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Abstract—Component based software engineering supports
the rapid assembly of software systems. These systems are
highly structured yet flexible. In particular, Fractal introduces
controllers for the extension of components. Fractal controllers
intercept incoming and outgoing calls of component services
and implement the extended behavior. However, controllers may
interfere one with another. In this article, we propose two
contributions. First, we extend Fractal component model with
a support for composing controllers with reusable operators.
Second, we show how to formally model and analyze in Uppaal
such extended systems. This enables us to detect when controllers
interfere, then to check whether their composition is interference-
free. We illustrate our general approach with a running example:
a wireless internet service of an airport.

I. INTRODUCTION

Component based software engineering supports the rapid
assembly of flexible software systems. These systems are
highly structured yet flexible. In particular, Fractal [1] supports
extending components’ behaviors by means of controllers. In
Fractal, controllers are plugged into components, they inter-
cept incoming and outgoing messages, implement the extended
behavior and proceed or discard messages. However, when a
component have several controllers, there is no general way to
compose them. They have to be composed in a programmatic
way by explicitly calling a controller from another one. These
limitations make the implementation of extensions a complex
task with sometimes unexpected behavior.

In this article, we propose two contributions. First, we ex-
tend Fractal implementation with support for composable con-
trollers. Second, we show how this can be formally modeled
with Uppaal to check whether an extended system possesses
the expected behavior. In particular, we check the interference-
freeness of the added controllers. Our approach is illustrated
with a running example of an airport service providing internet
connection to customers. The example is extended with two
controllers. We show how the system and its extensions can be
formally modeled and analyzed with Uppaal. A formalization
scheme is presented for this purpose. In the example, an
interference is detected between the two added controllers and
solved with a generic operator. In the paper, only two operators
are discussed but others can be defined in a similar way. Our
approach can be used at the assembly stage, so that potential
interferences are statically detected and solved by choosing
the right composition operators. It also can be used at runtime
where the system is to be reconfigured. In this case, dynamic
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Fig. 1. Architecture of the airport internet access system

reconfigurations causing interferences are cancelled. Using
Uppaal, the system can be simulated and potential errors in
the system can be checked. When an interference is detected,
it is reported to the user with a diagnostic trace that helps to
determine the correct composition operator.

The rest of the paper is organized as follows. Section II
presents our running example and its architecture. Section III
describes the notion of composable controllers and how they
can be implemented in Fractal. The description is illustrated
with extending the example with two new functionalities.
Section IV shows how the approach can be formally modeled
in Uppaal, how interferences are detected and solved by
instantiating templates of composition operators. Section V
compares our approach to related works and section VI
concludes and gives perspectives of the approach.

II. CASE STUDY: AIRPORT INTERNET ACCESS

Our running example is a Fractal application that models an
airport service for providing a wireless internet connection1

[2], [3]. A free Internet access is granted for a limited time to
customers owning valid fly tickets. A customer can log with
his fly ticket number and use the network.

The Fractal architecture of this application is displayed
in Figure 1. The User component models a customer in
the system. The User first, requests an IP address from
the DhcpServer, then it sends a login request to the

1In this article, we present a simplified version of the system (only one kind
of customer, FlyTicketManager is a primitive component. . . ). A more
complete Fractal implementation and Uppaal formalization of the system are
available by request to the authors.



SessionManager. Once connected, it sends queries to the
AccessManager. The AccessManager forwards users’
requests to the Firewall that blocks unauthorized internet
connections. The requests of users with enabled IP addresses
are actually sent to the net Proxy. The User component
has multiple instances (one per customer) as noted with
superimposed boxes. The DhcpServer delegates IP ad-
dress requests to the IpAddressManager that provides
dynamic IP address allocation. The allocated IP addresses
are managed by the IpDbConnection component. The
SessionManager manages sessions. When it receives a
login request, its inner Arbitrator component retrieves the
authorized access time from the FlyTicketManager, then
the SessionManager instantiates a ValidityChecker.
The Arbitrator in turn orders the AccessManager to
enable communications for the user. When the authorized time
elapses the ValidityChecker asks the Arbitrator
to close the session. The Arbitrator in turn orders the
AccessManager to disable communications for the user,
and the DhcpServer to disable its IP address.

III. COMPONENT EXTENSION IN FRACTAL

Fractal [1] is a hierarchical component model developed
by the OW2 consortium. Fractal supports a set of interesting
features such as: component sharing and component behaviors
extension through component controllers. Each component in
Fractal has a content and a membrane. The content encap-
sulates the business logic, while the membrane exposes the
provided and required interfaces and a set of controllers. Com-
ponents are connected to each other via bindings. A binding
connects a required interface of a component to a provided
interface on the assumption that the provided interface type
is a sub-type of the required interface type. Fractal provides
an architectural description language called Fractal-ADL to
describe the architecture of systems in a declarative style.

In Fractal, component behaviors are extended by means
of controllers. Extensions can either be installed on: (1)
a single component by adding a controller to a primitive
component, (2) several components by adding a controller to a
composite that encapsulates all the components to be extended.
Component sharing enables the application of controllers
to components belonging to different composites. A regular
Fractal controller intercepts messages sent and received by a
component and it can alter them, redirect or even discard them
by calling or not a method invoke(). However, without an
explicit discard call event, the composition of controllers has
to be made in a programmatic and non-modular way by calling
one controller from another. Here, we propose to extend
Fractal with controllers that make discarding explicit. We call
such controllers composable controllers and we provide a set
of generic operators to compose them.

A. Composable Controller in Fractal

We define a composable controller as a pair
(Dispatcher, Act). The Dispatcher is a regular
Fractal controller used to intercept service calls, reify them

1 enum Cmd {Proceed , Skip}
2 i n t e r f a c e I C C o n t r o l l e r {
3 Cmd match ( MessageContex t c ) ;
4 }

Listing 1. ICController interface

into message objects and pass them to the Act object. An Act
object is a regular object implementing the ICController
interface (see Listing 1). It implements the behavior of the
extension in a match(MessageContext) method. The
match method inspects or modifies messages, executes
extra codes and finally decides whether the message should
actually be proceeded by returning the command Proceed or
discarded by returning Skip. The Dispatcher controller
calls its method invoke() to proceed the service call only
if the Act object returns a Proceed command.

Like regular controllers, composable controllers can be
plugged into components that have to be altered by the
controller behavior. When the controller needs to be applied to
several components that are scattered over the architecture, the
system is reconfigured as follows: a new composite is created
and the required components are added to that composite as
shared components. This way, the controller is plugged into
the new composite and the original configuration is preserved.

In the following, we show how composable controllers can
be used to extend the airport service example with (1) adding
a bonus time to customers and (2) alert customers five minutes
before the end of their sessions.

B. Extension 1: Add a Bonus

Let us suppose that the airport decides to offer a bonus
time to first class customers. Such an extension can be done
by adding a composable controller with an ICController,
named Bonus, to the ValidityChecker.

The Dispatcher controller intercepts service calls to
the ITimerCallback interface that defines a timeout
service. This service is called by the Timer to inform
the ValidityChecker of the end of the session. The
Dispatcher intercepts the call, reifies it into a message
object and sends it to Bonus by calling its match method.
The match method of Bonus behaves as follows: when it
receives the first occurrence of timeout (i.e. the customer
session should be closed), it checks if the customer has a first
class ticket. If it is the case, it resets the timer for 10 more
minutes (by calling the setTimeout(10) service on the
ITimer interface of the corresponding Timer component),
and informs the Dispatcher controller that it wants to skip
the call by returning a Skip command. That means that
the timeout, in this case, is not actually proceeded and
the session continues. If it receives a second occurrence of
timeout, the match method returns a Proceed command
to Dispatcher. This causes the Dispatcher to call its
invoke() method which proceeds the call and ends the
current session of the user.

In our scenario, the composable controller with the Bonus
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Fig. 2. The airport system extended with Bonus

ICController is attached to each ValidityChecker in-
stance. This enables the interception of required services
(i.e. timeout of the ITimerCallback interface) and the
use of its provided services (i.e. setTimeout of the ITimer
interface). Figure 2 shows the architecture of the airport system
after the integration of Bonus.

C. Extension 2: End Session Alert

Now, suppose that the airport decides to add a service
that alerts users five minutes before their authorized time
connection expires. In this case, a session timer is initialized
with five minutes less than the authorized time. When the
time expires and a timeout is generated, an alert is sent
to the user and the timer is reset for five more minutes.
Here, we propose to integrate a composable controller with
an ICController Alert that behaves as follows: when the
setTimeout service call is intercepted on the ITimer
interface of the ValidityChecker component, the Alert
changes the parameter value of the call (e.g., 60 minutes)
by subtracting a time alert (5 minutes), and proceeds the call.
Thus, the ValidityChecker will receive a timeout 5
minutes before the end of the session. When the timeout is
intercepted, the Alert sends an alert message to the user (by
calling the show("you have only 5 min left") on
the IMessager interface required by the Arbitrator), re-
sets the Timer for 5 minutes by calling setTimeout(5)2,
and skips the currently intercepted timeout. The Alert
proceeds the next intercepted timeout to end the session.
Note that the controller, in this case, is plugged into the
SessionManager composite that encapsulates several in-
stances of ValidityChecker(s). Thus, the Alert needs to
store the identity of the Timer triggering the first timeout
call, so that it can proceed the second triggered timeout and
ends the right user session. Figure 3 shows the airport system
after being extended with Alert.

D. Controllers Interferences and Compositions

Extending components with several controllers may give
rise to interferences. For better understanding of controller
interferences, let us consider the original airport system, its
bonus and alert extensions. Let us also assume that the original
session duration is 60 minutes, the bonus adds 10 minutes and
the alert warns the user 5 minutes before the end of the session.

2A controller intercepts only services of the component it controls
(e.g., alert does not intercept its own call to setTimeout(5)).
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When both controllers are plugged into the system, we wish
users to get a bonus time and be alerted exactly 5 minutes
before the actual end of their sessions (i.e. alert at 65 minutes,
end of session at 70 minutes).

In our approach, when two controllers intercept common
services, the default composition is made using a Seq op-
erator. When the Seq operator is used and a service call is
intercepted, the match method of both controllers are called
sequentially and the service call is proceeded only if at least
one of its underlying ICControllers returns Proceed,
otherwise, Seq returns Skip to the Dispatcher. However,
in Section III-B, we plugged an instance of Bonus into
each instance of ValidityChecker, while in Section III-C
we introduced a single instance of Alert for all the in-
stances of ValidityChecker and we plugged it into the
SessionManager component. In our approach, two con-
trollers can be composed only if they are plugged into the same
component which is not the case for Bonus and Alert. To
tackle such a problem, we define an operator DemuxFactory
that is both a factory of ICController(s) and a demultiplexer
responsible for “routing” the intercepted messages to the right
instances. In our example, the DemuxFactory is responsible
for the instantiation of Bonus for each ValidityChecker
instance, and when a timeout message is intercepted for
a Timer instance, the DemuxFactory redirects the call to
the correspondent Bonus instance (i.e. the one plugged into
the ValidityChecker bound to the Timer making the
call). Figure 4 shows the composition of the above controllers
where the white boxes refer to composition operators and
gray boxes refer to ICController(s). Note that the composition
operators in our proposal also implement the ICController
interface. This enables our controllers to be composed
in a composite pattern way with a single Dispatcher.
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Figure 5 sketches the Seq(DemuxFactory(Bonus),
Alert) scenario. At time 0, a user logs in for 60 minutes
provided by his fly ticket. The message setTimeout(60)
sent from a ValidityChecker to its Timer is inter-
cepted by the Dispatcher controller. The Dispatcher
invokes the match method of the Seq operator. The Seq
then calls the DemuxFactory(Bonus) that instantiates a
Bonus and calls its match method that proceeds the call
(setTimeout(60) is not of interest to Bonus). The call
is then sent to Alert that subtracts 5 minutes from 60 and
proceeds the call with the new parameter value (55). As a re-
sult, the Dispatcher calls setTimeout(55). At time 55,
a timeout is intercepted. The Dispatcher invokes again
the match method of the Seq. The Seq sends the message to
the DemuxFactory(Bonus) first, that routs the message to
the corresponding Bonus instance which resets the timer for
10 minutes and skips the message. Then, the message is sent
to Alert that warns the user, resets the timer for 5 minutes
and skips the message. This violates the expected behavior:
the alert is sent too early (at time 55 instead of the expected
65). Moreover, the Timer has been set twice with different
values and hence it is inconsistent whatever happens next.
This is called an interference since the desired behavior is not
ensured by the default sequential composition of controllers.
To solve this interference, another composition strategy is
needed: the first occurrence of timeout should only be
managed by Bonus and the second occurrence should only
be managed by Alert. This strategy can be abstracted with
the Alt (alternate) composition operator. This binary operator
aggregates two ICController(s) and a set of intercepted
services common to both controllers. When a service common
to both controllers is intercepted, its occurrences are passed
alternately to the left and the right hand side controllers. When
a service is not common to both controllers, the Alt operator
passes the call to both controllers sequentially and the call is
proceeded when both controllers returns Proceed, otherwise,
the message is skipped. This works since the ICControllers are
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Fig. 6. Alt(DemuxFactory(Bonus),Alert) scenario

designed to return Proceed for irrelevant calls.
Figure 6 sketches the Alt(DemuxFactory(Bonus),

Alert, {"timeout"}) scenario. At time 0, a user logs
in for 60 minutes provided by his fly ticket. The message
setTimeout(60) sent from a ValidityChecker to
its Timer is intercepted by the Dispatcher and sent
to Alt. The setTimeout is not a common intercepted
message, so Alt sends it first to DemuxFactory(Bonus)
that instantiates a Bonus and calls its match method that
proceeds the call. Second, Alt calls the match method of
Alert that subtracts 5 minutes from 60 and proceeds the
call. Since both controllers want to proceed the call, Alt
returns Proceed which causes the Dispatcher to call
setTimeout(55). At time 55, a timeout is intercepted
which is a common intercepted message by both controllers.
Here, Alt sends it only to DemuxFactory(Bonus) (first
occurrence) that routs it to the corresponding Bonus instance
which resets the timer for 10 minutes and skips the mes-
sage. Thus, the Dispatcher ignores this timeout call.
At time 65, a second timeout is intercepted. Alt sends
it only to Alert (second occurrence) that warns the user,
resets the timer for 5 minutes and skips the message (the
Dispatcher ignores again the timeout call). At time 70,
a third timeout is intercepted. Alt this time, sends it only
to DemuxFactory(Bonus) (third occurrence) that returns
Proceed. As a result, the Dispatcher calls timeout and
the session is ended which is the desired behavior.

IV. FORMAL VERIFICATION IN UPPAAL

Uppaal [4] is a model checker used to design, simulate
and verify systems that can be modeled as networks of timed
automata. Each timed automaton models a part of the system
(e.g., component). A timed automaton is a finite state-machine
extended with local variables, data types and clock variables.
A clock variable is modeled by float values and all clocks
of the same system progress synchronously. An automaton
specification is called template and its instantiation is called



process. Besides its time support, other interesting features
are also provided by Uppaal. For example, it enables passing
data between processes, automatic and multiple instantiation
of templates, declaring a set of C functions with loops to
be used as transitions guards or state variables assignments.
A system in Uppaal is modeled as a parallel composition
of timed automata. In Uppaal, properties to be verified are
specified in a subset of CTL (computational tree logic). When
the verification of a particular property fails, a diagnostic
trace is automatically reported by Uppaal. The use of timed
automata is important to model the Timer component and
the timing constraints of our case study. In the following we
describe the general modeling process of Fractal components
with composable controllers in Uppaal.

A. Formalization of Primitive Components

Each primitive component is modeled as a Uppaal process.
Here, we assume that each primitive component comes with
its specification in Uppaal with the following notations:

1) each transition label is a concatenation of the com-
ponent, interface and service identifiers. For example
user_iLogin_login denotes the login service of
the ILogin interface of the User component.

2) a synchronous communication is modeled with a pair
of transitions (and the asynchronous communication by
a single transition). For example, the synchronous login
message is decomposed into user_iLogin_login
(for call) and E_user_iLogin_login (for return).

3) arrays on transition labels are used for passing data
between processes. For example, a customer uses his fly
ticket number to login and passes it to other processes.
This is denoted as: user_iLogin_login[id].

4) parametrized templates are used for automatic instan-
tiation of processes. For example, the User template
is parametrized with int[0, FLYTICKET_ID_NB]
id where FLYTICKET_ID_NB is a constant that de-
fines the number of users to be instantiated.

For instance, Figure 7 shows a simplified Uppaal template
modeling the User component3. The template can be read
clockwise from the initial location. The initial location S0
labeled Disconnected is distinguished with a double circle.
A user first sends its mac address to the DHCP server to re-
quest an IP address (requestIpAddress[mac]!). When
it receives an IP address (requestIpAddress[ip]?), it
stores it in a local variable ips, then it requests to lo-
gin with his fly ticket id (login[id]!). When he suc-
ceeds to login, he requests connections to web addresses
(connect[ips][wips]!), that can succeed or fail. When
it receives a timeout[id]?, it returns to the initial location.

B. Formalization of Composite Components

A composite is modeled as a set of Uppaal processes, one
for each bound interface. Each template of these processes has

3This template has more locations and transitions that are not shown here.

S0
user_iDhcpListener_requsetIpAddress[mac]!

user_iLogin_login[id]!

E_user_ILogin_login[id]?

E_user_iDhcpListener_requsetIpAddress[ip]?
ips:=ip

wip:WEB_IP
user_iQuery_connect[ips][wip]!

E_user_iQuery_connected[ips][wip]?

E_user_iQuery_failed[ips][wip]?

user_iMessager_timeout[id]?

CONNECTED

DISCONNECTED

user_iMessager_timeout[id]?

Fig. 7. Formal Model for the User Component

a central initial location and a set of directed cycles from and to
that location. Each cycle describes one service. Asynchronous
services are represented by cycles of two transitions (receives
a message, then forwards it). Synchronous services are rep-
resented by cycles with four transitions (receives a message,
forwards it, waits for the reply, and forwards the reply).

C. Formalization of Bindings

We model component bindings with renaming. The binding
of a required interface i of a component c1 to a provided
interface j of a component c2 is modeled by replacing each
transition label occurrence c1_i_s in the template of c1 by
c2_j_s, for each service name s.

D. Formalization of component systems

A component system B is a tuple (Ab,Pb, Invb) where:

1) Ab: is the parallel composition of processes modeling
primitive and composite components after applying the
binding (see Section IV-C).

2) Pb: is a set of CTL formulas describing the behavior of
the system.

3) Invb: is a subset of Pb that should always be satisfied
even if the system has been extended.

The complete airport system is modeled by 20 templates (9
for primitive components and 11 for composite components’
interfaces). The system is designed to satisfy different (live-
ness, safety, and reachability) properties. These are given at
the top of Table I (Pairport). In particular, a user can not stay
connected forever (Live 1), the system is deadlock free (Safe
1), a user cannot stay connected more than the validity time
indicated in his fly ticket (Safe 2), all users can be connected
at the same time (Reach 1). The formulas rely on different
constants, variables and auxiliary functions: IDS denotes the
range for user identifiers, Connected and Disconnected
are identifiers denoting particular locations of the user process,
the validity(id) is a global function that returns the
authorized connection time of a user id, and cl is a local
clock associated to the user process.

Definition IV.1 A component system B = (Ab,Pb, Invb) is
well defined if its modeling process satisfies all its desired
properties:

W(B) def= Ab |= Pb



TABLE I
PROPERTIES OF THE AIRPORT SYSTEM

Properties for the Airport Base System (Pairport)

Live 1 User(id).Connected --> User(id).Disconnected

Safe 1 A[] not deadlock

Safe 2 A[] forall(id:IDS) User(id).Connected imply User(id).cl<=validity(id)

Reach 1 E<> User(0).Connected and (forall(id:IDS) id!=0 imply User(id).Connected)

Properties for the Bonus controller (Pbonus)

Safe 2’ A[] forall(id:IDS) User(id).Connected imply User(id).cl<=validity(id) + BonusTime

Properties for the Alert controller (Palert)

Live 2 Use(id).Connected --> User(id).Disconnected and User(id).isAlerted

Safe 3 A[] forall(id:IDS) User(id).Alerted imply User.cl== validity(id) - AlertTime

S0 S1

validityChecker_iTimerCallback_timeout[id]?

sessionManager_iTimerCallback_endSession[id]!

S0

S1
validityChecker_iTimerCallback_timeout[id]?

sessionManager_iTimerCallback_endSession[id]!

bonus_iTimerCallback_timeout[id]!

proceed_bonus_iTimerCallback_timeout[id]?

skip_bonus_iTimerCallback_timeout[id]?

(a)

(b)

Fig. 8. ValidityChecker template adaptation (a) original, (b) adapted

E. Formalization of controllers

Each composable controller of the form (Dispatcher,
ICController) is modeled in two steps. First, a Up-
paal template is generated to model the behavior of the
ICController. Compared with primitive component tem-
plates (see Section IV-A), proceed_e and skip_e are used
as transition labels to denote proceeding and skipping a service
call e, respectively. Second, the generic Dispatcher is
modeled by adapting the templates of the components to be
affected by the controller. This enables the synchronization of
ICController process with the controlled components on
the services that have to be intercepted. For instance, when a
bonus is applied to the ValidityChecker, its correspond-
ing template must be adapted as detailed in Figure 8. Part
(a) shows an excerpt of the original ValidityChecker
template and part (b) shows the same excerpt adapted. As
a result, when timeout is received, it is forwarded to the
bonus controller process. The ValidityChecker waits for
either skip to return to the original location, or proceed to
forward the timeout to the SessionManager component.

In addition to the above specification, a set of intrinsic prop-
erties the controller ensures when it is applied to the system
should be given. The properties for the bonus (Pbonus) and the
alert (Palert) controllers are shown in the middle and bottom
part of Table I, respectively. The bonus controller ensures that
the user can stay connected a bonus time (BonusTime) after
its authorized time expires (Safe 2’). While the alert ensures
that the user is always alerted before it is disconnected (Live
2) and the alert is intercepted exactly before a TimeAlert

of its expiration time (Safe 3). In the formulas, Alerted
is an identifier denoting a particular location in the user
process, isAlerted is a local boolean variable of the user
indicating whether a user reached the Alerted location, and
BonusTime and AlertTime are constants denoting the
bonus and the alert time, respectively.

Definition IV.2 Given a component system B =
(Ab,Pb, Invb) and a composable controller CC = (Acc,Pcc)
where, Acc is the process modeling the controller behavior,
and Pcc is the set of its intrinsic properties. A composable
controller is said to be correct with respect to a component
system B if the following condition holds:

A′b‖Acc |= Invb ∧ Pcc

Where ‖ denotes the parallel composition of processes and
A′b is the parallel composition of the B processes after adapting
the templates modeling the components affected by CC.

For our case study, when the bonus is applied to the airport
system, the invariant is defined by all the Pairport properties
except (Safe 2), since bonus allows the user to connect for
more than the time indicated in his fly ticket (see Safe 2’).
While in the case of alert the invariant is simply Pairport.

F. Formalization of Composition Operators

A composition operator is defined as a template to be
instantiated. For instance, Figure 9 details the template for
the alternate operator Alt. In the figure, when a service
call is intercepted (e?), the function swap() is executed.
This latter maintains a boolean isLeft to indicate which
controller should be applied. If it is the left-hand side con-
troller turn (isLeft), e is forwarded to this controller
(cc1_e!), otherwise, e is forwarded to the right-hand side
controller (cc2_e!). In both cases, the operator waits for
either proceed_cci_e or skip_cci_e and forwards the
intercepted command to the caller (proceed_e or skip_e).

The template is instantiated by substituting e with the ser-
vice to be intercepted (e.g., ITimerCallback_timeout),
cc1 with the identity of the first controller (e.g., bonus), and
cc2 with the identity of the second controller (e.g., alert).
These substitutions synchronize the composition operator pro-
cess with its underlying controllers.



S0

e?
swap()

isLeft(e)
a1_e!

!isLeft(e)
a2_e!

proceed_a1_e?

proceed_a2_e?

proceed_e!

proceed_e!

skip_a1_e?

skip_a2_e?

skip_e!

skip_e!

Fig. 9. The Alt template

G. Interference detection and resolution

For interferences detection, two composable controllers are
interference-free with respect to a base program, if: (1) each
composable controller is correct with respect to the base
program, (2) when both composable controllers are added to
the system, the result process satisfies all the properties of the
underlying controllers and the system invariant. Formally:

Definition IV.3 Given a base system B = (Ab,Pb, Invb)
and two composable controllers CC1 = (Acc1 ,Pcc1), CC2 =
(Acc2 ,Pcc2), CC1 and CC2 are interference-free if the follow-
ing conditions hold:

1) W(B) : the base system is well defined
2) A′b‖Acc1 |= Invb ∧ Pcc1 : CC1 is correct w.r.t B
3) A′′b ‖Acc2 |= Invb ∧ Pcc2 : CC2 is correct w.r.t B
4) A′′′b ‖Acc1‖Acc2 |= Invb∧Pcc1 ∧Pcc2 : the composition

is correct w.r.t B

Where A′b, A′′b and A′′′b , denote the parallel composition of B
processes after adapting the templates affected by CC1, CC2,
and CC1 and CC2, respectively.

In our case study, when both bonus and alert are added
to the system and composed with the default composition
operator Seq (by instantiating its correspondent template),
Safe 3 property is violated which reports an interference with a
diagnostic trace. After analyzing the reported trace, we decided
to use the Alt operator that solved the problem. In general,
a composition operator solves an interference if when it is
instantiated for two controllers and composed to the system,
the interference disappears. Formally:

Definition IV.4 Given a base system B = (Ab,Pb, Invb)
and two interfering controllers CC1 = (Acc1 ,Pcc1), CC2 =
(Acc2 ,Pcc2), a composition operator Op solves an interfer-
ences if the following condition hold:

A′b‖Op(CC1, CC2) |= Invb ∧ Pcc1 ∧ Pcc2

where Op(CC1, CC2) denotes the parallel composition of the
processes of CC1 and CC2 and the instantiated template Op
for CC1 and CC2 as described in Section IV-F.

We should mention here that our example is a large case
study. It is instantiated with three users for the base system
and two users for the extended version. The instantiation of the
system with more users leads to state explosion in UPPAAL.
However, in our example, merely one user is enough to detect
the interference of Bonus and Alert.

V. RELATED WORK

Our work can be compared with two categories of works:
extending components with aspect-orientation and aspect and
feature interactions.

Extending Components with Aspects There are several
aspect oriented extensions to Fractal. FAC [5], Fractal-AOP
[6], and Safran [7] extend Fractal with aspects. In FAC
an aspect is not a controller but several components. The
application of an aspect to several components is achieved by
creating a so called aspect domain. This latter, encapsulates
all the components to be managed by the aspect and the
components modeling the aspect itself. Fractal-AOP is quite
similar to FAC but it provides an explicit controller interface
Proceed to execute the original services. Safran focuses on
adaptation: it proposes to insert a component to intercept
service calls instead of their original targets, it executes the
adaptation strategy and it possibly proceeds the calls. The
main drawback of these approaches is that the extensions
(i.e. aspects) are composed in a programmatic way (there are
no predefined operators and skip is implicit). In addition, no
interference detection support is provided.

Other component models have also been extended with as-
pects. The PRISMA framework [8] comes with an architecture
language PRISMA AOADL to define where the extensions
should be applied to the system. Aspects are defined as
separate architectural elements. However, users are responsible
to detect potential interferences among aspects and when one
is detected the only composition strategy provided by the
model is sequential ordering. LEDA is another component
framework and AspectLEDA [9] is its extension with aspects.
Aspect behaviors are represented by regular LEDA compo-
nents. Aspect execution is ordered following a predefined
priority order. In particular, JAsCo [10] is not a hierarchical
component model and it provides an API to compose aspects
in a programmatic way. But no interference detection support
is provided.

Interference detection and resolution Interference de-
tection and resolution is still a challenge for features [11]
and aspects [12]. Current works on features are focussing
on domain specific interferences. For example, Gouya et
al. [13] propose an algorithm for feature interactions in IP
multimedia subsystem (IMS). The algorithm uses a predefined
interference rules based upon traces on service calls. Some
of these interferences with their solutions are defined in a
database, if the interference is not in the database, it is
reported to the user. Goldman et al. [14] is the closest related
work with respect to our formal verification approach. They
model the base program, the aspects, and the woven system
with state machines in order to formally check properties.
Their weaving process is implemented by inlining the aspect
state machine directly in the base system. Moreover, they
focus on LTL and use two kinds of properties. First, they
check if the base system satisfies aspect assumptions that
enable their weaving. Second, they check if the woven system
guarantees the expected behavior of the aspect. They weave



an aspect at a time. When an interference is detected (i.e. a
property is not satisfied) the programmer is responsible to
fix it: they do not provide composition operators. Note that
they only consider weakly invasive aspects. Krishnamurthi et
al. [15] also use state machines to model both aspects and
base systems. However, the proposed approach defines a state
machine for each advice. Moreover, the work is limited to treat
aspects that do not modify data variables of base systems.
Temporal logic as previously been used by Katz et al. [16]
to describe the expected behavior of aspects. In this work,
a semi-automatic interactive process is proposed to define
the assume-guarantee properties of aspects in LTL formulas.
Aspect interferences are checked independently of any base
system by checking their guaranties properties. At the weaving
stage, another check should be performed to show if the
base system satisfies the assumptions of all the aspects to be
woven. In [17] advices are annotated with assumptions about
their composition. Interferences are detected by matching the
assumptions of an advice and all the other advices. However,
these approaches focus only on interference detection at shared
joinpoints. Our experience shows that controllers may interfere
even if they are not applied to common components [18]. Our
current proposal is a byproduct of our previous work on aspect
interference detection and resolution [19] and formalization of
aspects in a concurrent context [20]. The first work focuses on
interferences at shared joinpoints and introduces composition
operators. The second models the woven system as FSP
processes and checks properties with LTSA.

VI. CONCLUSION AND FUTURE WORK

In this article we have shown how to extend Fractal with
composable controllers. Our controllers with explicit actions
(proceed and skip) are easily combined with composition oper-
ators. Composition is not restricted to ordering controllers and
it is not restricted to controllers intercepting common services
(e.g., Alert intercepts setTimeout but Bonus does not).
In fact, two controllers with no common intercepted services
can be composed together. For instance, an ICController CC1

(that maintains a predicate) and an ICController CC2 could
be composed with a Cond operator that calls the match
method of CC2 only if the condition holds. In particular, the
composition Cond(Overload,Bonus) would add bonus
times only when the server is not overloaded. Note that, other
operators can also be developed in a similar way. Take for
example, the operator And that calls the second ICController
only when the first one proceeds the call, or the Xor that calls
the second only when the first skips the call. We have also
shown how Fractal components and composable controllers
can be formally modeled in Uppaal. This way, the properties
of the extended system can be checked and traces violating
properties help to select the right composition operator.

Our proposal is currently partly supported by tools. The
introduction of controllers is fully automated: our tool parses
VIL expressions [18] that define the components to be con-
trolled and the services to be intercepted in a declarative style.
Then, it transforms accordingly the Fractal ADL definition

by introducing controllers and new composites of shared
components if the required ones are scattered in the original
architecture. The Dispatcher and different composition
operators are also implemented. In this article we have identi-
fied the transformation scheme required to produce a Uppaal
model of the complete extended system. We believe that some
parts of the scheme can be automated such as the generation
of composites and bindings from Fractal-ADL. We plan to
develop such an Uppaal transformer.
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