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Abstract

We study the problem of finding occurrences of motifs in vertex-colored graphs,
where a motif is a multiset of colors, and an occurrence of a motif is a subset
of connected vertices whose multiset of colors equals the motif. This problem is a
natural graph-theoretic pattern matching variant where we are not interested in the
actual structure of the occurrence of the pattern, we only require it to preserve the
very basic topological requirement of connectedness. We give two positive results
and three negative results that together give an extensive picture of tractable and
intractable instances of the problem.

⋆ An extended abstract of this paper appeared in [23].
Email addresses: michael.fellows@newcastle.edu.au,

fertin@lina.univ-nantes.fr, hermelin@mpi-inf.mpg.de, vialette@lri.fr
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1 Introduction

Vertex-colored graph problems have numerous applications in bioinformat-
ics. Sandwich problems have applications in DNA physical mapping [12,24,27]
and in perfect phylogeny [14,33], while vertex-recoloring problems arise in
protein-protein interaction networks and phylogenetic analysis [13,16,34]. In
this paper, we consider another vertex-colored graph problem with an impor-
tant application in metabolic network analysis [32]:

Graph Motif:

Input: A vertex-colored graph G and a multiset of colors M .

Question: Does G have a connected subset of vertices whose multiset of
colors equals M?

The Graph Motif problem can be viewed as a natural variant of a graph-
theoretic pattern matching problem. In more classical variants one is interested
in subgraphs or induced subgraphs that appear, along with their colors, in the
corresponding text graph. However, in Graph Motif we are not interested
in the actual structure of the occurrence of the pattern, we only require it
to preserve the very basic topological requirement of connectedness. We be-
lieve that due to the generic nature of this problem, it will find applications
in many domains. Indeed, although the problem was introduced by Lacroix,
Fernandes, and Sagot (in a slightly more general formulation) in the context
of detecting patterns that occur in e.g. interaction networks between chemical
compounds and\or reactions [32], it is conceivable to think that algorithms
for this problem can also be used in analyzing other types of networks, such
as social or technical networks.

In [32], Graph Motif is proved to be NP-complete even if the given vertex-
colored graph is a tree, but fixed-parameter tractable in this case when param-
eterized by the size of the given motif (i.e., |M |). However, as observed by [32],
their fixed-parameter algorithm does not apply when the vertex-colored graph
is a general graph. For this case they only provided a heuristic algorithm
which works well in practice. This paper focuses on extending these results. In
particular, we are interested in investigating Graph Motif under different
parameters governing the structure of the input.

author at the University of Haifa. At the time, the author was supported by the
Adams Fellowship of the Israel Academy of Sciences and Humanities.
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1.1 Our results

We give an extensive, yet still initial, analysis for Graph Motif which pro-
vides both upper and lower bounds for the problem. Our analysis applies tools
from both the classical and the parameterized complexity viewpoints, and is
aimed at understanding the nature of tractable and intractable instances of the
problem and the parameters controlling them. We show that Graph Motif

is:

(1) NP-complete already for trees of maximum degree 3 and for motifs which
are sets rather than multisets.

(2) NP-complete for motifs with 2 colors, even if G is bipartite with maxi-
mum degree 4.

(3) FPT when parameterized by the size of the motif k via an algorithm
running in time 2O(k)n2 lg n.

(4) XP when parameterized by both the number of colors in the motif and
the treewidth of the input graph. In other words, it is polynomial-time
solvable when both these parameters are bounded by some constant.

(5) W[1]-hard when parameterized by the number of colors in the motif,
even when the input graph is a tree.

Our first upper bound (3) should be compared with our first lower bound
(1). These two together give a rather sharp distinction between the com-
plexity of the problem when the motif is unbounded. When the motif has a
bounded number of colors, our second lower bound (2) suggests that the prob-
lem remains hard for quite a few graph classes, yet not for bounded-treewidth
graphs according to (4). Our last lower bound (5) complements the algorithm
for bounded treewidth graphs by showing that when we take the number of
colors in the motif as a parameter, the problem becomes intractable already
for trees.

1.2 Related and extended work

Since the appearance of the earlier version of this work [23], other variants
of Graph Motif have been introduced and studied. In [20], a minimization
variant of the problem was considered, where the goal is to minimize the
number of connected components that induce all the colors in the motif. An
asymmetric maximization variant of Graph Motif was considered in [21],
where the goal is to find the largest subset of the given motif that occurs in the
graph. Both problems turn out to be APX-hard, even for restrictive special
cases, and are in FPT when parameterized by the size of the solution by
extensions of the algorithm presented here. Finally, Betzler et al. [8] considered
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the variant where the occurrence of the motif is required to be 2-connected,
and showed that this variant is W[1]-complete when parameterized by the
size of the motif M . This result shows how fragile the tractability results are
with respect to the topological requirements of the motifs. They also presented
an improvement upon our FPT algorithm for parameter |M |, and this has
recently been improved once more in [28].

The Graph Motif problem was introduced by by Lacroix, Fernandes, and
Sagot (in a slightly more general formulation) in the context of detecting pat-
terns that occur in various metabolic networks, e.g. interaction networks be-
tween chemical compounds and\or reactions [32]. There has been an enormous
amount of study in this area in the biological community. We refer interested
readers to [18] for a short overview. The model of Lacroix et al. was also used
and extended in [15,29,30].

Finally, we wish to mention the related problem of Interval Constraint

Coloring, where the input is a set of intervals on the integer line, and a set
of motifs, one for each interval. The goal is to color the integers on the line
so that each interval has exactly the colors of his motif. This problem was
introduced in the context of automated mass spectrometry [2,3], and has been
analyzed according to the parameters governing its input in [31].

1.3 Basic notation and terminology

Our graph-theoretic notation is standard and all notions we use can be found
in any classical text on the subject, e.g. [19]. Throughout the paper, we use
G = (V (G), E(G)) to denote our given vertex-colored graph, and n = |V (G)|
to denote its order. For a vertex v ∈ V (G), we use χ(v) to denote the color
of v, and for a vertex subset V ⊆ V (G), we let χ(V ) denote the multiset of
colors

⋃

v∈V χ(v). For any vertex subset V ⊆ V (G), we let G[V ] denote the
subgraph of G induced by V , i.e., the subgraph on V along with all edges of
G that connect vertices in V . We assume w.l.o.g. that G is connected.

A motif M is a multiset of colors. If M is in fact a set rather than a multiset,
we say that M is colorful. Given a subset of vertices V ⊆ V (G), |V | = |M |,
we say that V is colored by the colors of M , if χ(V ) = M . For V to be an
occurrence of M , we require not only for V to be colored by the colors of M ,
but also for G[V ] to be connected. If this is in fact the case, we say that M
occurs at v for any vertex v ∈ V , or simply that M occurs in G. In these
terms, the Graph Motif problem is the problem of determining whether a
given motif M occurs in a given vertex-colored graph G. We assume w.l.o.g.
that χ(v) ∈ M for any v ∈ V (G).

Our analysis is based both on the classical and parameterized complexity
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frameworks. Readers unfamiliar with these subjects are referred to [22,26].

1.4 Organization

The rest of the paper is organized as follows. In the reminder of this section
we discuss notations that will be used throughout the paper. In Section 2,
we give two NP-hardness results that will motivate the rest of our discus-
sion. Following this, in Section 3 we present our algorithm for logarithmic size
motifs. In Section 4 we discuss the case when G has bounded treewidth. Fi-
nally, in Section 5, we show that Graph Motif is W[1]-hard on trees when
parameterized by the number of colors in M .

2 Two Classical Hardness Results

Graph Motif is known to be NP-complete for trees [32]. Our aim in this
section is to tighten this result by showing that Graph Motif remains hard
for highly restrictive graph classes, even if we restrict ourselves to motifs which
are sets rather than multisets, or on the other extreme, to motifs which consist
of a small number of colors. We begin with colorful motifs (i.e. set motifs).

Theorem 1 Graph Motif is NP-complete, even if M is colorful and G is
a tree of maximum degree three.

PROOF. Graph Motif is clearly in NP. To prove NP-hardness, we present
a reduction from the well known NP-complete problem 3-SAT [26]. Recall
that 3-SAT asks to determine whether a given 3-CNF formula is satisfiable,
that is, whether there is a truth assignment to the boolean variables of the
formula, such that the value of the formula under this assignment is 1. The
problem remains hard even if each variable appears in at most three clauses
and each literal (i.e., variable with or without negation) appears in at most
two clauses [26]. Hence, we restrict ourselves in our proof to formulas of this
type.

Let an instance of 3-SAT be given in the form of a 3-CNF formula Φ =
c1 ∧ · · · ∧ cm over variables x1, . . . , xn such that |{cj | xi ∈ cj}| ≤ 2 and
|{cj | x̄i ∈ cj}| ≤ 2 for all 1 ≤ i ≤ n. We construct an instance for Graph

Motif as follows. The colored graph G initially consists of a path of n ver-
tices, each colored by a distinct color in 1, . . . , n. To a vertex colored i in
this path, 1 ≤ i ≤ n, we connect a new vertex colored i′. To a vertex col-
ored i′, 1 ≤ i ≤ n, we connect a pair of new non-adjacent vertices, both
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colored xi. Conceptually, each vertex in this pair corresponds to a different
truth assignment for xi. If a truth assignment to variable xi satisfies clause
cj , we connect a new vertex colored cj to the vertex colored xi which corre-
sponds to this assignment. This is done for every xi ∈ {x1, . . . , xn} and every
cj ∈ {c1, . . . , cm}. We conclude our construction by specifying M to be the set
of colors {1, . . . , n, 1′, . . . , n′, x1, . . . , xn, c1, . . . , cm}. A simple example of this
construction is given in Fig. 1. Note that G and M are as required by the
theorem.

1 2 3

1′ 2′ 3′

x1 x1

c1 c3 c2

x2 x2

c1 c2 c3

x3 x3

c1 c2 c3

Figure 1. An example of the construction of G out of a 3-CNF formula which consists
of three clauses: c1 = (x1 ∨ x2 ∨ x3), c2 = (x̄1 ∨ x2 ∨ x̄3), and c3 = (x1 ∨ x̄2 ∨ x̄3).

The construction above is clearly polynomial. Hence, to complete the proof,
we are left to show that M occurs in G if and only if Φ is satisfiable. For the
first direction, assume that there exists a truth assignment φ which satisfies Φ.
Let N ⊆ V (G) be the subset of vertices in G which are colored by the colors
in {1, . . . , n, 1′, . . . , n′}, and let X ⊆ V (G) be the subset of vertices which
correspond to assignment φ. Hence, X consists of n vertices which are colored
by the colors in {x1, . . . , xn}, and N ∪ X induces a connected subgraph. Since
φ satisfies every clause in Φ, by construction of G there is a vertex colored
cj in the neighborhood of X for every 1 ≤ j ≤ m. In other words, there
exists C ⊆ N(X) which is colored by the colors in {c1, . . . , cm}. It follows
that V = N ∪ X ∪ C is connected and is colored by the colors of M , and
therefore is an occurrence of M in G.

For the converse direction, assume there exists an occurrence V of M in G.
Let X ⊆ V be the vertices colored by the colors in {x1, . . . , xn}, C ⊆ V be
the vertices colored by the colors in {c1, . . . , cm}, and φ the truth assignment
corresponding to X. By construction, a vertex colored cj is connected in G to
a vertex colored xi if and only if the truth assignment corresponding to this
vertex satisfies clause cj . Since C contains all colors in {c1, . . . , cm}, and since
vertices in C are connected only to vertices in X, it follows that φ satisfies
every clause in Φ, and so it satisfies Φ itself. 2

Theorem 1 (and our proof) shows that a polynomial-time algorithm for Graph

Motif restricted to trees of maximum degree three is unlikely, even when the
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motif is colorful, and when each color occurs at most three times in the input
tree. The next lemma shows that this implication is tight in two ways:

Lemma 2 Graph Motif is polynomial-time solvable if either

• G has maximum degree two, or
• G is a tree where each color is shared by at most two vertices, and M is

colorful.

PROOF. First observe that if G has maximum degree two, then G is actually
a collection of paths and cycles. Given a motif M , one can search through all
subpaths of length |M | in the cycles and paths of G in polynomial-time.

To prove the second part of the lemma, assume without loss of generality
that G is rooted at r ∈ V (G) (as otherwise we can try all possible roots),
and let M = {1, . . . , k}. We associate with each vertex v a unique literal
x(v) ∈ {x1, x̄1, . . . , xk, x̄k}, with x(v) ∈ {xi, x̄i} if χ(v) = i. This can be
done since each color in M appears at most twice in G. Next, we construct
a 2-CNF formula Φ which consists of all clauses x(u) ⇒ x(v) for every child-
parent pair (u, v) in G. We also add to Φ a single-literal clause containing x(r).
Interpreting the assignment of the variable xi as the selection of which of the
two vertices colored i in G will be taken for the occurrence of M , it is easy to
see that M occurs in G (with respect to the root r) iff Φ is satisfiable. Thus, the
second part of the lemma follows from the fact that 2-SAT is polynomial-time
solvable [7]. 2

The motif used in the construction of Theorem 1 above is not only of un-
bounded size, it also consists of an unbounded number of colors. One might
hope that for motifs which consist of only a small number of colors, Graph

Motif would become polynomial-time solvable. Indeed, if the motif consists
of a single color then Graph Motif reduces to the polynomial problem of
computing the largest connected component in G. Unfortunately, the follow-
ing theorem shows that already for motifs which consist of two colors Graph

Motif is NP-complete, even when restricted to bipartite graphs of maximum
degree four.

Theorem 3 Graph Motif is NP-complete, even if M consists of two col-
ors, and G is bipartite with maximum degree four.

PROOF. We reduce from the Exact Cover by 3-Sets (X3C) prob-
lem, which is known to be NP-complete [26]. Recall that, given a set X =
{x1, x2, . . . , x3q} and a collection S = {s1, s2, . . . , sn} of 3-element subsets of
X, the X3C problem asks to determine whether there exists an exact cover of
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X in S, i.e., a sub-collection C ⊆ S such that every element of X is included
in exactly one subset si ∈ C. The problem is hard even if each element of X
appears in at most three sets of S [26], so we restrict ourselves in the proof to
instances of this type.

Let 〈X, S〉 be an arbitrary instance of the X3C problem with |{sj ∈ S | xi ∈
sj}| ≤ 3 for all xi ∈ X. We show how to construct a motif M and a colored
graph G in such a way that there exists an exact cover of X in S if and
only if M occurs in G. First, we define M so as it contains 2n + 3q white
elements and q black elements. Then, we define G by V (G) = X ∪ S ∪
S ′ ∪ S ′′ and E(G) = E1 ∪ E2 ∪ E3 ∪ E4, where S ′ = {s′1, s

′
2, . . . , s

′
n}

and S ′′ = {s′′1, s
′′
2, . . . , s

′′
n} are copies of S, and E1, E2, E3, E4 are defined by:

E1 = {{xi, sj} | xi ∈ sj}, E2 = {{si, s
′
i} | 1 ≤ i ≤ n}, E3 = {{s′i, s

′′
i } | 1 ≤ i ≤

n}, and E4 = {{s′′i , s
′
i+1} | 1 ≤ i ≤ n − 1}. The vertices of X ∪ S ′ ∪ S ′′

are colored white and the vertices of S are colored black. It is easily seen that
G and M are as required by the theorem, and that our construction can be
carried out in polynomial time.

x1

x2

x3

x4

x5

x6

s1

s2

s3

s4

s′1

s′2

s′3

s′4

s′′1

s′′2

s′′3

s′′4

Figure 2. The construction of G out of an instance for X3C: X = {x1, . . . , x6}
and S = {s1, . . . , s4}. The 3-sets are s1 = {x1, x2, x4}, s2 = {x1, x3, x4},
s3 = {x2, x5, x6}, and s4 = {x3, x4, x6}.

Let us now argue that there exists an exact cover C ⊆ S of X if and only if M
occurs in G. For the first direction, suppose that there exists an exact cover
C ⊆ S of X. Consider the subset of vertices V = X ∪ C ∪ S ′ ∪ S ′′. First
note that V consists of q = |C| black vertices and 2n + 3q = |X ∪ S ′ ∪ S ′′|
white vertices. Second, since C is a cover of X, every vertex of X is connected
to some vertex in C, and C is connected to S ′ ∪ S ′′, so V itself is connected.
It follows that V is an occurrence of M , and M occurs in G.
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Conversely, suppose that there exists an occurrence V ⊆ V (G) of M in G.
Observe that M contains 2n + 3q white elements, and since exactly 2n + 3q
vertices of G are colored white, we must have X ∪ S ′ ∪ S ′′ ⊂ V . The
remaining q vertices in V are q black vertices from S. By construction, we do
not have an edge between two vertices of X, nor between a vertex of X and
a vertex of S ′ ∪ S ′′. Therefore, since V is connected, each vertex of X has to
be adjacent to at least one vertex in V ∩ S. But |X| = 3q and each vertex in
S is connected to exactly 3 vertices in X. Then it follows that no two vertices
of V ∩ S share a common neighbor in X, and C = V ∩ S is an exact cover of
X in S. 2

3 Parameterizing by the Motif Size

We next prove that Graph Motif is fixed-parameter tractable for parameter
|M | on any general graph. This generalizes the result of Lacroix, Fernandes,
and Sagot [32] mentioned in Section 1, and should be compared to the hardness
results presented in the previous section. In particular, our algorithm implies
that Graph Motif is polynomial-time solvable when the given motif M is
of logarithmic size (i.e. |M | = O(lg n)).

Set k := |M |. Our algorithm for parameter k uses the color-coding technique
introduced by Alon et al. [1], whose derandomized version crucially relies on
the notion of perfect hash families: A family F of functions from V (G) to
{1, . . . , k} with the property that for any subset V ⊆ V (G) of k vertices
there is a function f ∈ F which is bijective when restricted to V . Alon et
al. [1] showed any graph has a perfect hash family of size 2O(k) · lg n, for any
given positive integer k, and furthermore, this family can be constructed in
2O(k) · n lg n time.

The main idea of the color-coding technique is as follows: Suppose M has an
occurrence V in G, and suppose we are provided with a perfect family F of
hash functions from V (G) to {1, . . . , k}. Since F is perfect, we are guaranteed
that at least one function in F assigns V with k distinct labels. Thus, by
iterating through all functions in F , we can concentrate on finding occurrences
of V which are distinctly labeled by our hashing. This allows us to compute
occurrences of M by applying dynamic programming.

Let us next describe the tables used in this dynamic programming algorithm,
for a given a hash function f : V (G) → {1, . . . , k}. We use L to denote
the set of labels {1, . . . , k}. For each vertex v ∈ V (G), we will have a table
denoted DPv. Each such table will have an entry for every pair of label-subset
L′ ⊆ {1, . . . , k}, and motif-subset M ′ ⊆ M , M ′ 6= ∅. At the end of the
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algorithm, the following invariant will be held:

DPv[L
′, M ′] = 1 ⇐⇒ M ′ has an occurrence V with v ∈ V, f(V ) = L′. (1)

All entries DPv[∅, M
′] are set to 0 at the beginning of the algorithm. Note that

unlike M ′ which can be a multi-set, L′ will always be a set of labels. Clearly,
M has an occurrence V which is distinctly labeled by f iff DPv[L, M ] = v for
some v ∈ V (G).

Now let v be some vertex of G. Our goal is to compute DPv[L
′, M ′] assuming

DPu[L
′′, M ′′] has previously been computed for every vertex u ∈ V (G), any

L′′ ⊆ L′ \{f(v)}, and any M ′′ ⊆ M ′ \{f(v)}. The straightforward approach is
to consider small motifs occurring at neighbors of v. However, a motif occur-
ring at v might be the union of motifs occurring at any number of neighbors
of v, and so this approach might require exponential running time in n. We
therefore present an alternative method for computing DPv[L

′, M ′], which we
call the batch procedure, that uses an even more naive approach, but one that
requires exponential-time only with respect to k:

Batch Procedure(v, L′, M ′):

(1) Define S to be the set of all pairs (L′′, M ′′) such that L′′ ⊆ L′ \ {f(v)},
M ′′ ⊆ M ′ \ {χ(v)}, and DPu[L

′′, M ′′] = 1 for some neighbor u of v.
(2) Run through all pairs of (L1, M1), (L2, M2) ∈ S and determine whether

L1 ∩L2 = ∅, and whether M1 ∪M2 ⊆ M ′ \ {χ(v)}. If there is such a pair,
add (L1 ∪L2, M1 ∪M2) to S and repeat this step. Otherwise, continue to
the next step.

(3) Set DPv[L
′, M ′] to be 1 if (L′ \ {χ(v)}, M ′ \ {f(v)}) ∈ S.

The reader should note that the correctness of the batch procedure relies
on the fact that we are only required to compute motif occurrences which
occur at specified vertices. In this way we are ensured that the connectedness
requirement holds. This is stated more precisely in the proof of Lemma 4
below. Lemma 5 then shows that using the batch procedure, we can determine
wether our given motif M occurs in G in relatively efficient (i.e. FPT-) time.

Lemma 4 For any vertex v ∈ V (G), label-subset L′ ⊆ L, and M ′ ⊆ M ,
the batch procedure correctly computes DPv[L

′, M ′], assuming DPu[L
′′, M ′′] is

given for every neighbor u of v, L′′ ⊆ L′ \ {f(v)}, and M ′′ ⊆ M ′ \ {χ(v)}.

PROOF. Let S be the family of pairs computed by the batch procedure.
Consider any pair (L′′, M ′′) ∈ S with L′′ = L′ \ {f(v)}. By construction,
M ′′ = M ′ \ {χ(v)} and can be written as M ′′ = M ′′

1 ∪ · · · ∪ M ′′
ℓ , where each

M ′′
i , 1 ≤ i ≤ ℓ, is a motif that has an occurrence V ′′

i which includes a neighbor
of v. Furthermore, each V ′′

i is labeled by a unique set of labels L′′
i such that
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L′′
i ∩ L′′

j = ∅ for all 1 ≤ j ≤ ℓ, j 6= i. It follows that all the V ′′
i s are pairwise

disjoint, and that V ′ = {v} ∪ V ′′
1 ∪ · · · ∪ V ′′

ℓ is connected. Hence, V ′ is an
occurrence of M ′ = M ′′ ∪ {χ(v)} in G which is labeled by L′ = L′′ ∪ {f(v)},
and so invariant (1) is held when the batch procedure sets DPv[L

′, M ′] to 1.

On the other hand, suppose M ′ has an occurrence V ′, v ∈ V ′, which is labeled
by L′. Write M ′′ := M ′ \ {χ(v)}, L′′ := L′ \ {f(v)}, and V ′′ := V ′ \ {v}. Let
V ′′

1 , . . . , V ′′
ℓ be the connected components of the induced subgraph G[V ′′]. Since

V ′ is connected, every V ′′
i , 1 ≤ i ≤ ℓ, includes a neighbor of v. Furthermore,

letting L′′
i denote the set of labels that f assigns V ′′

i for every 1 ≤ i ≤ ℓ, we
have L′ ⊆ L′ \ {f(v)} and L′′

i ∩ L′′
j = ∅ for all 1 ≤ i, j ≤ ℓ. It is now easy to

see that the batch procedure will eventually compute the pair (M ′′, L′′) in its
second step, and hence DPv[L

′, M ′] will be set to 1 in its final step. 2

Lemma 5 Given a labeling function f : V (G) → {1, . . . , k}, one can use the
batch procedure iteratively in order to determine in O(26kkn2) time whether
there is an occurrence of M in G which is distinctly labeled by f .

PROOF. To prove the lemma, let us first analyze the complexity of a sin-
gle invocation of the batch procedure. In its first step, the batch procedure
searches through at most 2kn motif families, each consisting of at most 2k

motifs. Hence, this step requires O(22kkn) time. For the second step, notice
that number of distinct motif and label-subset pairs is bounded by 22k, and
so the number of times the second step is repeated is also bounded by this
term. Since each iteration of this step can be computed in O(22kk) time, it
follows that the second step requires O(24kk) time. Accounting also for the
third step, the total time of one invocation of the batch procedure is therefore
O(24kk + 22kkn) = O(24kkn).

It now can easily be seen that due to Lemma 4, one needs to invoke the batch
procedure at most 22kn times in order to compute every entry in each dynamic
programming table DPv. It follows that in O(26kkn2) time one can obtain all
necessary information to determine whether M has an occurrence which is
distinctly labeled by f , and so the lemma follows. 2

Note that in case M is colorful, the vertex-coloring of G distinctly colors
any occurrence of M , and therefore, in this case we can determine whether
M occurs in G within the time complexity given in Lemma 5. For general
motifs our algorithm is as follows: It first constructs in 2O(k) · n lg n time a
perfect family F of 2O(k) · lg n functions from V (G) to {1, . . . , k}, using [1].
Next for each f ∈ F , it uses the batch procedure to determine whether there
is any occurrence of M which is distinctly labeled by f in 2O(k) · n2 time
(Lemma 5). Since F is perfect, any occurrence of M in G is guaranteed to
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be distinctly labeled by at least one labeling function f ∈ F , and so by
exhaustively searching through all functions in F , our algorithm can determine
whether M occurs in G in total 2O(k) · n2 lg n time.

Theorem 6 Graph Motif can be solved in 2O(k) ·n2 lg n time for k := |M |.

4 Bounded Treewidth Graphs

The treewidth parameter of graphs [35] plays a central role in designing exact
algorithms for many NP-hard graph problems (see e.g. [4,6,9,17]). In this
section we show that Graph Motif is polynomial-time solvable when G
has constant treewidth and M consists of a constant number of colors (but
with arbitrary numbers of repeated elements in the multiset of colors). This
should be compared with Theorem 3 which implies that Graph Motif is
intractable even when M consists of only two colors and G is bipartite with
constant degree.

4.1 Basic ingredients

We begin by describing the necessary terminology and definitions for our al-
gorithm. We first define tree decompositions and nice tree decompositions of
arbitrary graphs in a somewhat nonstandard way tailor-fit for our purposes.
Later we introduce the central ingredient of our algorithm which is a data
structure essential for its computation.

Definition 7 (Tree Decomposition [35]) A tree decomposition of a graph
G is a pair (T ,X ), where X is a set of subgraphs of G (we also refer to elements
of X as bags), and T is a tree over X , satisfying the following conditions:

(1)
⋃

X∈X X = G, and
(2) Xv = {X ∈ X | v ∈ V (X)} is connected in T for all v ∈ V (G).

The width of T is maxX∈X |V (X)| − 1. The treewidth of G is the minimum
width over all tree decompositions of G.

Definition 8 (Nice Tree Decomposition [11]) A tree decomposition (T ,X )
of a graph G is nice if T is rooted, binary, and each bag in X is of one of the
following four types:

• Leaf nodes X ∈ X are leaves in T , and are singleton graphs which consist
of a single isolated vertex v ∈ V (G).

12



• Introduce nodes X ∈ X have one child X ′ in T , with V (X) = V (X ′) ∪ {v}
for some vertex v /∈ V (X ′), and E(X) = E(X ′).

• Connect nodes X ∈ X have one child X ′ in T , with V (X) = V (X ′) and

E(X) = E(X ′) ∪
{

{u, v}
}

for some pair of vertices u, v ∈ V (X).

• Forget nodes X ∈ X have one child X ′ in T , with V (X) = V (X ′) \ {v} for

some vertex v ∈ X ′, and E(X) = E(X ′) \
{

{u, v} ∈ E(X ′)
}

.

• Join bags X ∈ X have two children X ′ and X ′′ in T with X = X ′ = X ′′.

Although computing an optimal tree-decomposition of a graph is an NP-complete
problem [5], for graph of constant treewidth there exists a linear-time algo-
rithm due to Bodlaender [10] for computing an optimal tree-decomposition.
Furthermore, given a tree decomposition for a given graph, one can obtain a
nice tree decomposition with the same width (and with an at most constant-
factor increase of nodes) in linear time (see for instance [11]). Therefore, we
assume throughout the remainder of this section that we have a nice tree
decomposition (T ,X ) of our input graph G.

Definition 9 (XT ) For any subgraph X ∈ X , we let XT denote the subgraph
of G defined by

XT =
⋃

X′∈Des(X)

X ′,

where Des(X) is the collection of all descendants of X (including X itself)
in T .

Many of the treewidth-based algorithms for NP-complete graph problems
apply some form of dynamic-programming computation on the nodes of the
tree-decomposition at hand. Our algorithm also follows these lines, by main-
taining for each X ∈ X the following data-structure:

Definition 10 (Descriptor, Inventory) A descriptor of a subgraph X of
G with respect to a motif M consists of:

• A partition Π = {Π1, . . . , Πr} of V (X).
• A motif family M = {M1, . . . , Mr}, where Mi ⊆ M , Mi 6= ∅, for all 1 ≤

i ≤ r.

We say that a descriptor as above is positive for X if there exist r pairwise
disjoint subsets of vertices in XT , say V1, . . . , Vr, such that:

• Vi ∩ V (X) = Πi, for all 1 ≤ i ≤ r.
• Vi is an occurrence of Mi in XT , for all 1 ≤ i ≤ r.

We define the inventory inv(X) of X as the set of all positive descriptors
for X.

Lemma 11 If G has constant treewidth and M consists of a constant number
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of colors, then any subgraph X ∈ X has a polynomial number of distinct
positive descriptors.

PROOF. Suppose that any subgraph X ∈ X has at most α vertices, and
that M consists of at most α colors, for some α ∈ N+. The number of different
vertex-partitions of any X ∈ X is bounded by αα, and the number of different
motif families consisting of at most α motifs, each of size at most n, is bounded
by nα2

. Therefore, the total number of positive descriptors for any X ∈ X is
bounded by αα · nα2

. 2

4.2 The algorithm

Our algorithm proceeds as follows. It traverses the nice tree-decomposition of
G in bottom-up fashion, and for each node X ∈ X it encounters, it computes
inv(X) from the inventory (or inventories) of the child graph(s). We determine
that M occurs in G iff M ∈ inv(X) for some subgraph X ∈ X . The following
lemma proves the correctness of this strategy.

Lemma 12 M occurs in G iff M ∈ M for some descriptor (Π,M) ∈ inv(X),
X ∈ X .

PROOF. Suppose M has an occurrence V in G. For any v ∈ V , let Xv =
{X ∈ X | v ∈ X} denote the collection of subgraphs which include v. By
property (2) of Definition 7, every Xv induces a connected subtree Tv in T .
Furthermore, property (1) of this definition implies that for any u, v ∈ V with
{u, v} ∈ E(G), there is a subgraph in Xv that includes u, and a subgraph
in Xu that includes v. It follows that {u, v} ∈ E(G) implies Tu ∩ Tv 6= ∅.
Therefore, since V is connected, TV =

⋃

v∈V Tv is a subtree of T . Hence,
there is a subgraph that lies on all paths in T between the root of T and
{Xv | v ∈ V }. For this particular subgraph X ∈ {Xv | v ∈ V }, V is a subset
of vertices in XT with V ∩ V (X) 6= ∅, and therefore there is some positive
descriptor (Π,M) ∈ inv(X) with M ∈ M. Since the converse direction is
trivial, the lemma follows. 2

We proceed to describe our algorithm in terms of the computation needed in
order to obtain inventories of nodes in T from the inventories of their children.
We use (Π,M) to denote the descriptor of an arbitrary node X in T , and
(Π′,M′) to denote a descriptor (Π,M) previously computed from the child
X ′ of X in T (using double-prime notation in case X has two children). The
base cases of this computation are the leaf nodes. The inventory of a leaf node
X consists of a single descriptor (Π,M) with Π =

{

{v}
}

and M =
{

{χ(v)}
}

,
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where v is the single vertex of X. The computation done on any single child
node in T is almost equally easy, and is given for the sake of completeness in
the following three lemmas.

Lemma 13 Let X be an introduce node with child X ′ in T such that V (X) =
V (X ′) ∪ {v} for some v /∈ V (X ′). Then inv(X) is the set of all descriptors
(Π,M) with

Π =
{

{v}, Π′
1, . . . , Π

′
r

}

and M =
{

{χ(v)}, M ′
1, . . . , M

′
r

}

,

where Π′ = {Π′
1, . . . , Π

′
r} and M′ = {M ′

1, . . . , M
′
r} form a positive descriptor

of X ′.

PROOF. Clearly, (Π,M) in the lemma is a positive descriptor of X, as-
suming (Π′,M′) is positive for X ′. Furthermore, there are no other positive
descriptors of X, since X ′

T and XT differ only by vertex v, and v is isolated
in XT . 2

Lemma 14 Let X be a forget node with child X ′ in T such that V (X) =
V (X ′) \ {v} for some v ∈ V (X ′). Then inv(X) is the set of all descriptors
(Π′ \ Π′

i,M
′ \ M ′

i) with (Π′,M′) ∈ inv(X ′) and Π′
i = {v}, and all descriptors

(Π,M) with

Π =
{

Π′
1, . . . , Π

′
i \ {v}, . . . , Π

′
r

}

and M =
{

M ′
1, . . . , M

′
r

}

,

where Π′ = {Π′
1, . . . , Π

′
r} and M′ = {M ′

1, . . . , M
′
r} form a positive descriptor

of X ′ with {v} ⊂ Π′
i.

PROOF. The lemma follows from the easy observation that any motif M ′
i

which occurs in X ′
T occurs also in XT . Moreover, if V ′

i is an occurrence of M ′
i

in X ′
T with V ′

i ∩ V (X ′) = Xi, then V ′
i is also an occurrence of M ′

i in XT with
V ′

i ∩ V (X) = Π′
i \ {v}. 2

Lemma 15 Let X be a connect node with child X ′ in T such that E(X) =

E(X ′) ∪
{

{u, v}
}

for some {u, v} /∈ E(X ′). Then inv(X) is the set of all

descriptors in inv(X ′), along with all descriptors (Π,M) with

Π =
{

Π′
1, . . . , Π

′
i−1, Π

′
i ∪ Π′

j , Π
′
i+1, . . . , Π

′
j−1, Π

′
j+1, . . . , Π

′
r

}

and

M =
{

M ′
0, . . . , M

′
i−1, M

′
i ∪ M ′

j , M
′
i+1, . . . , M

′
j−1, M

′
j+1, . . . , M

′
r

}

,

where M′ = (M ′
1, . . . , M

′
r) and Π′ = (Π′

1, . . . , Π
′
r) form a positive descriptor

of X ′, {u, v} * Π′
i, Π

′
j and {u, v} ⊆ Π′

i ∪ Π′
j.
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PROOF. First note that since any motif that occurs in X ′
T occurs also in

XT , and since V (X ′) = V (X), we have inv(X ′) ⊆ inv(X). Furthermore, any
motif which occurs in XT and not in X ′

T can be decomposed into two motifs
that occur at u and v. The lemma then follows. 2

We are left to describe the more interesting case of join nodes. Let us first
define the join operator ⊗ on two partitions of the same vertex set. Let Π′

and Π′′ be two partitions of the same vertex set. The partition Π = Π′ ⊗ Π′′

corresponds to the equivalence relation formed by taking the transitive closure
of Π′∪Π′′ (when Π′ and Π′′ are both viewed as equivalence relations). In other
words, Π is the transitive closure of {(u, v) | uΠ′v or uΠ′′v}, where uΠ′v and
uΠ′′v respectively denote that u and v are in the same class in Π′ and in Π′′.

Now, for a pair of motif families M′ = (M ′
1, . . . , M

′
p) and M′′ = (M ′′

1 , . . . , M ′′
q )

associated as in Definition 10 with the partitions Π′ and Π′′, we define the motif
family M = M′ ⊗ M′′ = (M1, . . . , Mr), such that Mi is defined by adding
and subtracting colors in the natural manner. That is, if Π′

i1
, . . . , Π′

ix
∈ Π′ and

Π′′
i1
, . . . , Π′′

iy
∈ Π′′ are the classes of vertices forming Πi ∈ Π, then the motif

Mi is defined by

Mi =
(

⋃

j∈{1,...,x}

M ′
ij
\ χ(Π′

ij
)

)

⋃

(

⋃

j∈{1,...,y}

M ′′
ij
\ χ(Π′′

ij
)

)

⋃

χ(Πi). (2)

Lemma 16 Let X be a join node with children X ′ and X ′′ in T . Then inv(X)
is the set of all descriptors in inv(X ′) and inv(X ′′), along with all descriptors
(Π′ ⊗ Π′′,M′ ⊗M′′) with (Π′,M′) ∈ inv(X ′) and (Π′′,M′′) ∈ inv(X ′′).

PROOF. First observe that inv(X ′) ⊆ inv(X) and inv(X ′′) ⊆ inv(X) follow
immediately from the definition. To show that any descriptor (Π′ ⊗Π′′,M′ ⊗
M′′) with (Π′,M′) ∈ inv(X ′) and (Π′′,M′′) ∈ inv(X ′′) is also in inv(X)
consider an arbitrary class Πi ∈ Π along with its corresponding motif Mi ∈ M,
and let Π′

i1
, . . . , Π′

ix
∈ Π′ and Π′′

i1
, . . . , Π′′

iy
∈ Π′′ be the classes of vertices

from which Πi originated, and M ′
i1
, . . . , M ′

ix
and M ′′

i1
, . . . , M ′′

iy
be the motifs

corresponding to these vertex classes in inv(X ′) and inv(X ′′) respectively. We
will argue that the motif Mi ∈ M has an occurrence Vi with Vi ∩ V (X) = Πi.

To see this, take V ′
i1
, . . . , V ′

ix
and V ′′

i1
, . . . , V ′′

iy
to be the occurrences of M ′

i1
, . . . , M ′

ix

and M ′′
i1
, . . . , M ′′

iy
in X ′

T and X ′′
T , respectively, and define Vi ⊆ V (XT ) by

Vi = V ′
i1
∪ · · · ∪ V ′

ix
∪ V ′′

i1
∪ · · · ∪ V ′′

iy
.

Then Vi is colored by the colors of Mi according to (2), and by the requirements
of V ′

i1
, . . . , V ′

ix
and V ′′

i1
, . . . , V ′′

iy
according to Definition 10. Furthermore, Vi ∩

V (X) = Πi. Now, for any pair of vertices u, v ∈ V (X), if u and v are in
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the same class in Π′ or Π′′, then u and v are connected in XT [Vi], since they
are even connected in a subset of Vi. Thus, as Π is the transitive closure of
Π′ ∪ Π′′, it follows that all vertex-pairs in Πi are connected in XT [Vi]. As
all vertex subsets V ′

i1
, . . . , V ′

ix
, V ′′

i1
, . . . , V ′′

iy
are connected in XT [Vi] and have

non-empty intersection with Πi, there is a path from any vertex in Vi to Πi.
Combining the two facts above together we get that Vi is connected in XT .

To prove the converse direction of the lemma, we show that for any positive
descriptor (Π,M) of X ′ which is not in the inventories of X ′ and X ′′, there
are two descriptors (Π′,M′) ∈ inv(X ′) and (Π′′,M′′) ∈ inv(X ′′) with Π =
Π′ ⊗ Π′′ and M = M′ ⊗ M′′. first observe any motif Mi ∈ M that does
not occur in X ′

T nor in X ′′
T , has an occurrence Vi which can be decomposed

into its connected components V ′
i1
, . . . , V ′

ix
in X ′

T [Vi], and into the connected
components V ′′

i1
, . . . , V ′′

iy
in X ′′

T [Vi]. These vertex-subsets are all occurrences of
sub-motifs of Mi, and moreover, the families {V ′

i1
∩V (X), . . . , V ′

ix
∩V (X)} and

{V ′′
i1
∩ V (X), . . . , V ′′

iy
∩ V (X)} both partition Vi ∩V (X). Taking the transitive

closure of the union of both these partitions, we must get Vi ∩ V (X), as
otherwise Vi cannot be connected in XT . Continuing in this way for all motifs
in M, we get that Π = Π′ ⊗ Π′′ and M = M′ ⊗M′′. 2

Theorem 17 If G has constant treewidth and M has a constant number of
colors, then Graph Motif is polynomial-time solvable.

PROOF. The algorithm is as described below. Given an instance (G, M)
of Graph Motif, it first computes in linear time a nice tree-decomposition
(T ,X ) of G, and then it traverses T in bottom-up fashion, computing the
inventories of each subgraph X ∈ X it encounters from the inventories of
its child subgraph(s) in T . The algorithm then determines that M occurs
in G iff M is in a motif family of a positive descriptor of some X ∈ X .
Correctness of this approach follows from Lemma 12, and from the correctness
of lemmas 13 through 16. Furthermore, lemmas 13 through 16 together imply
that computing the inventory of any subgraph requires at most quadratic
time in the total size of the inventory of its children. Hence, as each inventory
consists of a polynomial number of descriptors (according to Lemma 11), this
can be performed in polynomial-time. Therefore, as |X | = O(n) nodes, the
entire algorithm requires polynomial-time. 2

5 Parameterizing by the Number of Colors

Although Theorem 17 gives a nice complementary result to the sharp hardness
result of Theorem 3, it still leaves a certain gap. In the following section we
aim to close this gap, by proving that Graph Motif, parameterized by the
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number of colors c in M , is W[1]-hard for trees. We refer readers to [22,25]
for more information on the W[1] class, and the implications of an FPT-time
algorithm for a W[1]-hard problem.

Theorem 18 The Graph Motif problem, parameterized by the number of
colors c in the motif, is W[1]-hard for trees.

PROOF. We present a parameterized reduction from Clique which is known
to be W[1]-hard [22]. Recall that in Clique we are given a simple graph H
and an integer κ, the parameter, and we are asked to determine whether H has
a subset of κ vertices which are pairwise adjacent. Given an instance 〈H, κ〉 of

Clique, we describe a rooted tree G = T colored with 1+κ+2κ(κ−1)+
(

κ

2

)

colors. We let m denote the number of edges of H , i.e., m = |E(H)|.

• The root of T is colored a.
• The root has κ · |V (H)| children organized into κ groups S(1) . . . S(κ). The

group of |V (H)| children S(i) consists of the nodes s(i, u), where u ∈ V (H).
The color of each node in S(i) is b(i).

• From each node s(i, u) hang κ−1 groups of paths. The groups are P (i, u, j)
for every j ∈ {1 . . . , κ} \ {i}. There is one path p(i, u, j, v) ∈ P (i, u, j) for
each edge {u, v} ∈ E(H) that is incident to u in H .

The path p(i, u, j, v) begins with a vertex colored c(i, j) and ends with a vertex
colored d(i, j), and otherwise consists of some number m(i, u, j, v) of internal
vertices colored by e(i, j) = e(j, i). There is an important detail to note here.
If i < j, then c(i, j) and c(j, i) are different colors, and likewise d(i, j) and
d(j, i), whereas e(i, j) and e(j, i) are the same color. We call the e(i, j)’s the
edge colors.

The number m(i, u, j, v) is calculated as follows. Number the edges in E(H)
from 1 to m, letting l(uv) denote the number assigned to the edge {u, v} ∈
E(H). We define:

m(i, u, j, v) =







l(uv) if i < j

3m − l(uv) if i > j.

The motif M consists of one-of-each for every color other than the edge colors,
and 3m elements colored by each edge color. Thus, M consists of c = 1 + κ +
2κ(κ − 1) +

(

κ

2

)

different colors, and |M | = 1 + κ + 2κ(κ − 1) + 3m
(

κ

2

)

. This

completes the construction of our instance 〈(G, M), c〉 for Graph Motif.
Illustrations of the construction are given in Figures 3 and 4.

We claim that H has a subset of κ pairwise adjacent vertices if and only if
T has a subtree T ′ which is an occurrence of M . Suppose that the vertices
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S(1) S(i) S(κ)

a
root

|V (H)| vertices

Figure 3. A schematic description of the the first two levels of the tree.

path

p(i, u, j, v1)

path

p(i, u, j, v2)

path

p(i, u, j, vd(u))

s(i, v)

P (i, v, 1) P (i, v, 2) P (i, v, κ)

c(i, j) c(i, j) c(i, j)

e(i, j)

e(i, j)

e(i, j)

d(i, j)

m(i, u, j, v1)

vertices

e(i, j)

e(i, j)

e(i, j)

d(i, j)

m(i, u, j, v2)

vertices

e(i, j)

e(i, j)

e(i, j)

d(i, j)

m(i, u, j, vd(u))

vertices

P (i, v, j), j ∈ {1, 2, . . . , κ} \ {i}

Figure 4. A schematic description of the group of paths which hang from the node
s(i, v) ∈ S(i). Is is assumed here that N(u) = {v1, v2, . . . , vd(u)}.

v1, ..., vκ are pairwise adjacent in H . The subtree T ′ consists of:

• The root which is colored a.
• The κ children of the root s(i, vi) for all 1 ≤ i ≤ κ, where s(i, vi) is colored

b(i).
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• The κ(κ − 1) paths p(i, vi, j, vj). The path p(i, vi, j, vj) begins with a node
colored c(i, j) and ends with a node colored d(i, j) for all 1 ≤ i, j ≤ κ,
i 6= j. Note that the path p(i, vi, j, vj) is pendant from s(i, vi) since vi and
vj are adjacent in H . Together, the two complementary paths p(i, vi, j, vj)
and p(j, vj , i, vi) contain 3m nodes colored e(i, j).

In the other direction, suppose that the subtree T ′ of T is an occurrence of
M . Then T ′ must include the root of T , since it is the only node colored
a. Furthermore, T ′ must contain exactly one node in each of the groups S(i),
1 ≤ i ≤ κ, since nodes in each S(i) are all colored b(i). Suppose these nodes are
s(1, v1), . . . , s(κ, vκ). We argue that the vertices v1, ..., vκ are pairwise adjacent
in H .

In order for T ′ to be an occurrence of M in T , T ′ must contain exactly one
pendant path in each of the groups of paths P (i, vi, j) for any 1 ≤ i, j ≤ κ,
i 6= j, and nothing further. To see this, note that T ′ must contain at least
one path in each of the groups of paths P (i, vi, j) in order for T ′ to contain a
node colored d(i, j). But containing one such path prevents T ′ from including
any node of other paths in P (i, vi, j), else T ′ would contain too many nodes
of color c(i, j).

It follows that for any pair of indices i, j with 1 ≤ i < j ≤ κ, T ′ includes exactly
two paths p(i, vi, j, x) and p(j, vj , i, y) that contain nodes of color e(i, j) =
e(j, i). Since M contains exactly 3m elements colored by e(i, j), it follows that
x = vj and y = vi, since p(i, vi, j, vj) and p(j, vj , i, vi) are the only two paths in
T with nodes colored e(i, j) that together have exactly 3m nodes of this color.
But then, by the construction of T , vi and vj must be adjacent in H . 2

6 Summary

In this paper we studied the Graph Motif problem, a natural pattern-
matching problem in graphs which was introduced by Lacroix, Fernandes, and
Sagot to model applications in metabolic network analysis [32]. We presented
an extensive complexity analysis of the problem which entailed two positive
results, and three negative results. Our analysis focused on finding natural
parameters that determine the complexity of the problem. To this extent,
we identified two such natural parameters: The size of the motif, and the
number of different colors in the motif. We believe however that there are more
parameters to be explored, and identifying these is left for further research.

Another direction for possible future research is classes of dense graphs. The
reader should also note that all of our hardness results use graphs that are
quite sparse, which makes the task of assuring connectivity of potential motif
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occurrences difficult. On the other hand, Graph Motif is trivial on the com-
plete graph. We conjecture that there are many other natural and interesting
dense graph classes for which Graph Motif becomes tractable.

Finally, we conclude with a list of three concrete questions that were left open
by this paper:

• Is Graph Motif in FPT when parameterized by the treewidth of the
graph, and the number of different colors in the motif is taken as a constant?

• In light of Theorem 1, Theorem 18, and Lemma 2, is Graph Motif re-
stricted to trees fixed-parameter tractable when parameterized by both the
number of colors of the motif, and the maximum number of occurrences of
a color in the tree?

• Does Graph Motif have a polynomial-size kernel?
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