈Y, η〉N).

Comparing the coefficients of hN in (2.15) and (2.16), we obtain

E(〈Y, η〉N) =
N∑

ℓ=1

1

ℓ!

∑

k1+k2+···+kℓ=N

N !

k1!k2! · · ·kℓ!
Sk1(θ; η)Sk2(θ; η) . . . Skℓ(θ; η).
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Substituting (2.14) to the equality above, we obtain a formula for the higher mo-

ments.

Proposition 2.10. One has

E(〈Y, η〉N) =
N∑

ℓ=1

1

ℓ!

∑

k1+k2+···+kℓ=N

N !

k1k2 · · ·kℓ

ℓ∏

j=1

( t∑

i=1

si
2
tr
(
φi(−θ)−1φi(η)

)kj
)

.

(2.17)

The moments E(〈Y, η1〉〈Y, η2〉 · · · 〈Y, ηN〉) (η1, . . . , ηN ∈ (Rn)∗) can be obtained

now by polarization, so that it is a polynomial of s1, . . . , st. Hence the proof of

Theorem 2.9 is completed. We note that (2.13) with η1 = · · · = ηN = η becomes

(2.17), which means that Proposition 2.10 together with the polarization process

also yields Theorem 2.9.

2.4. Group equivariance of the Wishart laws. Let G(Ω) be the linear auto-

morphism group { g ∈ GL(n,R) ; gΩ = Ω } of Ω. For an Ω-positive quadratic map

q : Rm → Rn and g ∈ G(Ω), the quadratic map g ◦ q : Rm → Rn is again Ω-positive.

It is easy to see that the Riesz measure µg◦q is the image of µq by g, that is,

(2.18) µg◦q(A) = µq(g
−1A)

for a measurable set A ⊂ Rn. Let us discuss the Wishart laws γg◦q,θ for θ ∈ −Ω∗.

For η ∈ (Rn)∗, we denote by g∗η the linear form η ◦ g ∈ (Rn)∗. If η ∈ Ω∗, then

g∗η ∈ Ω∗ because 〈y, g∗η〉 = 〈gy, η〉 > 0 for y ∈ Ω \ {0}. We observe

(2.19) Lµq
(g∗θ) =

∫

Rm

e〈q(x),g
∗θ〉dx =

∫

Rm

e〈g◦q(x),θ〉dx = Lµg◦q
(θ).

Therefore, denoting by 1A the characteristic function of a measurable set A ⊂ Rn,

we have

(2.20)

γg◦q,θ(A) =
1

Lµg◦q
(θ)

∫

Rm

1A(g ◦ q(x))e〈g◦q(x),θ〉dx

=
1

Lµq
(g∗θ)

∫

Rm

1g−1A(q(x))e
〈q(x),g∗θ〉dx = γq,g∗θ(g

−1A).

We restate (2.20) as follows.

Lemma 2.11. Let g be an element of G(Ω). If a random variable Y obeys the

Wishart law γq,θ, the law of gY is γg◦q, (g−1)∗θ.

Let qi : R
mi → Rn (i = 1, . . . , t) be Ω-positive quadratic maps, and q the virtual

quadratic map q⊕s1
1 ⊕ · · · ⊕ q⊕st

t with s1, . . . , st ∈ R. Then we define g ◦ q to be the

virtual quadratic map (g ◦ q1)⊕s1 ⊕ · · · ⊕ (g ◦ qt)⊕st.
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Proposition 2.12. If the Riesz measure µq exists, then the Riesz measure µg◦q exists

and equals the image of µq by g. Moreover γg◦q, (g−1)∗θ is the image of γq,θ by g.

Proof. Let µ′ be the image of µq by g. For θ ∈ −Ω∗, we have

(2.21) Lµ′(θ) =

∫

Rn

e〈y,θ〉µ′(dy) =

∫

Rn

e〈gy,θ〉µq(dy) =

∫

Rn

e〈y,g
∗θ〉µq(dy) = Lµq

(g∗θ).

By (2.12) and (2.19), the last term equals
∏t

i=1 Lµi
(g∗θ)si =

∏t
i=1 Lµg◦qi

(θ)si. Thus

we get Lµ′(θ) =
∏t

i=1 Lµg◦qi
(θ)si which means µ′ = µg◦q by (2.12).

Let γ′ be the image of γq,θ by g. Similarly to (2.21), we have Lγ′(η) = Lγq,θ(g
∗η)

for η ∈ −(g−1)∗θ − Ω∗, while Lγ
g◦qi,(g

−1)∗θ
(η) = Lγqi,θ

(g∗η) by Lemma 2.11. On the

other hand, we see from Proposition 2.7 that

Lγq,θ(g
∗η) =

t∏

i=1

Lγqi,θ
(g∗η)si =

t∏

i=1

Lγ
g◦qi,(g

−1)∗θ
(η)si = Lγ

g◦q,(g−1)∗θ
(η).

Thus we get Lγ′(η) = Lγ
g◦q,(g−1)∗θ

(η), so that γ′ = γg◦q,(g−1)∗θ by the injectivity of

the Laplace transform. �

Let Aut(Ω, q) be the set of pairs (g1, g2) ∈ G(Ω)×GL(m,R) for which g1◦q = q◦g2.
Then Aut(Ω, q) forms a Lie subgroup of GL(n,R)×GL(m,R), and we have a group

homomorphism

pr1 : Aut(Ω, q) ∋ (g1, g2) 7→ g1 ∈ G(Ω).

The condition (g1, g2) ∈ Aut(Ω, q) is also equivalent to

(2.22) φq(g
∗
1η) =

tg2φq(η)g2 (η ∈ (Rn)∗).

Then we obtain

(2.23) detφq(g
∗
1η) = C detφq(η) (η ∈ (Rn)∗)

with C = (det g2)
2, which means that detφq(η) is a relatively invariant polynomial

on (Rn)∗ under the contragredient action of pr1(Aut(Ω, q)). The following proposi-

tion describes a transformation rule of the family of the Wishart laws {γq,θ}θ∈−Ω∗

under the group pr1(Aut(Ω, q)).

Proposition 2.13. For a measurable set A ⊂ Rn and (g1, g2) ∈ Aut(Ω, q), one has

(i) µq(g
−1
1 A) = µg1◦q(A) = | det g2|−1µq(A),

(ii) γq,g∗1θ(A) = γq,θ(g1A).



14

Proof. (i) Because of (2.18), we only have to show the second equality. By

definition, we have

µg1◦q(A) =

∫

Rm

1A(g1 ◦ q(x)) dx =

∫

Rm

1A(q ◦ g2(x)) dx

Putting x′ = g2x, the last term equals

| det g2|−1

∫

Rm

1A(q(x
′)) dx′ = | det g2|−1µq(A),

whence (i) follows.

(ii) By (2.20), we get for y ∈ Rn

γq,g∗1θ(dy) = γg1◦q,θ(g1dy) =
e〈g1y,θ〉

Lµg1◦q
(θ)

µg1◦q(g1dy),

Since µg1◦q = | det g2|−1µq by (i), the last term equals

e〈g1y,θ〉

| det g2|−1Lµq
(θ)

| det g2|−1µq(g1dy) = γq,θ(g1dy).

Hence (ii) is verified. �

§3. Homogeneous Case.

3.1. Homogeneous quadratic map. An Ω-positive map q : Rm → Rn is said

to be homogeneous if, for any y, y′ ∈ Ω, there exists (g1, g2) ∈ Aut(Ω, q) for which

g1y = y′. In other words, q is homogeneous if pr1(Aut(q,Ω)) acts on Ω transitively.

In this case, Ω is clearly a homogeneous cone, that is, a linear group on Rn acts on

the cone Ω transitively. Then the dual cone Ω∗ ⊂ (Rn)∗ is also a homogeneous cone

on which the group pr1(Aut(q,Ω)) acts transitively by the contragredient action

([23]). We see from (2.1) and (2.22) that the quadratic map q is homogeneous if and

only if the associated linear map φq : (R
n)∗ → Sym(m,R) is a representation of the

dual cone Ω∗ in the sense of Rothaus [22] (see also [15]).

A typical example of a homogeneous cone is Πr ⊂ Sym(r,R). For A ∈ GL(r,R),

we denote by ρ(A) the linear map on Sym(r,R) defined by ρ(A)y := Ay tA (y ∈
Sym(r,R)). Then the group ρ(GL(r,R)) acts on Πr transitively. Moreover, the

linear automorphism group G(Πr) equals ρ(GL(r,R)). We see that the quadratic

map qr,s : Mat(r, s;R) → Sym(r,R) in Example 2 is homogeneous. Indeed, we

have a surjective homomorphism GL(r,R) × O(s) ∋ (A,B) 7→ (ρ(A), τr,s(A,B)) ∈
Aut(Πr, qr,s), where τr,s(A,B) is a linear map on Mat(r, s;R) given by τr,s(A,B)x :=
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AxB−1 (x ∈ Mat(r, s;R)). Thus we have pr1(Aut(qr,s,Πr)) = ρ(GL(r,R)), which

acts on Πr transitively.

For a subset I ⊂ {1, . . . , r}, we denote by qI the restriction of qr,1 : Rr →
Sym(r,R) to the space RI ⊂ R

r defined in (2.6). The map qI coincides with

qIZ in Example 3 with Z = Sym(r,R). Let us observe that qI is homogeneous in

general. Let P I be the linear group consisting of A ∈ GL(r,R) for which ARI = RI .

For example, if r = 3, we have

P {1} =






A =





a11 a12 a13
0 a22 a23
0 a32 a33



 ; A ∈ GL(3,R)






,(3.1)

P {2,3} =






A =





a11 0 0
a21 a22 a23
a31 a32 a33



 ; A ∈ GL(3,R)






.(3.2)

Since we have a homomorphism P I ∋ A 7→ (ρ(A), A) ∈ Aut(Πr, q
I), it is enough

to show that ρ(P I) acts on Πr transitively. Put k := ♯I and take a permutation

matrix w0 ∈ Sr ⊂ GL(r,R) sending R{r−k+1,...,r} onto RI . Then we have P I =

w0P
{r−k+1,...,r}w−1

0 , and

P {r−k+1,...,r} =

{(
A1 0
A2 A3

)

;
A1 ∈ GL(k,R), A2 ∈ Mat(r − k + 1, k;R)

A3 ∈ GL(r − k + 1,R)

}

.

Since P {r−k+1,...,r} contains the group of lower triangular matrices, ρ(P {r−k+1,...,r})

acts on Πr transitively. Therefore ρ(P
I) = ρ(w0)ρ(P

{r−k+1,...,r})ρ(w0)
−1 also acts on

Πr transitively, so that qI is homogeneous.

Coming back to the examples (3.1) and (3.2), we note that q = q{1}⊕ q{2,3} is not

homogeneous as Π3-positive quadratic map, while both q{1} and q{2,3} are. Indeed,

the image of q generates the space Z ⊂ Sym(3,R) in (2.4). Thus, if (g1, g2) ∈
Aut(Π3, q), then g1 must preserve both Z and Π3. Let us take y ∈ Π3 \ Z. Then g1

does not send I3 ∈ Π3 to y because I3 ∈ Z. Thus the action of pr1(Aut(q,Π3)) on

Π3 is not transitive.

On the other hand, if we regard q as a map from R{1} ⊕ R{2,3} to Z, then q

is a homogeneous P-positive quadratic map, where P := Z ∩ Πr. In fact, since

(ρ(A), A) ∈ Aut(q{1},P) ∩ Aut(q{2,3},P) for A ∈ P {1} ∩ P {2,3}, we have ρ(A) ∈
pr1(Aut(q,P)). Therefore pr1(Aut(q,P)) contains a group ρ(P {1} ∩ P {2,3}) which

acts on P transitively.
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In Example 1, the quadratic map q : R4 → R3 is not homogeneous because Ω ⊂ R4

in (2.2) is not a homogeneous cone ([13]).

3.2. Matrix realization of homogeneous cones. In this section, we shall dis-

cuss a homogeneous cone realized as PV = ZV ∩ ΠN with ZV ⊂ Sym(N,R) con-

structed from an appropriate system V = {Vlk} of vector spaces in a specific way

explained below, following [14, section 3.1]. The investigation of such cones is fun-

damental because all homogeneous cones are linearly equivalent to some PV due to

[14, Theorem D].

Let us take a partition N = n1 + n2 + · · · + nr of a positive integer N , and

consider a system of vector spaces Vlk ⊂ Mat(nl, nk;R) (1 ≤ k < l ≤ r) satisfying

the following three conditions:

(V1) A ∈ Vlk, B ∈ Vkj ⇒ AB ∈ Vlj (1 ≤ j < k < l ≤ r),

(V2) A ∈ Vlj, B ∈ Vkj ⇒ A tB ∈ Vlk (1 ≤ j < k < l ≤ r),

(V3) A ∈ Vlk ⇒ A tA ∈ RInl
(1 ≤ k < l ≤ r).

Let ZV be the subspace of Sym(N,R) defined by

ZV :=







y =







Y11
tY21 · · · tYr1

Y21 Y22
tYr2

...
. . .

Yr1 Yr2 · · · Yrr







;
Ykk = ykkInk

, ykk ∈ R (k = 1, . . . , r)

Ylk ∈ Vlk (1 ≤ k < l ≤ r)







.

We set PV := ZV ∩ΠN . Then PV is a regular open convex cone in the vector space

ZV . Let HN be the group of real lower triangular matrices with positive diagonals,

and HV a Lie subgroup of HN defined by

HV :=







T =







T11

T21 T22
...

. . .

Tr1 Tr2 · · · Trr







;
Tkk = tkkInk

, tkk > 0 (k = 1, . . . , r)

Tlk ∈ Vlk (1 ≤ k < l ≤ r)







.

If T ∈ HV and y ∈ ZV , then ρ(T )y = Ty tT belongs to ZV thanks to (V1)–(V3).

Moreover ρ(HV) acts on the cone PV ⊂ ZV simply transitively (cf. [14, Proposition

2.1]).

Keeping (V3) in mind, we define an inner product on the vector space Vlk (1 ≤
k < l ≤ r) by the equality

(3.3) A tA = (A|A)Inl
= ‖A‖2Inl

(A ∈ Vlk).
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For y, y′ ∈ ZV , we set

(3.4) 〈y, y′〉 :=
r∑

k=1

ykky
′
kk + 2

∑

1≤k<l≤r

(Ylk|Y ′
lk),

where ykk and Ylk (respectively y′kk and Y ′
lk) denote the components of y (respectively

y′). Note that the inner product is not equal to tr yy′ unless n1 = · · · = nr = 1.

By this coupling, we identify the dual space Z∗
V with ZV . Let us observe that IN

belongs to the dual cone P∗
V of PV , that is,

0 < 〈y, IN〉 = y11 + · · ·+ yrr (y ∈ PV \ {0}).

Indeed, since each ykk is a diagonal entry of the non-negative matrix y ∈ PV \ {0},
we have ykk ≥ 0. Suppose

∑r
k=1 ykk = 0. Then y11 = · · · = yrr = 0 and tr y =

∑r
k=1 nkykk = 0. This together with the non-negativity of y implies y = 0, which is

a contradiction.

For T ∈ HV , define ρ∗(T ) ∈ GL(ZV) by 〈y, ρ∗(T )η〉 = 〈ρ(T )y, η〉 (y, η ∈ ZV). By

[24], we have P∗
V = { ρ∗(T )IN ; T ∈ HV }. Moreover, the map HV ∋ T 7→ ρ∗(T )IN ∈

P∗
V is a diffeomorphism. For σ = (σ1, . . . , σr) ∈ Cr, we define the one-dimensional

representation χσ : HV → C× by χσ(T ) := (t11)
2σ1 . . . (trr)

2σr (T ∈ HV). Note

that any one-dimensional representation χ of HV is of the form χσ, so that χ is

determined by the values on the subgroup AV ⊂ HV consisting of diagonal matrices.

Let us give some examples. When n1 = n2 = · · · = nr = 1 and Vlk = R for

all 1 ≤ k < l ≤ r, the conditions (V1)–(V3) are clearly satisfied, and we have

ZV = Sym(r,R) and PV = Πr. For the case r = 3, n1 = n2 = n3 = 1, V21 = {0}
and V31 = V32 = R, the space ZV equals Z in (2.5).

Let us set r = 3, n1 = 2, n2 = n3 = 1,

V21 =
{ (

v 0
)
; v ∈ R

}
, V31 =

{ (
0 v

)
; v ∈ R

}
,

and V32 = {0}. Then we have

(3.5) ZV =













y11 0 y21 0
0 y11 0 y31
y21 0 y22 0
0 y31 0 y33







; y11, y22, y33, y21, y31 ∈ R







and

(3.6)
PV = { y ∈ ZV ; y is positive definite }

=
{
y ∈ ZV ; y11 > 0, y11y22 − (y21)

2 > 0, y11y33 − (y31)
2 > 0

}
,

which is exactly the Vinberg cone [24].
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Set r = 2, n1 = m ≥ 1, n2 = 1 and V21 = Mat(1, m;R). Then

ZV =













y11 v1
. . .

...
y11 vm

v1 · · · vm y22







; y11, y22, v1, . . . , vm ∈ R







,

PV =
{
y ∈ ZV ; y11 > 0, y11y22 − (v1)

2 − · · · − (vm)
2 > 0

}
,(3.7)

so that we obtain the Lorentz cone of dimension m+ 2.

3.3. Basic quadratic maps. LetW i
V (i = 1, . . . , r) be the subspace of Mat(N, ni;R)

consisting of matrices x of the form

x =







0n1+···+ni−1,ni

Xii
...

Xri







(
Xii = xiiIni

, xii ∈ R

Xli ∈ Vli (l = i+ 1, . . . , r)

)

.

For example, when ZV is the one in (3.5), we have

W 1
V =













x11 0
0 x11

x21 0
0 x31







; x11, x21, x31 ∈ R







,

W 2
V =













0
0
x22

0







; x22 ∈ R







, W 3
V =













0
0
0
x33







; x33 ∈ R







,

while for the case that ZV is the space Z in (2.5), we have

W 1
V =











x11

0
x31



 ; x11, x31 ∈ R






, W 2

V =











0
x22

x32



 ; x22, x32 ∈ R






,

W 3
V =











0
0
x33



 ; x33 ∈ R






.

For T ∈ HV and x ∈ W i
V , we see from (V1) that Tx ∈ W i

V , which defines a

representation τi : HV → GL(W i
V). Since W i

V ⊂ Mat(N, ni;R), we can consider the

restriction qiV of the ΠN -positive quadratic map qN,ni
: Mat(N, ni;R) → Sym(N,R)

in Example 2 to the space W i
V . Thanks to (V2) and (V3), we have qiV(x) = xtx ∈ ZV

for x ∈ W i
V . Then the quadratic map qiV : W i

V ∋ x 7→ xtx ∈ ZV is PV -positive. On
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the other hand, we observe

(3.8) qiV(τi(T )x) = (Tx)t(Tx) = ρ(T )qiV(x) (x ∈ W i
V , T ∈ HV),

which yields the group homomorphism HV ∋ T 7→ (ρ(T ), τi(T )) ∈ Aut(PV , q
i
V). It

follows that the quadratic map qiV is homogeneous. We call q1V , . . . , q
r
V basic quadratic

maps for PV . Recalling the inner product on Vlk given by (3.3), we define an inner

product on the space W i
V via the natural isomorphism

(3.9) W i
V ≃ R⊕

∑⊕

l>i

Vli.

Taking an orthonormal basis of W i
V with respect to the inner product, we identify

W i
V with Rm(i), where m(i) := dimW i

V . Then we consider the linear map φi
V :

ZV ≡ Z∗
V → Sym(m(i),R) associated to the quadratic map qiV . Note that, if we

write nli for dimVli, we have m(i) = 1 +
∑

l>i nli.

Proposition 3.1. (i) One has

det τi(T ) = χm(i)/2(T ) (T ∈ HV),

where m(i) = (0, · · · , 0, 1, ni+1,i, . . . , nri) ∈ Zr.

(ii) For η = ρ(T )∗IN ∈ P∗
V with T ∈ HV , one has

detφi
V(η) = χm(i)(T ).

In particular, (trr)
2 = detφr

V(η).

(iii) For 1 ≤ i < r, there exist integers ci+1,i, . . . , cri such that

(tii)
2 = detφi

V(η) · (detφi+1
V (η))ci+1,i · · · (detφr

V(η))
cri

(η = ρ∗(T )IN ∈ P∗
V , T ∈ HV).

(iv) One has P∗
V = { η ∈ ZV ; detφ

i
V(η) > 0 (i = 1, . . . , r) }.

Proof. (i) Since HV ∋ T 7→ det τi(T ) ∈ C
× is a one-dimensional representa-

tion, it is sufficient to check the equality for diagonal matrices T ∈ AV . In this

case, the isomorphism (3.9) gives the eigenspace decomposition of τi(T ), where R

and Vli correspond to the eigenvalues tii and tll respectively. Therefore we have

det τi(T ) = tii
∏

l>i t
nli

li = χm(i)/2(T ).

(ii) Thanks to (3.3), we have (x|x) = 〈qiV(x), IN〉, which implies φi
V(IN) = Im(i).

Thus we get detφi
V(η) = detφi

V(ρ(T )
∗IN) = (det τi(T ))

2 = χm(i)(T ) by (2.22) and

(i).

(iii) We see from (ii) that (tii)
2 = detφi

V(η) · (ti+1,i+1)
−2ni+1,i · · · (trr)−2nri, whence we
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can deduce (iii) recursively.

(iv) It is known ([23, Chapter 3, Section 3] and [6, Section 1]) that a homogeneous

cone is described as the subset of the ambient vector space consisting of points

at which all relatively invariant (appropriately normalized) functions are positive.

Thus the assertion follows from (iii). �

Example 4. Let PV be the Vinberg cone, that is, ZV is as in (3.5). Then we have

φ1
V(η) =





η11 η21 η31
η21 η22 0
η31 0 η33



 , φ2
V(η) = η22, φ3

V(η) = η33

for η ∈ ZV . If η = ρ∗(T )I4 for T ∈ HV , we have

(t11)
2(t22)

2(t33)
2 = detφ1

V(η), (t22)
2 = η22, (t33)

2 = η33,

so that

(t11)
2 =

detφ1
V(η)

η22η33
= η11 −

(η21)
2

η22
− (η31)

2

η33
.

On the other hand, we have by Proposition 3.1 (iv)

P∗
V =

{
η ∈ ZV ; η11η22η33 − η33(η21)

2 − η22(η31)
2 > 0, η22 > 0, η33 > 0

}
.

Therefore, if Z is the space in (2.5), the linear isomorphism

ι :ZV ∋







η11 0 η21 0
0 η11 0 η31
η21 0 η22 0
0 η31 0 η33







7→





η33 0 η31
0 η22 η21
η31 η21 η11



 ∈ Z

gives a bijection from P∗
V onto P = Z ∩ Π3. The adjoint map ι∗ : Z∗ → Z∗

V ≡ ZV

gives the matrix realization of the Vinberg cone Q as the homogeneous cone PV .

3.4. Standard quadratic maps and H-orbits in PV . We call the maps qεV (ε ∈
{0, 1}r, ε 6= (0, . . . , 0)) standard quadratic maps. They are of particular importance

among the virtual quadratic maps qsV = (q1V)
⊕s1 ⊕ · · · ⊕ (qrV)

⊕sr (s = (s1, . . . , sr) ∈
Rr). Let us denote by I(ε) the set { 1 ≤ i ≤ r ; εi = 1 }. We identify q

ε
V with a

direct sum
∑⊕

i∈I(ε) q
i
V on the space W ε

V :=
∑⊕

i∈I(ε) W
i
V . Recalling (3.9), we have the

isomorphism W
ε
V ≃

∑⊕
i∈I(ε)(R⊕

∑⊕
l>i Vli), which enables us to describe y = q

ε
V(x) ∈

ZV (x ∈ W ε
V) as the matrix composed of the blocks

(3.10) Ylk =
∑

i≤k, i∈I(ε)
Xli

tXki (1 ≤ k ≤ l ≤ r),
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where Xii := xiiIni
for i ∈ I(ε). For the case l = k, we have Ykk = ykkInk

and

(3.11) ykk =
∑

i≤k, i∈I(ε)
‖Xki‖2

thanks to (3.3), where we put ‖Xii‖ := |xii|. For each x ∈ W
ε
V , let Tx ∈ Mat(N,R)

be a lower triangular matrix whose (k, i)-block component is Xki for k > i with

i ∈ I(ε), and other components are zero. Then we have

(3.12) q
ε
V(x) = Tx

tTx.

For example, if r = 3 and ε = (1, 0, 1), then an element x of W
ε
V = W 1

V ⊕W 3
V is of

the form

x =





X11

X21

X31



⊕





0
0

X33





(
X11 = x11In1 , X33 = x33In3

x11, x33 ∈ R, X21 ∈ V21, X31 ∈ V31

)

,

and we have

Tx =





X11

X21 0
X31 0 X33



 ∈ Mat(N,R).

For ε ∈ {0, 1}r, let Eε be the element of V given by

Eε :=





ε1In1

. . .

εrInr



 ,

and Oε the HV-orbit ρ(HV)Eε ⊂ ZV through Eε. In particular, the orbit O(0,...,0)

is the origin {0}, while O(1,...,1) = ρ(HV)IN equals the cone PV . It is shown in [11,

Theorem 3.5] that the HV-orbit decomposition of the closure PV is given as

PV =
⊔

ε∈{0,1}r
Oε.

Proposition 3.2. If ε 6= (0, . . . , 0), the image of the quadratic map q
ε
V equals the

closure Oε of the orbit Oε.

Proof. Let W ε,+
V be the subset {x ∈ W ε

V ; xii > 0 (i ∈ I(ε)) } of W ε
V . For y =

ρ(T )Eε = TEε
tT ∈ Oε with T ∈ HV , we take a unique x ∈ W ε,+

V for which Tx

equals TEε. Then we have y = qεV(x) by (3.12). Conversely, for any x ∈ W ε,+
V , we

put T := Tx+ I−Eε ∈ HV so that q
ε
V(x) = TEε

tT ∈ Oε. Therefore we obtain Oε =

qεV(W
ε,+
V ). On the other hand, putting W ε,∗

V := { x ∈ W ε
V ; xii 6= 0 (i ∈ I(ε)) }, we

see easily that q
ε
V(W

ε,∗
V ) = q

ε
V(W

ε,+
V ). Since W

ε,∗
V is an open dense subset of W

ε
V ,

the orbit Oε is dense in the image of the quadratic map qεV , which is necessarily
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closed. Indeed, introducing the projective imbedding ιV of a vector space V by

ιV : V ∋ y 7→ [1, y] ∈ PV := (R × V \ {(0, 0)})/R×, we can extend q
ε
V : W

ε
V → ZV

to the map q̃εV : PW ε
V ∋ [t, x] 7→ [t2, qεV(x)] ∈ PZV because qεV(x) 6= 0 for x 6= 0. The

image q̃
ε
V(PW

ε
V) is compact, so that q

ε
V(W

ε
V) = ι−1

ZV
(q̃

ε
V(PW

ε
V)) is closed. �

Remark 3.3. In the proof of Proposition 3.2, we see that the quadratic map q
ε
V gives

a surjective map from W ε,+
V onto Oε. The map is also one-to-one thanks to [11,

Lemma 3.3 (ii)], while the map q
ε
V : W

ε,∗
V → Oε is 2♯I(ε)-to-one. Actually, a large

part of the content of this section is presented in language of normal j-algebra in

[11, Sections 3 and 4].

We define the representation τε : HV → GL(W ε
V) as the direct sum of the repre-

sentations (τi, W
i
V) of HV for i ∈ I(ε). Then we have by (3.8)

(3.13) qεV(τε(T )x) = ρ(T )qεV(x) (x ∈ W ε
V , T ∈ HV),

which implies that qεV is homogeneous.

The open set W
ε,+
V ⊂ W

ε
V is preserved by the action of τε(HV). We put

R+(ε) := {u = (u1, . . . , ur) ∈ R
r ; ui = 0 (if εi = 0), ui > 0 (if εi = 1) } .

For u ∈ R+(ε), let Mε
u be the measure on W

ε,+
V given by

Mε
u(dx) :=

∏

i∈I(ε)

{2(xii)
2ui−1 dxii

Γ(ui)
·
∏

l>i

dXli

πnli/2

}

=

∏

i∈I(ε)(xii)
2ui−1

Γε(u)
dx (x ∈ W ε,+

V ),(3.14)

where Γε(u) = πdimW
ε

V
/2
∏

i∈I(ε)
Γ(ui)
2
√
π
. When u = ε/2, the measure Mε

ε/2 equals a

constant multiple of the Lebesgue measure, that is, Mε
ε/2(dx) = 2♯I(ε)π− dimW

ε

V
/2dx.

We define p(ε) := (p1(ε), p2(ε), . . . , pr(ε)) by

pk(ε) :=
∑

l>k

εlnlk.

Lemma 3.4. (i) For a measurable set A ⊂ W ε,+
V , one has

Mε
u(τε(T )A) = χu+p(ε)/2(T )Mε

u(A) (T ∈ HV).

(ii) One has

(3.15)

∫

W
ε,+
V

e−‖x‖2 Mε
u(dx) = 1.
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Proof. (i) If x′ = τε(T )x ∈ W
ε,+
V with x ∈ W

ε,+
V , we have x′

ii = tiixii for i ∈ I(ε).

Thus

(3.16)
∏

i∈I(ε)
(x′

ii)
2ui−1 = χu−ε/2(T )

∏

i∈I(ε)
(xii)

2ui−1.

On the other hand, we observe that

dx′ = | det τε(T )|dx =
( ∏

i∈I(ε)
det τi(T )

)

dx,

and the last term equals
(
∏

i∈I(ε) χm(i)/2(T )
)

dx by Proposition 3.1 (i). Since

∑

i∈I(ε)
m(i) =

r∑

i=1

εim(i) = ε+ p(ε),

we have dx′ = χε/2+p(ε)/2(T )dx, which together with (3.16) implies (i).

(ii) By definition, we have

‖x‖2 =
∑

i∈I(ε)

{

(xii)
2 +

∑

l>i

‖Xli‖2
}

.

Thus the left-hand side of (3.15) equals

∏

i∈I(ε)

{ 2

Γ(ui)

∫ ∞

0

e−(xii)2(xii)
2ui−1dxii

∏

l>i

∫

Vli

e−‖Xli‖2 dXli

πnli/2

}

.

Therefore we obtain (3.15) from
∫

Vli
e−‖Xli‖2dXli = πnli/2 and

∫∞
0

e−(xii)
2
(xii)

2ui−1dxii =

Γ(ui)/2. �

Remark 3.5. Lemma 3.4 tells us that e−‖x‖2 Mε
u(dx) is a probability measure on

W ε,+
V . Actually, we see from the proof that if Xu is an W ε,+

V -valued random vari-

able with the law e−‖x‖2 Mε
u(dx), then its components are independent and satisfy√

2Xu
li ∼ N(0, Inli

), and (
√
2Xu

ii)
2 ∼ χ2(2ui), where χ

2(u) denotes the chi-square law

with the density 2−uΓ(u/2)−1e−t/2tu−1 (t > 0). We shall see later that any Wishart

law associated to a homogeneous quadratic map is the image of this measure by an

appropriate quadratic map.

3.5. Gindikin-Riesz distributions. For σ = (σ1, . . . , σr) ∈ Cr, we denote (σr, . . . , σ1)

by σ∗. Let ∆∗
σ be the function on the cone P∗

V given by

(3.17) ∆∗
σ(ρ

∗(T )IN) = χσ∗(T ) (T ∈ HV).
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By Proposition 3.1 (ii) and (iii), ∆∗
σ(η) can be expressed as a product of powers of

the polynomials detφi
V(η). Putting

Eη :=





η1In1

. . .
ηrInr



 ∈ ZV

for η = (η1, . . . , ηr) ∈ Rr
>0, we have

(3.18) ∆∗
σ(Eη) = (η1)

σr(η2)
σr−1 . . . (ηr)

σ1 .

For each σ ∈ C
r, Gindikin ([6], [7]) constructed a tempered distributionRσ ∈ S ′(ZV)

whose Laplace transform LRσ
(θ) = Rσ(e

〈y,θ〉) is given by

(3.19) LRσ
(θ) = ∆∗

−σ∗(−θ) (θ ∈ −P∗
V).

We call Rσ the Gindikin-Riesz distribution on the homogeneous cone PV . The

support of Rσ is contained in PV , and Rσ is relatively invariant under the action of

ρ(HV), that is,

(3.20) Rσ(f ◦ ρ(T )) = χ−σ(T )Rσ(f)

for T ∈ HV and f ∈ S(ZV ).

Proposition 3.6. For non-zero ε ∈ {0, 1}r and u ∈ R+(ε), put σ := u + p(ε)/2.

Then Rσ is the image of Mε
u by the standard quadratic map qεV .

Proof. By (3.19), it is sufficient to show that
∫

W
ε,+
V

e〈q
ε

V
(x),θ〉Mε

u(dx) = ∆∗
−σ∗(−θ)

for θ ∈ −P∗
V . Take T ∈ HV for which θ = −ρ∗(T )IN . Then the left-hand side is
∫

W
ε,+
V

e−〈qε
V
(x),ρ∗(T )IN 〉Mε

u(dx) =

∫

W
ε,+
V

e−〈qε
V
(τε(T )x),IN 〉 Mε

u(dx)

by (3.13), and it is equal to

χ−(u+p(ε)/2)(T )

∫

W
ε,+
V

e−〈qε
V
(x),IN 〉Mε

u(dx)

by Lemma 3.4 (i). Since 〈qεV(x), IN〉 = ‖x‖2 by (3.11), we see from Lemma 3.4 (ii)

that ∫

W
ε,+
V

e〈q
ε

V
(x),θ〉 Mε

u(dx) = χ−(u+p(ε)/2)(T ) = ∆∗
−σ∗(−θ).

�
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We set

Ξ(ε) :=
{
σ = u+ p(ε)/2 ; u ∈ R+(ε)

}

= { σ ∈ R
r ; σi = pi(ε)/2 (if εi = 0), σi > pi(ε)/2 (if εi = 1) } .

If ε 6= (0, . . . , 0) and σ ∈ Ξ(ε), then Rσ is a positive measure on the orbit Oε by

Proposition 3.6. For the case ε = (0, . . . , 0), we have Ξ(0, . . . , 0) = {(0, . . . , 0)} and

R(0,...,0) is the Dirac measure at the origin {0}. It is proven in [11] that they exhaust

all the cases that Rσ is a positive measure.

Theorem 3.7 ([11, Theorem 6.2]). The Gindikin-Riesz distribution Rσ is a positive

measure if and only if σ ∈ Ξ :=
⊔

ε∈{0,1}r Ξ(ε). Moreover, if σ ∈ Ξ(ε), then Rσ is a

measure on Oε.

The parameter set Ξ is also described as

Ξ =

{
r∑

i=1

εi(0, · · · , 0, ui, ni+1,i/2, . . . , nri/2) ; εi ∈ {0, 1}, ui > 0 (i = 1, . . . , r)

}

.

3.6. Riesz measures and Gindikin-Riesz distributions. Let us investigate a

relation of the Riesz measures µq associated to homogeneous PV -positive quadratic

maps q and the Gindikin-Riesz distributions on PV .

Proposition 3.8. For i = 1, . . . , r, one has µqi
V
= πm(i)/2Rm(i).

Proof. ¿From Lemma 2.1 and Proposition 3.1 (ii), we have

(3.21) Lµ
qi
V

(θ) = πm(i)/2 detφi
V(−θ)−1/2 = πm(i)/2∆∗

−m(i)∗/2(−θ) (θ ∈ −P∗
V),

which implies the statement. �

Assume that there exists the Riesz measure µq
s

V
associated to a virtual quadratic

map qsV = (q1V)
⊕s1 ⊕ · · · ⊕ (qrV)

⊕sr . By (2.12) and (3.21), we have for θ ∈ −P∗
V

Lµ
q
s
V

(θ) =

r∏

i=1

(

πm(i)/2∆∗
−m(i)∗/2(−θ)

)si
.

We put

(3.22) σ :=

r∑

i=1

sim(i)/2 =
1

2

r∑

i=1

si(0, . . . , 0, 1, ni+1,i, · · · , nri).

Then the equality above can be rewritten as

Lµ
q
s
V

(θ) = π|σ|∆∗
−σ∗(−θ),
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where |σ| := σ1+· · ·+σr. Thus µq
s

V
equals π|σ|Rσ, so that σ belongs to Ξ(ε) for some

ε ∈ {0, 1}r owing to Theorem 3.7. The converse argument is also valid. Therefore

we obtain

Theorem 3.9. For a virtual quadratic map qsV = (q1V)
⊕s1⊕· · ·⊕(qrV)

⊕sr , there exists

the associated Riesz measure µq
s

V
if and only if σ :=

∑r
i=1 sim(i)/2 belongs to Ξ.

In this case µq
s

V
= π|σ|Rσ, and there exist ε ∈ {0, 1}r and u ∈ R+(ε) for which

σ = u+ p(ε)/2. If ε 6= (0, . . . , 0), µq
s

V
is the image of the measure π|σ|Mε

u on W
ε
V by

the standard quadratic map qεV .

Let q : Rm → ZV be any homogeneous PV -positive quadratic map. As is noted in

Section 3.1, the group pr1(Aut(PV , q)) acts on the cone PV transitively. Assume first

that pr1(Aut(PV , q)) contains ρ(HV). Then the polynomial detφq(η) is relatively

invariant under the action of ρ(HV) by (2.23). Namely, for each T ∈ HV , there exists

cT > 0 such that detφq(ρ
∗(T )η) = cT detφq(η) (η ∈ (Rn)∗). It is easy to see that the

correspondence HV ∋ T 7→ cT ∈ R>0 is a one-dimensional representation, so that we

have cT = χm(T ) for some m ∈ Rr. Thus detφq(ρ
∗(T )In) = χm(T ) detφq(IN) for

T ∈ HV , which means that detφq(η) = C∆∗
m∗(η) for η ∈ P∗

V , where C := detφq(IN).

By (3.18), we have

detφq(Eη) = C (η1)
m1 . . . (ηr)

mr ,

which gives a practical way to determine mi. Indeed, we see from this formula

that mi are non-negative integers. Comparing the degrees of both sides, we obtain

m = m1 + · · ·+mr. Similarly to Proposition 3.8, we have

(3.23) µq = C−1/2πm/2Rm/2.

Let us consider the virtual quadratic map q⊕s. The associated Riesz measure exists

if and only if sm/2 ∈ Ξ, and in this case

µq⊕s = C−s/2πsm/2Rsm/2.

As for the general case, we have the following result.

Proposition 3.10. Let q : Rm → ZV be a homogeneous PV-positive quadratic map.

Then there exist g0 ∈ G(PV), m ∈ Zr, and C > 0 for which

detφq((g
−1
0 )∗η) = C∆∗

m∗(η) (η ∈ PV).

The Riesz measure µq⊕s associated to the virtual quadratic map q⊕s exists if and only

if sm/2 ∈ Ξ. In this case, µq⊕s equals the image of C−s/2πsm/2Rsm/2 by g0.
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Proof. We note that pr1(Aut(PV , q)) acts on the cone PV transitively, and that

the identity component of pr1(Aut(PV , q)) equals the identity component of an al-

gebraic group (cf. [15, Theorem 2]). It follows that an Iwasawa subgroup (max-

imal connected split solvable subgroup) H of pr1(Aut(PV , q)) acts on PV simply

transitively ([23, Chapter 1]). Since H is also an Iwasawa subgroup of G(PV), it

is conjugate to another Iwasawa subgroup ρ(HV) ⊂ G(PV). Namely, there ex-

ists g0 ∈ G(PV) for which g−1
0 Hg0 = ρ(HV). Let q′ be the P-positive quadratic

map g−1
0 ◦ q : Rm → ZV . We have φq′(η) = φq((g

−1
0 )∗η) for η ∈ (Rn)∗ because

txφq′(η)x = 〈q′(x), η〉 = 〈q(x), (g−1
0 )∗η〉 = txφq((g

−1
0 )∗η)x for x ∈ Rm. It is easy to

see that

Aut(PV , q
′) =

{
(g−1

0 g1g0, g2) ∈ GL(ZV)×GL(Rm) ; (g1, g2) ∈ Aut(PV , q)
}
.

Then pr1(Aut(PV , q
′)) = g−1

0 pr1(Aut(PV , q))g0⊃g−1
0 Hg0 = ρ(HV). Thus we can

apply the argument preceding Proposition 3.10 for q′, so that we have

detφq((g
−1
0 )∗η) = detφq′(η) = C∆∗

m∗(η)

with some C > 0 andm ∈ Zr. Moreover µ(q′)⊕s equals C−s/2πsm/2Rsm/2 if sm/2 ∈ Ξ.

Since q⊕s = g0 ◦ (q′)⊕s, we get the last statement from Proposition 2.12. �

Proposition 3.10 states that the Riesz measure µq associated to a homogeneous

q is equal to some Gindikin-Riesz distribution up to a linear transform on G(PV).

On the other hand, Theorem 3.9 tells us that if a Gindikin-Riesz distribution is

a positive measure, then it equals a Riesz measure associated to the virtual sum

qsV = (q1V)
⊕s1⊕· · ·⊕(qrV )

⊕sr of basic quadratic maps up to a constant multiple. For ex-

ample, let us recall the homogeneous Πr-positive quadratic map qI : RI → Sym(r,R)

with I ⊂ {1, . . . , r} and the permutation matrix w0 ∈ Sr ⊂ GL(r,R) in Sec-

tion 3.1. Putting g0 := ρ(w0), we have qI = g0 ◦ q{r−k+1,...,r} (k := ♯I), while

q{r−k+1,...,r} is exactly the basic quadratic map qr−k+1
V for ZV = Sym(r,R). There-

fore, the Riesz measure µ(qI)⊕s exists if and only if (0, . . . , 0, s/2, . . . , s/2
︸ ︷︷ ︸

k

) ∈ Ξ, that

is, s ∈ {0, 1, . . . , k − 1} ∪ (k − 1,+∞). In this case, µ(qI)⊕s equals the image of

πs/2R(0,...,0,s/2,...,s/2)= µ
(qr−k+1

V
)⊕s

by g0.

Let q1 : R
m1 → ZV and q2 : R

m2 → ZV be two homogeneous PV -positive quadratic

maps. As we have seen in Section 3.1, the direct sum q1 ⊕ q2 is not necessarily ho-

mogeneous. Let us assume that the group pr1(Aut(PV , q1)) ∩ pr1(Aut(PV , q2)) acts
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on PV transitively. In this case, we see easily that q1 ⊕ q2 is homogeneous. As in

Proposition 3.10, we can take g0 ∈ G(PV) for which g0ρ(HV)g
−1
0 ⊂ pr1(Aut(PV , q1))∩

pr1(Aut(PV , q2)). Then we have detφq1((g
−1
0 )∗η) = C1∆

∗
m′(η) and detφq2((g

−1
0 )∗η) =

C2∆
∗
m′′(η) for η ∈ (Rn)∗ with some C1, C2 > 0 and m′, m′′ ∈ Z

r. Now we consider

a virtual quadratic map q = q⊕s1
1 ⊕ q⊕s2

2 . We see that the associated Riesz mea-

sure µq exists if and only if s1m
′ + s2m

′′/2 ∈ Ξ, and in this case, µq is the image

of C
−s1/2
1 C

−s2/2
2 π(s1m1+s2m2)/2R(s1m′+s2m′′)/2 by g0. Obviously, the same argument is

valid for general quadratic maps q = q⊕s1
1 ⊕ q⊕s2

2 ⊕ · · · ⊕ q⊕st
t .

3.7. Bartlett decomposition of the Wishart laws. Let q : Rm → ZV be a

homogeneous PV -positive quadratic map. Then the Wishart law γq,θ (θ ∈ −P∗
V) is

the image of the normal law N(0, φ(−θ)−1) on the vector space Rm by the quadratic

map q/2, see Remark 2.3.

However, this description of the Wishart law does not permit us to determine its

support in general. In this section, we shall give another construction of the Wishart

random matrices , which is a generalization of the Bartlett decomposition ([2], [20,

Theorem 3.2.14]) and has the advantage of controlling the support of the underlying

Wishart law. Moreover, the result is valid for virtual quadratic maps.

First we consider the virtual quadratic map qsV = (q1V)
⊕s1 ⊕ · · · ⊕ (qrV)

⊕sr whose

associated Riesz measure µq
s

V
exists. Then σ =

∑r
i=1 sim(i)/2 belongs to Ξ and we

have µq
s

V
= π|σ|Rσ by Theorem 3.9. Moreover, we have Lµ

q
s
V

(θ) = π|σ|∆∗
−σ∗(−θ).

Therefore we obtain from (2.8) that

(3.24) γqs
V
,θ(dy) = e〈y,θ〉∆∗

σ∗(−θ)Rσ(dy) (y ∈ R
n).

We remark that distributions of this type are considered in [10] for the case when

PV is a symmetric cone. Assume that γqs
V
,θ is not the Dirac measure. Then

σ 6= (0, . . . , 0), so that we can take a non-zero ε ∈ {0, 1}r and u ∈ R+(ε) for which

σ = u + p(ε)/2. Recall the standard quadratic map qεV : W ε
V → ZV and the subset

W ε,+
V ⊂ W ε

V introduced in Section 3.4. As noted in (3.12), each element x ∈ W ε,+
V

is identified with a lower triangular matrix Tx for which qεV(x) = Tx
tTx. Thus, the

W ε,+
V -valued random variable Xu in the following theorem can be regarded as a

triangular random matrix, similarly to the Bartlett decomposition of the classical

Wishart distribution.

Theorem 3.11. Let σ = u + p(ε)/2 and Xu be an W
ε,+
V -valued random variable

whose components are independent and satisfy (Xu
ii)

2 ∼ χ2(2ui) and Xu
li ∼ N(0, Inli

)
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for i ∈ I(ε) and l > i.

(i) The Wishart law γqs
V
,−IN is the law of Y = q

ε
V(X

u)/2 and is supported by Oε.

(ii) For θ = −ρ(T )∗IN ∈ −P∗
V with T ∈ HV , the Wishart law γqs

V
,θ is the law of

Y ′ = ρ(T )−1 ◦ qεV(Xu)/2 and is supported by Oε.

Proof. For a measurable function f on ZV , we see from (3.24) and Proposition 3.6

that
∫

ZV

f(y)γqs
V
,−IN (dy) =

∫

ZV

f(y)e−〈y,IN〉Rσ(dy) =

∫

W
ε,+
V

f(qεV(x))e
−〈qε

V
(x),IN 〉Mε

u(dx).

Since 〈qεV(x), IN〉 = ‖x‖2, by the change of variable of x by x/
√
2, we rewrite the

last term as ∫

W
ε,+
V

f(q
ε
V(x)/2)e

−‖x‖2/2Mε
u(dx/2).

Keeping the Remark 3.5 in mind, we see that the law of the random variable Xu is

e−‖x‖2/2Mε
u(dx/2). Hence (i) holds. To show (ii), it suffices to check that γqs

V
,θ is

the image of γqs
V
,−IN by ρ(T )−1. Since γqs

V
,−IN (dy) = e−〈y,IN 〉Rσ(dy), we have

γqs
V
,−IN (ρ(T ) dy) = e−〈ρ(T )y,IN 〉Rσ(ρ(T ) dy) = e〈y,θ〉χσ(T )Rσ(dy)

by (3.20). Therefore (3.24) together with (3.17) leads us to the assertion (ii). �

Now we consider the Wishart distribution γq⊕s,θ, where q is a general homoge-

neous PV-positive quadratic map. First we show a refinement of the first part of

Proposition 3.10.

Lemma 3.12. Let q : Rm → ZV be a homogeneous PV-positive quadratic map, and

θ an element of −P∗
V . Then there exist g0 ∈ G(PV), m ∈ Zr and C > 0 for which

(3.25) detφq((g
−1
0 )∗η) = C∆∗

m(η) (η ∈ P∗
V)

and g∗0θ = −IN .

Proof. It is shown in the proof of Proposition 3.10 that there exists a0 ∈ G(PV)

for which a0ρ(HV)a
−1
0 ⊂ pr1(Aut(PV , q)). Since −a∗0θ ∈ P∗

V , we take T0 ∈ HV

for which ρ∗(T0)IN = −a∗0θ. Put g0 := a0ρ(T0)
−1 ∈ G(PV). Then g0ρ(HV)g

−1
0 ⊂

pr1(Aut(PV , q)) and g∗0θ = ρ∗(T0)
−1a∗0θ = −IN . Similarly to Proposition 3.10, we see

that g0 together with an appropriate m and C > 0 satisfies the required properties.

�

Assume that there exists the Riesz measure µq⊕s associated to a virtual quadratic

map q⊕s, and that µq⊕s is not the Dirac measure. Then we can take non-zero
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ε ∈ {0, 1}r and u ∈ R+(ε) such that sm/2 = u + p(ε)/2 as in Theorem 3.9. Using

these data together with g0 in Lemma 3.12, we obtain the Bartlett decomposition

of the Wishart distribution γq⊕s,θ.

Theorem 3.13. Let sm/2 = u+p(ε)/2 and Xu be the W ε,+
V -valued random variable

in Theorem 3.11. Then the Wishart law γq⊕s,θ is the law of Y = g0 ◦ qεV(Xu)/2.

Proof. Put q′ := g−1
0 ◦ q⊕s. As is seen in the proof of Proposition 3.10, the

Riesz measure µ(q′)⊕s equals C−s/2πsm/2Rsm/2. Thus, similarly to the proof of The-

orem 3.11 (i), we see that γ(q′)⊕s,−IN (dy) = e−〈y,IN 〉Rsm/2(dy), and that γ(q′)⊕s,−IN

is the law of Y = qεV(X
u)/2. Since q⊕s = g0 ◦ (q′)⊕s, Theorem 3.13 follows from

Proposition 2.12. �

We have seen that Riesz measures and Wishart laws associated to a homogeneous

quadratic map are obtained (up to linear transforms as in Proposition 3.10 and

Theorem 3.13) as the ones associated to a virtual quadratic map q
s
V = (q1V)

⊕s1 ⊕
· · · ⊕ (qrV)

⊕sr , that is, a virtual sum of basic quadratic maps. However, it does

not mean that every homogeneous quadratic map is equal to a direct sum of basic

quadratic maps. The structure of homogeneous quadratic maps is more rich than

the maps generated by basic quadratic maps. Let us study the following example.

Example 5. Let Herm(2,C) be the vector space of Hermitian matrices of size 2,

and Ω ⊂ Herm(2,C) the subset of positive definite matrices. Then we see that

Ω =

{(
y1 y3 + iy4

y3 − iy4 y2

)

; y1 > 0, y1y2 − (y3)
2 − (y4)

2 > 0

}

,

so that Ω is the 4-dimensional Lorentz cone. Recalling (3.7), we have the linear

isomorphism

ι : Herm(2,C) ∋
(

y1 y3 − iy4
y3 + iy4 y2

)

7→





y1 0 y3
0 y1 y4
y3 y4 y2



 ∈ ZV

which gives a matrix realization of Ω. Let us consider the quadratic map q̃ : C2 ∋
z 7→ ztz̄ ∈ Herm(2,C), which is clearly Ω-positive. We have a group homomorphism

GL(2,C) ∋ A 7→ (ρ̃(A), A) ∈ Aut(Ω, q̃),

where ρ̃(A) ∈ GL(Herm(2,C)) is defined by ρ̃(A)(Z) := AZ tĀ (Z ∈ Herm(2,C)).

Since ρ̃(GL(2,C)) acts on Ω transitively, the quadratic map q̃ is homogeneous.

Keeping the natural isomorphism C2 ≃ R4 in mind, we define the quadratic map
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q : R4 → ZV by

q(x) := ι ◦ q̃
(
x1 + ix2

x3 + ix4

)

= ι

(
(x1)

2 + (x2)
2 (x1x3 + x2x4)− i(x1x4 − x2x3)

(x1x3 + x2x4) + i(x1x4 − x2x3) (x3)
2 + (x4)

2

)

=





(x1)
2 + (x2)

2 0 x1x3 + x2x4

0 (x1)
2 + (x2)

2 x1x4 − x2x3

x1x3 + x2x4 x1x4 − x2x3 (x3)
2 + (x4)

2



 .

Then we have

φq(η) =







η1 0 η3 η4
0 η1 −η4 η3
η3 −η4 η2 0
η4 η3 0 η2







for η ∈ ZV . It is easily checked that the map φq ◦ ι : Herm(2,C) → Sym(4,R) is a

Jordan algebra representation. For η ∈ Ω∗ we have

(3.26) Lµq
(−η) = π2(detφq(η))

−1/2 = π2(η1η2 − (η3)
2 − (η4)

2)−1

by Lemma 2.1. On the other hand, the basic quadratic maps qiV : W i
V → ZV (i =

1, 2) are given by

q1V





x1 0
0 x1

x3 x4



 =





(x1)
2 0 x1x3

0 (x1)
2 x1x4

x1x3 x1x4 (x3)
2 + (x4)

2



 , q2V





0
0
x2



 =





0 0 0
0 0 0
0 0 (x2)

2



 ,

so that we have for η ∈ Z∗
V

φ1
V(η) =





η1 η3 η4
η3 η2 0
η4 0 η2



 , φ2
V(η) = η2.

Thus we obtain

(3.27) Lµ
q1
V

(−η) = π3/2(η2)
−1/2(η1η2−(η3)

2−(η4)
2)−1/2, Lµ

q2
V

(−η) = π1/2(η2)
−1/2

for η ∈ P∗
V . Comparing (3.26) and (3.27), we see that µq = µ(q1

V
)⊕2⊕(q2

V
)⊕(−2) , whereas

the quadratic map q is by no means equal to the virtual quadratic map (q1V)
⊕2 ⊕

(q2V)
⊕(−2). We see also from (3.26) and (3.27) that µq⊕(q2

V
)⊕2 = µ(q1

V
)⊕2 , whereas the

two (true) quadratic maps q ⊕ (q2V)
⊕2 and (q1V)

⊕2 do not coincide even up to linear

transforms g0 ∈ G(Ω), as the domains of these maps are different.

Therefore two different quadratic maps may correspond to the same Riesz mea-

sure.
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3.8. Density function for the non-singular case. Since the orbit Oε =

ρ(H)Eε is contained in the boundary ∂PV of the homogeneous cone PV unless ε =

(1, . . . , 1), the Gindikin-Riesz distribution Rσ is a singular measure for σ ∈ Ξ(ε)

with ε 6= (1, . . . , 1) thanks to Proposition 3.6. On the other hand, if σ ∈ Ξ(1, . . . , 1),

that is,

σi > pi/2 (i = 1, . . . , r),

where pi := pi(1, . . . , 1) =
∑

l>i nli, then the Gindikin-Riesz distribution is an ab-

solutely continuous measure with respect to the Lebesgue measure, and the density

function is given explicitly in [6] as follows.

Noting that the group HV acts on PV simply transitively, we define the function

∆σ : P → C× for σ = (σ1, . . . , σr) ∈ Cr by ∆σ(ρ(T )IN) := χσ(T ) (T ∈ HV).

For y = ρ(T )IN = T tT ∈ PV , we can express ∆σ(y) as a product of powers of

principal minors of y (cf. [4, p. 122]). Define d = (d1, . . . , dr) ∈ Zr/2 by dk :=

1+ (
∑

l>k nlk +
∑

i<k nki)/2. Then ∆−d(y)dy gives a G(PV)-invariant measure on P
([6, Proposition 2.2]). Take σ ∈ Ξ(1, . . . , 1). We see from [6, Theorem 2.1] that the

integral

ΓPV
(σ) :=

∫

PV

e−〈y,IN 〉∆σ−d(y) dy

converges and equals π(dimZV−r)/2
∏r

i=1 Γ(σi − pi/2). By [6, Proposition 2.3], we see

that

(3.28) Rσ(dy) =
∆σ−d(y)

ΓPV
(s)

dy (y ∈ PV).

Owing to (3.24) and (3.28), we conclude the following proposition.

Proposition 3.14. Let qsV = (q1V)
⊕s1 ⊕ · · · ⊕ (qrV)

⊕sr be the virtual quadratic map

such that σ =
∑r

i=1 sim(i)/2 belongs to Ξ(1, . . . , 1), that is, σi > pi/2 (i = 1, . . . , r).

Then one has

(3.29) γqs
V
,θ(dy) =

e〈y,θ〉∆∗
σ∗(−θ)∆σ−d(y)

ΓPV
(s)

dy (y ∈ PV).

Note that the formula (3.29) served as a definition of a Wishart law in [1].

Example 6. Let ZV be the space defined in (3.5). If y = ρ(T )IN = T tT ∈ PV with

T ∈ HV , then we see easily that

y11 = (t11)
2, y11y22 − (y21)

2 = (t11)
2(t22)

2, y11y33 − (y31)
2 = (t11)

2(t33)
2,
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so that ∆σ(y) = (t11)
2σ1(t22)

2σ2(t33)
2σ3 equals

(y11)
σ1−σ2−σ3(y11y22 − (y21)

2)σ2(y11y33 − (y31)
2)σ3 .

On the other hand, we have (p1, p2, p3) = (0, 1, 1) and (d1, d2, d3) = (2, 3/2, 3/2).

Thus we have by (3.28)

R(σ1,σ2,σ3)(dy) =
(y11)

σ1−σ2−σ3+1(y11y22 − (y21)
2)σ2−3/2(y11y33 − (y31)

2)σ3−3/2

πΓ(σ1)Γ(σ2 − 1/2)Γ(σ3 − 1/2)
dy

if σ1 > 0, σ2 > 1/2 and σ3 > 1/2. Let us consider the Wishart laws associated

to the virtual quadratic map (q1V)
⊕s, where q1V : W 1

V → ZV is the basic quadratic

map. Since m(1) = (1, 1, 1), we observe that sm(1)/2 ∈ Ξ if and only if s ∈
{0, 1} ∪ (1,+∞). If s = 0, the associated Wishart law is the Dirac measure. If

s = 1, the associated Wishart law γq1
V
, θ (θ ∈ −P∗

V) is described as the image of the

normal law N(0, φ1
V(−θ)−1) on W 1

V ≡ R3 by the quadratic map q1V/2, where φ
1
V(−θ)

is given in Example 4 after Proposition 3.1.

If s > 1, then sm(1)/2 = (s/2, s/2, s/2) belongs to Ξ(1, 1, 1). Since

∆∗
sm(1)∗/2(η) = detφ1

V(η)
s/2 =

(
η11η22η33 − η33(η21)

2 − η22(η31)
2
)s/2

(η ∈ P∗
V),

we have for θ = −η ∈ −P∗
V

γ(q1
V
)⊕s, θ(dy) =

e−〈y,η〉(η11η22η33 − η33(η21)
2 − η22(η31)

2
)s/2

πΓ(s/2)Γ((s− 1)/2)Γ((s− 1)/2)
×

× (y11)
1−s/2(y11y22 − (y21)

2)(s−3)/2(y11y33 − (y31)
2)(s−3)/2 dy (y ∈ PV)

by Proposition 3.14.
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