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Abstract
Component based software engineering and aspect orientation are
claimed to be two complementary approaches. While the former
ensures the modularity and the reusability of software entities, the
latter enables the modularity of crosscutting concerns that can-
not be modularized by regular components. Nowadays, several ap-
proaches and frameworks are dedicated to integrate aspects into
component models. However, when several aspects are woven, in-
terferences may appear which results on undesirable behaviors. The
contribution of this paper is twofold. First, we show how aspectual-
ized component models can be formally modeled in Uppaal model
checker in order to detect potential interferences among aspects.
Second, we provide an extendible catalog of composition opera-
tors used for aspect composition. We illustrate our general approach
with an airport Internet service example.

1. Introduction
Component based software engineering, or CBSE in short [1], en-
ables the modularization of concerns in terms of separate software
entities called components. Each component provides a set of ser-
vices and may require other services from other components. Com-
ponents can be assembled in order to construct complex component
systems. On the other hand, aspect oriented programming, or AOP
in short [2], focus on the modularization of scattered and tangled
concerns that cannot be modularized using regular software enti-
ties. Crosscutting concerns are not related to a specific paradigm
and CBSE is not an exception. However, current works on CBSE
focus only on the integration of aspects into component models
missing the interferences that may appear when several aspects are
woven to a system. Moreover, aspect interferences detection and
resolution is still a challenge for AOP. In this paper we contribute
by analyzing aspect interactions on component models. In a previ-
ous work [3], we introduced a declarative pointcut language VIL
for component models. VIL enables the composition of aspects
scattered on the architecture by reconfiguring systems. The imple-
mentation of aspect composition for Fractal component model [4]
is given in [5] with an introduction to aspect interferences. In this
paper, we extend our work in [5] by providing an architectural de-
scription language (ADL) to describe both structural and behavioral
properties of components and aspects (section 3). We show how to
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formalize component systems using a set of transformation rules
from our ADL to networks of automata (section 4). We use Uppaal
model checker [6] to detect potential interferences among aspects
in the result formal system (section 5). Finally, we present a cata-
log of composition operators to solve interferences (section 6). The
catalog describes seven binary operator templates that can be in-
stantiated for aspect composition. Our proposal is illustrated with a
running example: an airport wireless connection.

2. Motivation Example: Airport Internet Access
Our case study is a simplified version of that given in [7, 8].
The example models an airport service for providing a wireless
Internet connection for passengers. Free Internet access is granted
to passengers owning valid flight tickets. A passenger uses his flight
ticket number to login and access the network for an associated
time to the ticket.
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Figure 1. Architecture of the airport wireless access system

The component architecture of this application is depicted
in Figure 1. The User component represents a passenger in
the system. The User, first, requests an IP address from the
DhcpServer, then it asks to login from the Arbitrator. Once
connected, it sends queries to the InternetAccessManager.
The InternetAccessManager forwards users’ requests to the
Firewall that blocks unauthorized Internet connections. The re-
quests of users with enabled IP addresses are actually sent to the
Net Proxy. The User component has multiple instances (one per
customer) as noted with “?” in the figure. The DhcpServer del-
egates IP address requests to the IpAddressManager that pro-
vides dynamic allocation of IP addresses. The allocated IP ad-
dresses are managed by the IpDbConnection component. The
Token models a user session. When the Arbitrator receives
a login request, it retrieves the authorized access time from the
FlightTicketManager, orders the InternetAccessManager to
enable communications for the user, and starts a new session by
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Figure 2. Seq(Bonus,Alert) scenario

instantiating a Token and starting its Timer component. When ses-
sion time elapses, the Timer informs the ValidityChecker which
in turn informs the Arbitrator. The Arbitrator closes the ses-
sion by calling the InternetAccessManager to disable the user
communications, and the DhcpServer to disable its IP address.

We want to alter the behavior of the system by integrating a set
of aspects. In this paper we focus on three aspects: Bonus, Alert
and NetOverloading. The Bonus adds an additional free connec-
tion time to first class passengers. The Alert warns the connected
passengers of the end of their sessions time before five minutes, and
the NetOverloading blocks the P2P connection queries when the
number of connected passengers exceeds a threshold number. In
fact, other aspects are proposed and implemented for the example,
but for space limitation only these three aspects and their interac-
tions are presented. From the implementation point of view, since
the source code of components may not be available to component
users, aspects should be integrated in a transparent and a modular
way. In [5] we extended Fractal component controllers to imple-
ment and compose such aspects.

For better understanding of aspect interferences in component
systems, let us consider the original airport system with the bonus
and the alert aspects. Let us also assume that the original session
duration is 60 minutes, the bonus adds 10 minutes and the alert
warns the user 5 minutes before the end of the session. When both
aspects are bound to the system, we wish users to get a bonus
time and be alerted exactly 5 minutes before the actual end of their
sessions (i.e. alert at 65 minutes, end of session at 70 minutes).

In AOP [2], the aspect behavior defines a set of advices asso-
ciated to pointcut expressions defining the join points where the
aspect should interfere. Each advice executes extra code and pro-
ceed or skip the intercepted join point. Proceeded join points con-
tinue their original path or continue to the next advice if any, while
skipped join points are blocked. In our approach, when two aspects
intercept common join points (i.e. services), the advices of the two
aspects on those services are executed sequentially, and the service
call continue its original path (i.e. proceeded) only if at least one
of its underlying aspects decides to proceed the call, otherwise, the
call is skipped. Figure 2 details the execution of the Bonus and the
Alert behaviors sequentially. At time 0, a user logs in for 60 min-
utes provided by his flight ticket. The message setTimeout(60)
sent from a ValidityChecker to its Timer is intercepted and for-
warded to the Alert aspect only (i.e. the setTimeout(60) is not a
common intercepted call). The Alert subtracts 5 minutes from 60
and proceeds the call with the new parameter value (55). As a re-
sult, a timeout service call is intercepted at time 55. The timeout
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Figure 3. Alt(Bonus,Alert) scenario

is common intercepted service so that its call is forwarded to the
Bonus first then to the Alert. The Bonus resets the timer for 10
minutes and skips the call. Then, the call is sent to Alert that
warns the user, resets the timer for 5 minutes and skips the call.
This violates the expected behavior: the alert is sent too early (at
time 55 instead of the expected 65). Moreover, the Timer has been
set twice with different values and hence it is inconsistent what-
ever happens next. This is called an interference since the desired
behavior is not satisfied by the default sequential composition of
aspects. To solve this interference, another composition strategy is
needed: the first occurrence of timeout should only be managed
by Bonus and the second occurrence should only be managed by
Alert. Within this alternate strategy, when a service common to
both aspects is intercepted, its occurrences are passed alternately to
the left and the right hand side aspects. When a service is not com-
mon to both aspects, the call is forwarded to its corresponding as-
pect only. Figure 3 details the alternate execution of the Bonus and
the Alert scenario. At time 0, a user logs in for 60 minutes pro-
vided by his flight ticket. The message setTimeout(60) sent from
a ValidityChecker to its Timer is intercepted and forwarded to
Alert. The Alert subtracts 5 minutes from 60 and proceeds the
call. As a result the setTimeout(55) call is proceeded. At time
55, a timeout is intercepted which is a common intercepted mes-
sage by both aspects. Here, the call is forwarded only to Bonus
(first occurrence) that resets the timer for 10 minutes and skips the
message. Thus, the first timeout call is ignored. At time 65, a sec-
ond timeout is intercepted. The call, this time, is forwarded only
to Alert (second occurrence) that warns the user, resets the timer
for 5 minutes and skips the message. Thus, the timeout call is ig-
nored again. At time 70, a third timeout call is intercepted and
forwarded only to Bonus (third occurrence) that proceeds the call
since the bonus time is consumed. As a result, the timeout is pro-
ceeded. This ends the session and elaborates the desired behavior.

The above example shows how aspect interact and confirms
that the sequential composition of aspects, supported by the most
popular AOP implementation models such as AspectJ [9], is not
enough. One more example is the case that the airport manger de-
cides to block P2P access when the network is overloaded. This
also can be modeled as an aspect that wraps the Firewall and
the IpAddressManager. The NetOverloading aspect requires
the IpAddressManager for its IIpMacDb interface that defines
add(IP) and remove(IP) services. Intercepting those services,
the aspect will be able to count the number of connected users.
In addition, the aspect requires the Firewall component for its
IConnection interface that defines the connect(IP) service. In-



tercepting calls to this service enables the aspect to block calls to
P2P addresses when the number of connected users exceeds the in-
dicated threshold number. Now, if we want to prevent associating
a bonus time to users when the system is overloaded, the Bonus
and the NetOverloading aspects can be composed using the Cond
operator. Within Cond, the Bonus behavior is not executed if the
NetOverloading detects an overloading state of the system. In
the following, we propose a formalization of component systems
and aspects as a network of automata and we use Uppaal model
checker to check whether the system satisfies the desired behavior
and whether the bound aspects are interference-free. In addition,
the composition strategies described above to solve aspect interfer-
ences are abstracted into binary composition operators that can be
instantiated for arbitrary aspects. Uppaal model checker is used to
check whether an instantiated operator solves the interference.

3. ADL for Aspectualized Component Systems
In this section we describe an ADL that enables the definition of
both structural and behavioral properties of component systems.
Our ADL is not a new language, it, rather, extends current ADL(s)
with explicit definition of aspects, aspect behaviors, aspect weaving
rules, and aspect composition. Table 3 shows the BNF-like gram-
mar of our ADL. In the table, id refers to general identifiers, cId ,
itfId , and svId refer to component, interface and service identi-
fiers. In addition, asId , pctId , opId , and locId refer to aspect,
pointcut, operator, and location identifiers, respectively. Finally, we
use t to refer to data types.

Architecture ::= system id 〈Interfaces〉 〈Components〉 〈Attachments〉
〈Aspects〉 〈Weavings〉

Interfaces ::= (interface id {(@(sync | async) svId)+})+
Components ::= primitive | composite | 〈Components〉; 〈Components〉
Template ::= [attributes (t id;)+]

[provides (itfId id;)+]
[requires (itfId id;)+]

Primitive ::= primitive id [(n :≥ 2)] {
〈Template〉 computation 〈Behavior〉

}
Composite ::= composite id [(n :≥ 2)] {

〈Template〉 internals cId+

}
Attachments ::= (client=cId1 .itfId1 server=cId2 .itfId2 )∗

Behavior ::= process id {
[(t id)∗;] [clock id∗;]
state locId+;
init locId ;
trans 〈Transitions〉;

}
Transitions ::= (locId − > locId {[〈Guard〉] [〈Sync〉] [〈Assign〉]})+
Guard ::= guard bexp
Sync ::= sync [(proceed | skip).][asId .]itfId.svId (! | ?)
Assign ::= assign exp
Weavings ::= (weave

asId (pctId, vexp)+

| opId 〈Weavings〉〈Weavings〉)∗
Aspects ::= (aspect id 〈Behavior〉)∗
Ops ::= (operator id 〈Behavior〉)∗

Table 1. ADL description language for component systems

According to the above ADL specification, a component system
is defined as a set of interfaces (Interfaces), components (Compo-
nents), attachments (Attachments), aspects (Aspects), and a set of
weaving rules (Weavings). Each interface is defined by an identi-
fier, and a set of service signatures, each of which is annotated with
(@sync or @async) to indicate whether the service is synchronous
or asynchronous, respectively. We distinguish two kinds of compo-
nents: primitives and composites. A primitive component is defined
with an identifier, a set of attributes, two sets of provided and re-
quired interfaces and a behavior indicated with the computation

keyword. Compared with a primitive, a composite does not have
a behavior, instead a set of its internal components are indicated
within the internals keyword. Since different instances may exist
in the component system configuration, an indication of the number
of instances for each component is optionally indicated with a nat-
ural number (n :≥ 2) that follows the component name. The set of
attachments defines the configuration of the system by setting down
all the connections between components. Inspired from Fractal [4],
a connection binds a component required interface (i.e. client) to
a component provided interface (i.e. server). The weaving part of
the ADL description, indicates which aspect should be bound to the
system and how aspects are composed using binary composition
operators. Both aspects and composition operators are defined with
an identifier and an abstract behavior. By abstract behavior, aspect
pointcuts are denoted with abstract names that should be replaced
with concrete join points at the weaving stage (see section 4.6).
To describe behaviors we adopt Uppaal XTA-like notation [10].
Accordingly, a behavior is indicated with a (process) keyword fol-
lowed by potential declarations of local variables, clocks and a set
of transitions. Each transition indicates the start and the end loca-
tion, and a transition label. A transition is decorated with a guard, a
synchronization channel, and a sequence of assignments. A guard
is a predicate (i.e. boolean expression bexp), its satisfaction enables
the transition. For channel labels, we adopt the following notations
in the ADL specification: a channel label is a concatenation of the
interface and the service identifiers. In addition, a channel label can
be prefixed with two predefined keywords (proceed and skip) to in-
dicate the actions taken by an aspect. Assignments are a sequence
of clock and/or variable assignments, it can be also be a call to a
C function. Finally, for the weaving, an aspect is associated with a
mapping (pctId , vexp) where: pctId is an abstract pointcut iden-
tifier used in the aspect behavior specification, and vexp is a VIL
expression [3] used to define concrete join points that correspond
to pctId .

1 system a i r p o r t I n t e r n e t A c c e s s
2 i n t e r f a c e IT imer {@sync s e t T i m e o u t ( i n t )}
3 i n t e r f a c e I T i m e r C a l l b a c k {@async t i m e o u t ( ) }
4 i n t e r f a c e IToken {@sync s t a r t T o k e n ( ) }
5 i n t e r f a c e I T o k e n C a l l b a c k {@async t o k e n I n v a l i d a t e d ( ) }
6 / / o t h e r i n t e r f a c e s
7 p r i m i t i v e Timer ( n ) {
8 p r o v id e s I T i m e r C a l l b a c k i T i m e r C a l l b a c k ;
9 r e q u i r e s IT imer iT im er ;

10 / / b e h a v i o r ( s e e s e c t i o n 4 . 1 )
11 }
12 p r i m i t i v e V a l i d i t y C h e c k e r ( n ) {
13 p r o v id e s IT imer iTimer , IToken iToken ;
14 r e q u i r e s I T i m e r C a l l b a c k i T i m e r C a l l b a c k ,
15 I T o k e n C a l l b a c k i T o k e n C a l l b a c k ;
16 / / b e h a v i o r
17 }
18 composi te Token ( n ) {
19 p r o v id e s I T o k e n C a l l b a c k i T o k e n C a l l b a c k ;
20 r e q u i r e s IToken iToken ;
21 i n t e r n a l s Timer ( 1 ) , V a l i d i t y C h e c k e r ( 1 ) ;
22 }
23 c l i e n t V a l i d i t y C h e c k e r . i T i mer s e r v e r Timer . iT im er ;
24 / / o t h e r a t t a c h m e n t s
25 a s p e c t Bonus / / B e h a v i o r
26 weave Bonus ( pc t , {( V a l i d i t y C h e c k e r , iTimer , t i m e o u t ) }) ;

Listing 1. An excerpt of the ADL of the airport system example

Listing 1 shows an excerpt of the ADL specification of the air-
port Internet access example. In the listing, four interfaces are de-
clared with the signatures of their services (line 2-5). For example,
the ITimerCallback interface defines only one asynchronous ser-
vice named timeout. Two primitive components, the Timer and
the ValidityChecker, are described (lines 7-11, 12-17, respec-
tively) with their provided and required interfaces. The Token com-
posite component is described (line 18-22) with its interfaces and



internals. Since several tokens can be created, the component is
parametrized with n (the maximum number of instances). In the
internals part declaration, the Timer and the ValidityChecker
are parametrized with the value 1 to indicate that only one instance
of each is enabled in each Token component instance. The attach-
ment description in (line 23) indicates that the iTimer interface of
the ValidityChecker component is bound to the iTimer inter-
face of the Timer component. The weaving declaration (line 26)
indicates that the Bonus aspect (line 25) is bound to the system
and its abstract pointcut pct should be replaced by the concrete
join point: the timeout, service of the iTimer interface of the
ValidityChecker component.

4. Aspectualized Component Systems in Uppaal
In this section we overview Uppaal model checker and we describe
the transformation scheme of our ADL to Uppaal processes.

4.1 Overview of Uppaal
Uppaal [6] is a toolbox, used to design, simulate and check CTL
(Computation Tree Logic) [11] properties for systems that can be
modeled as networks of timed automata. A timed automata is a reg-
ular finite state machine extended with local variables, data types,
and clock variables. Each automaton in Uppaal is called a tem-
plate. A template can be parametrized with constants indicating
how that template is instantiated (e.g., how many instances are cre-
ated). Each instance is called a process. Template nodes are called
locations while the edges are called transitions. For describing sys-
tems, Uppaal provides both a graphical (XML format) and a textual
(XTA format). For better understanding of Uppaal formalism, let us
consider the behavior of the Timer component shown in Figure 4.
The template can be read clockwise from the initial location. The
initial location is distinguished with a double circle. The Timer
waits for a setTimeout call with a parameter of type TIME1 de-
clared at the top of the channel label (time:TIME). When it re-
ceives such an event, it stores the time value in a local variable
(time:=t), resets a clock variable cl to 0 (cl:=0) and goes to the
next location. Then, the Timer sends E .. setTimeout indicating
the end of the treatment of the setTimeout event (setTimeout
is synchronous event) and goes to the next location. This latter is
decorated with an invariant (cl<=time) to indicate that the pro-
cess should not stay at that location when the invariant becomes
false (i.e. cl>time). When that happens, the Timer enables the
last transition by triggering a timeout event, resets the clock again
to 0 (cl:=0), and returns to the initial location.

t:TIME
timer_iTimer_setTimeout[t]?

time := t; cl:= 0 E_timer_iTimer_setTimeout!

timer_iTimerCallback_timeout!
cl:= 0

cl<=time

Figure 4. Formal Model for the Timer Component

Listing 2 shows the Uppaal textual description (XTA) of the
Timer component. Data types (e.g., TIME) are declared first (line
1). Each template in Uppaal is declared within the process key-
word followed by the name of the template (Timer in this case)
(line 2). Clock variables (cl) and local variables (time) are de-
clared in the top of the declaration (line 3-4). Then the locations are
listed (line 5), and the initial location is explicitly indicated (line 6).
The transitions comes last following the same syntax we adopted
for behaviors specification (line 7-12).

1 TIME is a user defined data type

1 t y p e d e f i n t [ 0 , 6 ] TIME ;
2 p r o c e s s Timer ( ) {
3 c l o c k c l ;
4 TIME t ime ;
5 s t a t e l0 {c l <=t ime } , l1 , l2 ;
6 i n i t l0 ;
7 t r a n s
8 l0 −> l1 { s e l e c t t : TIME ;
9 sync t i m e r i T i m e r s e t T i m e o u t [ t ] ? ;

10 a s s i g n t ime := t , c l : = 0 ;} ,
11 l1 −> l2 {sync E t i m e r i T i m e r s e t T i m e o u t ! ;} ,
12 l2 −> l0 {sync t i m e r i T i m e r C a l l b a c k t i m e o u t ! ; } ;
13 }

Listing 2. The Uppaal-XTA description of the Timer component

Uppaal also provides a simulator that enables the exhaustive
examination of systems behaviors. Within the simulator, a user can
interact with the system, execute the system step by step, decide
which transition should be taken if many are enabled, and see how
local variables and clocks values change during the execution. The
Uppaal model checker is designed to check reachability, safety and
liveness properties expressed in a subset of CTL formulae [11].
When a particular property is violated, a counter example in terms
of a diagnosis trace is automatically reported to the user. Thus, the
user is given a feedback that helps on the detection of potential
errors and how to correct them. The use of Uppaal in our proposal is
important because of its support of the following features: template
instantiation and value passing which are intrinsic properties to
component models, and timing support which is important for our
case study. In the following we describe how to transform the above
ADL specification into Uppaal process.

4.2 Formalization of Primitive Components
Each primitive component is modeled as a Uppaal process. Since
primitive components come with their behavior specification, those
specifications should be transformed into correct Uppaal-XTA
form. In our ADL, the behavior specification is chosen to be a
subset of the XTA description of templates in Uppaal and hence
minimum adaptations are needed. In particular, each channel label
in the ADL behavior specification consists of the interface and the
service names which are enough for the local behavior of the com-
ponent. In our formalization we adopt the following notation for
channel labels: each label is a concatenation of the component, the
interface and the service identifiers separated with “ ” symbol. This
notation enables component bindings. Accordingly, all the channel
labels in the specification should be prefixed by the component
name. In addition, when more than one instance are required, the
channel labels are suffixed with “[id]” indicating the instance ref-
erence of each component; where id is a constant that ranges over
[1..n] and n is the indicated number of instances for the compo-
nent in the specification. In Uppaal XTA, this number should be
declared as a parameter of the template modeling the component.
The following listing describes the general transformation rule that
generates a Uppaal-XTA template for ADL primitive component
specification. In the listing, the clone() function makes a copy of
a behavior (first argument) of a software entity with a given new
name (second argument).

1 P : P r i m i t i v e → Uppaa lTempla te
2 PJp r i m i t i v e cId temp computation c p t K =
3 c p t [cId itfId svId / itfId.svId ]
4 PJp r i m i t i v e cId ( n ) temp computation c p t K =
5 l e t p= c l o n e ( cp t , cId(c o n s t id : [1 ..n]) )
6 in p [cId itfId svId[id] / itfId.svId ]

Listing 3. primitive component transformation rule



4.3 Formalization of Composite Components
A composite is modeled as a set of Uppaal processes, one for each
bound interface. Each template of those processes has a central
initial location and a set of directed cycles from and to that lo-
cation. Each cycle describes one service. Asynchronous services
are represented by cycles of two transitions: receives a message
(cId1 itfId1 si?), then forwards it (E cId1 itfId2 si !) (listing 4
line 17-18). Synchronous services are represented by cycles with
four transitions: receives a message (cId1 itfId1 si?), forwards it
(cId2 itfId2 si !), waits for the reply (E cId2 itfId2 si?), and for-
wards the reply (E cId1 itfId1 si !) (listing 4 line 12-15). When
the composite may have multiple instances, similar to primitives,
we suffix the channel labels of the component in question with
“[id]” (listing 4 line 21-37). The following is the complete trans-
formation rule of a composite component from the ADL specifica-
tion of composites where: attachments() function returns the set of
attachments declared in the architecture, nbSync() and nbAsync()
return the number of synchronous and asynchronous services for
a given interface in the architecture, and synchronous() function
checks whether a given service is synchronous in a given interface.

1 C : Composi te → A r c h i t e c t u r e → Uppaa lTempla te∗

2 CJcomposi te cId1 temp i n t e r n a l s cIdsK a=
3 ∀itfId1 ∈ interfaces(cId1 ),
4 ∃( c l i e n t = cId1 .itfId1 s e r v e r = cId2 .itfId2 ) ∈ attachments ( a ) :
5 process cId1 itfId1 ( ) {
6 state l0, .., lk ;
7 % k =nbSync(itfId1 , a) ∗ 3 + nbAsync(itfId1 , a)
8 init l0 ;
9 trans

10 ∀ si ∈ s e r v i c e s ( itfId1 , a ) {
11 i f ( s y n c h r o n o u s (si , itfId1 , a ) ) {
12 l0 −> li1 {sync cId1 itfId1 si ? ;} ,
13 li1 −> li2 {sync cId2 itfId2 si ! ;} ,
14 li2 −> li3 {sync E cId2 itfId2 si ? ;} ,
15 li3 −> l0 {sync E cId1 itfId1 si ! ; } ;
16 } e l s e {
17 l0 −> li1 {sync cId1 itfId1 si ? ;} ,
18 li1 −> l0 {sync cId2 itfId2 si ! ; } ;
19 }
20 };
21 CJcomposi te cId1 ( n ) temp i n t e r n a l s cIdsK a=
22 ∀( c l i e n t = cId1 .itfId1 s e r v e r = cId2 .itfId2 ) ∈ attachments ( a )
23 process cId1 itfId1 (c o n s t id : [1 ..n]) {
24 state l0, .., lk ;
25 % k =nbSync(itfId1 , a) ∗ 3 + nbAsync(itfId1 , a)
26 init l0 ;
27 trans
28 ∀ si ∈ s e r v i c e s ( itfId1 ) {
29 i f ( s y n c h r o n o u s (si , itfId1 ) ) {
30 l0 −> li1 {sync cId1 [id] itfId1 si ? ;} ,
31 li1 −> li2 {sync cId2 itfId2 si ! ; } ;
32 li2 −> li3 {sync E cId2 itfId2 si ? ;} ;
33 li3 −> l0 {sync E cId1 [id] itfId1 si ! ; } ;
34 } e l s e {
35 l0 −> li1 {sync cId1 [id] itfId1 si ? ;} ,
36 li1 −> l0 {sync cId2 itfId2 si ! ; } ;
37 }
38 };

Listing 4. composite component generation rule

Let us consider the Token composite component. This compo-
nent has two interfaces: iToken and iTokenCallback (see List-
ing 1 line 19-20). The interface iToken has one synchronous ser-
vice: startToken (Listing 1 line 4) for starting a new session.
Figure 5 depicts the generated Uppaal template for iToken in-
terface of the Token component (one cycle of four transitions).
While the iTokenCallBack interface has a single asynchronous
service: timeout (Listing 1 line 3) for signaling that the session
time elapsed. Figure 6 depicts the generated Uppaal template mod-

eling the iTokenCallback of the Token component (a single cy-
cle of two transitions).

token_iToken_startToken[id]? validityChecker_iToken_startToken[id]!

E_validityChecker_iToken_startToken[id]?E_token_iToken_startToken[id]!

Figure 5. Formal Model for Token: iToken interface

token_iTokenCallback_tokenInvaidated[id]?

arbitrator_iTokenCallback_tokenInvalidated[id]!

Figure 6. Formal Model for Token: iTokenCallback interface

4.4 Formalization of Bindings
Component bindings can be modeled either as separate Uppaal pro-
cesses that receive channels from required interfaces and forward
them to their bound provided interfaces, or by renaming. In our
approach we adopt the second solution for minimum state number
generation. By renaming, a bound interface itfId1 of a component
cId1 to an interface itfId2 of a component cId2 is modeled by
replacing each channel label occurrence cId1 itfId1 s in the tem-
plate of cId1 by cId2 itfId2 s , for each service name s. This syn-
chronizes the channels between the two bound components. List-
ing 5 describes the general binding rule. The name() function in the
rule returns the name of a software entity (i.e. component, interface,
aspect, behavior or Uppaal template).

1 B : Uppaa lTempla te → A r c h i t e c t u r e → Uppaa lTempla te
2 BJpK a=
3 l e t cId1= name ( p )
4 in ∀ ( c l i e n t = cId1 .itfId1 s e r v e r = cId2 .itfId2 ) ∈

a t t a c h m e n t s ( a ) ,
5 ∀s ∈ s e r v i c e s ( itfId1 ) p [cId2 itfId2 s / cId1 itfId1 s ] ;

Listing 5. binding function

Figure 7 depicts the Timer template after binding its required
interface iTimerCallback to that provided by the ValidityChe-
cker component (Listing 1 line 23). Thus, the timer iTimerCall-
back timeout! is replaced by validityChecker iTimerCall-
back timeout!.

t:TIME
timer_iTimer_setTimeout[t]?

time := t; cl:= 0 E_timer_iTimer_setTimeout!

validityChecker_iTimerCallback_timeout!
cl:= 0

cl<=time

Figure 7. Formal Model for the Timer Component after binding

4.5 Formalization of component systems
A complete component system without aspects is modeled as the
parallel composition of all the components of the architecture.
The primitive components are adapted to follow the Uppaal-XTA
syntax and bound to each other using the binding function, while
composite templates are automatically generated from the ADL
specification. Formally:

SJaK =‖∀c∈primitives(a) BJPJcKKa ‖∀t∈attachments(a) CJtKa



The complete airport system example is modeled by 20 tem-
plates (9 for primitive components and 11 for composite compo-
nents’ interfaces).

4.6 Formalization of Aspects and Aspect weaving
The behavior of aspects is already described in the ADL specifi-
cation following Uppaal-XTA form. The aspect behavior defines
a set of cycles from and to the initial location, each of which de-
scribes the behavior of an aspect for an abstract pointcut pctId.
The proceed and the skip actions taken by an aspect for each join
point e are explicitly modeled by (proceed e) and (skip e), re-
spectively. However, the behavior is abstract and should be instan-
tiated for concrete join points. In our model, pointcuts are defined
using VIL [3] in a declarative style. VIL interprets and transforms
the pointcut expressions into tuples of the form (cId, itfId, svId)
(i.e. a component, an interface and a service identifiers). In addi-
tion, a mapping (pctId,e) from an abstract pointcut to an expression
describing the concrete join points is given in the ADL specifica-
tion for each aspects. In the instantiation process, for each mapping
(pctId,e), we use VIL to interpret the expression e and returns a
set of tuples of the form (cId, itfId, svId). For each tuple, we make
a copy of the cycle denoting pctId in the aspect abstract behav-
ior. Then, we replace each pctId occurrence by cId itfId svId
from the tuple. Listing 6 describes this instantiation process of Up-
paal templates from the ADL specification of aspect behaviors. In
the listing, the duplicateTransitions(b,pctId) function, as
its name indicates, duplicates the set of transitions in the behavior
specification b where pctId appears in the channel labels, and V
denotes VIL interpretation of pointcut expressions.

1 I : B e h a v i o r→ ( ID , VExp )+ →A r c h i t e c t u r e→Uppaa lTempla te
2 IJbK map a =
3 process name ( b ) {
4 / / t h e d e c l a r a t i o n g i v e n i n b
5 trans
6 ∀(pctId, e) ∈ map :
7 l e t jps = VJeK ( a )
8 in ∀(cId, itfId, svId) ∈ jps :
9 duplicateTransitions ( b , pctId ) [cId itfId svId / pctId ]

10 }

Listing 6. Instantiation rule

In order to synchronize the component processes with the as-
pect, a set of locations and transitions should be added to com-
ponent specifications. This extension ensures that each intercepted
service call is forwarded to the aspect process, which executes its
behavior and returns either proceed or skip. In the former case, the
extension ensures that the service call reaches its target and contin-
ues its original path. In the latter case, the extension ensures that the
service call is skipped by returning to the initial location if the ser-
vice is asynchronous. If the service is synchronous, all the actions
between the begin and the end events of the service call are ignored.
For instance, when a bonus is applied to the ValidityChecker,
its corresponding template must be adapted as detailed in Figure 8.
Part (a) shows an excerpt of the original ValidityChecker tem-
plate and part (b) shows the same excerpt adapted. As a result,
when timeout is received, it is forwarded to the bonus aspect pro-
cess. The ValidityChecker waits for either skip to return to the
original location, or proceed to forward the timeout to the Token
component. Listing 7 generalizes the process of aspect weaving.

In Listing 7, the aspect process is instantiated first (line 3). Then
for each concrete join point tuple, transitions and locations are
added to the component process following the example shown in
Figure 8. The process(cId,a) function (line 7) is used to get the
Uppaal template defined for cId in a component architecture a. In
the case of aspect composition, aspects are instantiated following
the instantiation rule, then, the composition operator is instantiated.

validityChecker_iTimerCallback_timeout[id]?

token_iTokenCallback_tokenInvalidated[id]!

validityChecker_iTimerCallback_timeout[id]?

token_iTokenCallback_tokenInvalidated[id]!

bonus_iTimerCallback_timeout[id]!

proceed_bonus_iTimerCallback_timeout[id]?

skip_bonus_iTimerCallback_timeout[id]?

(a)

(b)

Figure 8. ValidityChecker template adaptation (a) original, (b)
adapted

Finally, the components owning the join points are adapted so that
all the services in the concrete join points are forwarded to the
operator process.

1W : Weavings → A r c h i t e c t u r e → Uppaa lTempla te∗

2WJweave asId (ptcIdi , ei )
+K a=

3 IJb e h a v i o r (asId )K (ptcIdi, ei)
+ a ;

4 ∀ei ∈ (ptcIdi, ei)
+ :

5 l e t p t s = VJeiK ( a )
6 in ∀(cId, itfId, svId) ∈ p t s :
7 l e t p = process (cId , a )
8 in
9 i f s y n c h r o n o u s ( itfId, svId )

10 p [ (
11 li−> li1 : {X1 sync cId itfId sId? X2} ,
12 li1−> li2 : {sync asIdi tfId svId!} ,
13 li2−> lj : {sync proceed asId itfId svId?} ,
14 li2−> lk : {sync skip asId itfId svId?} ,
15 lk−> ll : {Y1 sync E cId itfId svId! Y1} ,
16 ) /
17 (
18 li−> lj : {X1 sync cId itfId svId? X2} ,
19 lk−> ll : {Y1 sync E cId itfId s! Y2} ,
20 )
21 ]
22 e l s e
23 p [ (
24 li−> li1 : {X1 sync cId itfId svId? X2} ,
25 li1−> li2 : {sync asId itfId svId!} ,
26 li2−> lj : {sync proceed asId itfId svId?} ,
27 li2−> l0 : {sync skip asId itfId svId?} ,
28 ) /
29 (
30 li−> lj : {X1 sync cId itfId svId? X2} ,
31 )
32 ]

Listing 7. weaving an aspect to a component

As an example of the instantiation of composition operators,
Figure 9 depicts the template for the alternate operator Alt. In
the figure, when a common intercepted service call is intercepted
(e12?), the function swap() is executed. This latter maintains a
boolean isLeft to indicate which aspect should be applied. If it is
the left-hand side aspect turn (isLeft), e12 is forwarded to this
aspect (a1 e12!), otherwise, e12 is forwarded to the right-hand
side aspect (a2 e12!). In both cases, the operator waits for either
proceed ai e12 or skip ai e12 and forwards the intercepted
command to the caller (proceed e12 or skip e12). While the
individual intercepted service calls e1 and e2 are only forwarded
to their corresponding aspects only. The above Alt template is
instantiated by generating cycles like the one defined for e12 for
each intercepted call by both aspects, while a cycle of that defined
for e1 is generated for each service intercepted by the first aspect
only. Similarly, a cycle of that defined for e2 is generated for each
service intercepted by the second aspect only.



S0

e12?
swap()

isLeft(e12)
a1_e12!

!isLeft(e12)
a2_e12!

proceed_a1_e12?

proceed_a2_e12?

proceed_e12!

proceed_e12!

skip_a1_e12?

skip_a2_e12?

skip_e12!

skip_e12!

e1?a1_e1!

proceed_a1_e1? proceed_e1!

skip_a1_e1? skip_e1!

e2?a2_e2!

proceed_a2_e2? proceed_e2!

skip_a2_e2? skip_e2!

cycle for common intercepted services by a1 
and a2 (e12) 

cycle for intercepted services by a1 only 
(e1) 

cycle for intercepted services by a2 only 
(e2) 

Figure 9. The Alt template

5. Interference Detection
For interference detection, we define a component system Γ as a
pair (AΓ,PΓ) where, AΓ is the process modeling the component
system generated from the ADL description, andPΓ is a set of CTL
formulas describing the behavior of the system.

For instance, our case study is defined as (Aairport,Pairport).
Where Pairport describes the set of properties the system ensures
whenever it is executed. The system is designed to satisfy differ-
ent (liveness, safety, and reachability) properties. These are given
at the top of Table 2 (Pairport). In particular, a user can not stay
connected forever (Live 1), the system is deadlock free (Safe 1), a
user cannot stay connected more than the validity time indicated in
his flight ticket (Safe 2), a user can connect to all the Ip addresses
when its access is enabled by the firewall (Safe 3), and several users
can be connected at the same time (Reach 1). The formulas rely on
different constants, variables and auxiliary functions: IDS and IPS
denote the range for user identifiers and Ip addresses, respectively,
Connected and Disconnected are identifiers denoting particu-
lar locations of the user process, the validity(id) is a global
function that returns the authorized connection time of a user id,
currentIp(id) returns the current Ip address the user want to
connect, and enabled(id) checks whether a user id access is en-
abled by the firewall. The cl is a local clock associated to the user
process, and the isConnected is a local variable in the user pro-
cess that stores the firewall response of the user access to each Ip
address.

The properties satisfaction indicates the well-definedness of
component systems.

DEFINITION 5.1. A component system Γ = (AΓ,PΓ) is well
defined if its modeling process satisfies all its desired properties:

D(Γ)
def
= AΓ |= PΓ

The intent of each aspect should also be given as a set of
CTL formulas. The intent describes the set of properties the aspect
ensures when it is applied to a system. The satisfaction of these
properties when the aspect is bound determines the applicability of
the aspect to the base system.

DEFINITION 5.2. Given a component system Γ = (AΓ,PΓ) and
an aspect Λ = (AΛ,PΛ) where, AΛ is the process modeling the
aspect behavior, and PΛ is the set of its intent properties. An aspect
is said to be correct with respect to a component system Γ if the
following condition holds:

JAΓKWΛ ‖ AΛ |= P ′Γ ∧ PΛ

Where JAΓKWΛ denotes the process modeling the system Γ af-
ter weaving the aspect Λ, ‖ denotes the parallel composition of

processes and P ′Γ ⊆ PΓ is a subset of the system properties that
must be preserved after the weaving of the aspect Λ. These prop-
erties should be defined for each aspect to be woven. For our case
study, when the bonus is applied to the airport system, the set of
intrinsic properties of the system is defined as all the Pairport

properties except (Safe 2), since bonus allows the user to connect
for more than the time indicated in his flight ticket (see Safe 2’).
While in the case of alert P ′Γ is simply Pairport. The properties
for the bonus (Pbonus), the alert (Palert), and the netOverloading
(PnetOverloading) aspects are shown in the bottom part of Table 2.
The bonus aspect ensures that the user can stay connected a bonus
time (BonusTime) after its authorized time expires (Safe 3’). The
alert ensures that the user is always alerted before it is disconnected
(Live 2) and the alert is intercepted exactly before a TimeAlert of
its expiration time (Safe 4). While the netOverloading aspect en-
sures that a user is unable to access P2P addresses when the sys-
tem is overloaded (Safe 2’). In the formulas, Alerted is an identi-
fier denoting a particular location in the user process, isAlerted
is a local boolean variable of the user indicating whether a user
reached the Alerted location, BonusTime and AlertTime are
constants denoting the bonus and the alert time, respectively. Fi-
nally, isP2P(ip) and isOverload() are two predicates defined
in the netOverloading aspect to check whether an Ip address is P2P
and whether the server is overloaded, respectively.

Extending components with several aspects may give rise to
interferences. Two aspects are interference-free with respect to a
base program, when both aspects are bound to the system, the result
process satisfies all the properties of the underlying aspects as well
as the system properties to be preserved by both aspects. Formally:

DEFINITION 5.3. Given a base system Γ = (AΓ,PΓ) and two
aspects Λ1 = (AΛ1 ,PΛ1), Λ2 = (AΛ2 ,PΛ2), Λ1 and Λ2 are
interference-free if the following conditions hold:

1. D(Γ) : the base system is well defined
2. let α = JAΓKWΛ1

in let β = JαKWΛ2

in β ‖ AΛ1 ‖ AΛ2 |= P
Λ1,Λ2
Γ ∧PΛ1 ∧PΛ2 : the composition

is correct w.r.t Γ

Where PΛ1,Λ2
Γ denotes the set of system properties to be pre-

served by both Λ1 and Λ2.
In our case study, when both bonus and alert are woven to the

system and composed using Seq, Safe 3 property is violated which
reports an interference with a diagnostic trace. The reported trace
shows that both aspects reset the Timer for two different values
and the Timer is not designed to accept such kind of behavior. In
addition, the alert message is send to the User before the addition
of bonus. Thus, we used the Alt operator that sets the Timer once
for each intercepted timeout event, and it ensures that the alert is
send to the User after consuming the bonus. The use of Uppaal
model checker this time shows that all the desired properties are
satisfied which indicates that the interference is solved. In general,
a composition operator solves an interference if when it is instanti-
ated for two aspects and composed to the system, the interference
disappears. Formally:

DEFINITION 5.4. Given a base system Γ = (AΓ,PΓ) and two
interfering aspects Λ1 = (AΛ1 ,PΛ1), Λ2 = (AΛ2 ,PΛ2), a
composition operator Θ solves an interferences if the following
condition hold:

A′Γ ‖ Θ(Λ1,Λ2) |= PΛ1,Λ2
Γ ∧ PΛ1 ∧ PΛ2

where A′Γ is the process modeling the system after weaving Λ1

and Λ2, and Θ(Λ1,Λ2) denotes the parallel composition of the



Properties for the Airport Base System (Pairport)

Live 1 User(id).Connected --> User(id).Disconnected

Safe 1 A[] not deadlock

Safe 2 A[] ∀(id:IDS),∀(ip:IPS) (User(id).Connected ∧ currentIp(id)==ip ∧ Firewall.enabled(id)) ⇒ User(id).isConnected

Safe 3 A[] ∀(id:IDS) User(id).Connected ⇒ User(id).cl<=validity(id)

Reach 1 E<> User(0).Connected ∧ (∀(id:IDS) id!=0 ⇒ User(id).Connected)

Properties for the Bonus aspect (Pbonus)

Safe 3’ A[] ∀(id:IDS) User(id).Connected ⇒ User(id).cl<=validity(id) + BonusTime

Properties for the Alert aspect (Palert)

Live 2 Use(id).Connected --> User(id).Disconnected ∧ User(id).isAlerted

Safe 4 A[] ∀(id:IDS) User(id).Alerted ⇒ User.cl== validity(id) - AlertTime

Properties for the NetOverloading aspect (PnetOveloading)

Safe 2’ A[] ∀(id:IDS),∀(ip:IPS) (User(id).Connected ∧ currentIp(id)==ip ∧ NetOverloading.isP2P(ip) ∧
NetOverloading.isOverload()) ⇒ !User(id).isConnected

Table 2. Properties of the airport system

processes of Λ1 and Λ2 and the instantiated template Θ for Λ1

and Λ2 as described in Section 4.6.
We should mention here that our example is a large case study.

It is instantiated with three users for the base system and two
users for the extended version. The instantiation of the system with
more users leads to state explosion in UPPAAL. However, in our
example, merely one user is sufficient to detect the interference
of Bonus and Alert, and two users are sufficient to detect the
interference between the Bonus and the NetOverloading aspects.

6. Catalog of operators for aspect composition
In this section we provide seven abstract composition operators
modeled as Uppaal templates. Those templates can be instantiated
for aspects in order to solve their potential interferences. Each pre-
sented operator is given with a short explanation of its applicabil-
ity and a discussion of a motivation example to help users to se-
lect the right composition strategy needed for their cases. This ex-
tendible set of operators forms a first step towards a catalog of pat-
terns for aspect interference resolution. In this paper we describe
seven operators, three of them are used for our case study: Seq,
Alt and Cond. While Seq is used as a default composition strategy
of aspects, Alt solved the interference between the Bonus and the
Alert, and Cond solved the interference between the Bonus and
the NetOverloading aspects.

6.1 Sequential composition operator
The use of the Seq operator is restricted to aspects sharing at least
one join point. The Seq ensures a precedence between aspects, it is
common to several aspect-oriented languages such as AspectJ [9].
In our proposal we adopt the use of the Seq operator as a default
composition strategy for aspects sharing join points. The Seq oper-
ator forwards the intercepted calls common to both aspects to the
first aspect, it waits for its decision to send it to the second aspect.
The call in this case is proceeded when at least one of the aspects
decides to proceed it, otherwise, the service call is skipped. In ad-
dition, the intercepted calls by either aspects are forwarded to their
corresponding aspects only. Figure 10 depicts the template mod-
eling the Seq operator. In the figure, the intercepted call by both
aspects e12? is forwarded to the first aspect (a1 e12?), the deci-
sion of this aspect is saved in a local variable fstAct, then the call
is forwarded to the second aspect (a2 e12?). The call is proceeded
when it is proceeded by the second aspect (proceed a2 e12?) or
it is skipped by it and proceeded by the first aspect. Two other cy-
cles describes forwarding non common service calls to their corre-
sponding aspects (cycles for e1? and e2?).

S0

e12? a1_e12!

a2_e12!

proceed_a1_e12?
fstAct := proceed

proceed_a2_e12?proceed_e12! skip_a1_e12?
fstAct := skip

fstAct = skip
skip_a2_e12?

skip_e12!

e1?a1_e1!

proceed_a1_e1? proceed_e1!

skip_a1_e1? skip_e1!

e2?a2_e2!

proceed_a2_e2? proceed_e2!

skip_a2_e2? skip_e2!

fstAct = !skip
skip_a2_e12?

proceed_e12!

cycle for common intercepted services by a1 and a2 (e12) cycle for intercepted services by a1 (e1)

cycle for intercepted services by a2 (e2)

Figure 10. The Seq template

6.2 Alternate composition operator
The Alt is used for two aspects that need to be executed alternately
on shared join points as shown between the Bonus and the Alert
aspects. Thus for each shared join point, only one aspect behavior
is executed.

6.3 Conditional composition operator
The Cond operator is used for conditional dependency between
aspects. That is the case where one aspect relies on state variables
or any other effects generated from the execution of another aspect.
In that case, both should be applied but the second is executed
only when a condition holds after the execution of the first aspect.
One additional example of that previously presented, is the case
for the LegalAccess aspect that blocks the access to illegal IP
addresses for minors. Since this addresses can be P2P, the manager
may decide to apply the LegalAccess aspect behavior for non first
class customers. In that case, the Cond operator can be used for the
LegalAccess and the NetOverloading.

The Cond operator (see Figure 11) forwards each intercepted
call to the first aspect and maintains a predicate when the action
of the first aspect is received. According to the predicate, the call
is forwarded to the second aspect or the action of the first aspect is
directly taken. The above structure describes the case of two aspects
sharing join points. Another variant of this operator is designed
to consider two aspects with no shared join points, it is shown in
Figure 12. In that variant, the predicate is maintained and stored
when the action of the first aspect is taken on one service call. The
predicate is evaluated later when another service call for the second
aspect is intercepted.
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e12? a1_e12!

proceed_a1_e12?
maintainCond()

proceed_e12!

skip_a1_e12?
maintainCond()

skip_a2_e12?skip_e12!

cond()
a2_e12!proceed_a2_e12?

!cond()
skip_e12!

!cond() 
proceed_e12!

e1?a1_e1!

proceed_a1_e1? proceed_e1!

skip_a1_e1? skip_e1!

e2?a2_e2!

proceed_a2_e2? proceed_e2!

skip_a2_e2? skip_e2!

cycle for intercepted services by a1 only 
(e1) 

cycle for intercepted services by a2 only 
(e2) 

cycle for common intercepted services by a1 and a2 (e12) 

Figure 11. The Cond template

S0
e1? a1_e1!

proceed_a1_e1?
maintainCond()

skip_a1_e1?
maintainCond()

skip_a2_e2?

proceed_a2_e2?

skip_e1!

!cond()
proceed_e2!

proceed_e1!

e2?cond()
a2_e2!

proceed_e2!

skip_e2!

cycle for intercepted services by a2 only (e2) cycle for intercepted services by a1 only (e1)

Figure 12. The Cond template (variant)

6.4 Fst composition operator
The Fst operator can be used when two aspects are mutually ex-
clusive. This appears when two aspects implement two contradic-
tory behaviors or two different algorithms for the same problem.
In addition, the Fst can be used for inclusion relation between as-
pects, this appears when all the properties of one aspect are satis-
fied when another aspect is applied. Take for example the case of
another aspect that blocks P2P access for non first class customers
when the system is overloaded. This property is satisfied by the
NetOverloading aspect version presented in this paper. In that
case, there is no reason to apply this new aspect when the former
is applicable. One more applicability case of the Fst operator is to
hide some actions of aspects on specified join points.

S0
e? a1_e!

proceed_a1_e?proceed_e!

proceed_e2!

skip_a1_e?skip_e!

e2?

cycle for common intercepted services by 
a1 and a2 and a1 only (e) 

cycle for intercepted 
services by a2 only (e2) 

Figure 13. The Fst template

The Fst operator forwards the intercepted calls common to
both aspects and those only intercepted by the first aspect to the
first aspect only, and all the calls intercepted by the second aspect
are directly proceeded. Thus, only the first aspect is executed and
the second aspect is never called. Figure 13 depicts the template
modeling the Fst operator. In the figure, the intercepted call e?
represents an intercepted service call by either the first aspect only
or by both aspects. These calls are send to the first aspect only
a1 e! and the operator waits for the decision of the aspect and
forwards it. The intercepted call e2? which is intercepted by the
second aspect only is directly proceeded (proceed e2!).

6.5 And composition operator
The And is used for the case where two aspects complement each
other and should only be executed in a specific order otherwise a
conflict appears. The And operator is used to proceed calls only
when it is proceeded by both aspects and skips it when one of the
aspects skips it. Consider for example the case of a LimitAccess
aspect that counts the number of users being accessing to specific IP
addresses and blocks the access to those addresses of the number
exceeds a threshold number. Since the NetOverloading aspects
block the access to P2P addresses when the system is overloaded,
the LimitedAccess should not count the skipped requests by the
NetOverloading aspect, otherwise the result number becomes
erroneous.

S0

e12? a1_e12! proceed_a1_e12?

proceed_e12!

skip_a1_e12?

skip_a2_e12?skip_e12!

a2_e12!proceed_a2_e12?

skip_e12!

e1?a1_e1!

proceed_a1_e1? proceed_e1!

skip_a1_e1? skip_e1!

e2?a2_e2!

proceed_a2_e2? proceed_e2!

skip_a2_e2? skip_e2!

cycle for intercepted services by a1 only 
(e1) 

cycle for intercepted services by a2 only 
(e2) 

cycle for common intercepted services by a1 and a2 (e12) 

Figure 14. The And template

6.6 Cflow composition operator
The Cflow is used for strongly dependent aspects. This appears
when the execution of one aspect is based on a set of previously
intercepted calls and the action taken by another aspect for those
calls. Take for example, a Security aspect that provides an ad-
ditional security code for logging and skips the intercepted login
request if the entered security code is not correct. Also consider a
CheckLogin aspect that automatically disconnects the user from
the server for three successive rejected login requests. These lat-
ter aspect, requires information about the history of the login re-
quests for each user. Thus the execution of the CheckLogin aspect
is based on the actions taken by the Security aspect. The template
of this operator is not shown here for space limitation.

7. Related Work
Interference detection and resolution is still a challenge for both
features [12] and aspects [13]. However, few works are dedicated to
analyze aspect interferences and composition in component mod-
els. In particular, JAsCo [14] is an aspectualized component model
and it provides an API to compose aspects in a programmatic way.
But no interference detection support is provided. LEDA is a com-
ponent framework and AspectLEDA [15] is its extension with as-
pects. Aspects in LEDA are represented by regular components and
aspect execution is ordered following a predefined priority order.

Current works on features are focussing on domain specific
interferences. For example, Gouya et al. [16] propose an algorithm
for feature interactions in IP multimedia subsystem (IMS). The
algorithm uses a predefined interference rules based upon traces
on service calls. Some of these interferences with their solutions
are defined in a database, if the interference is not in the database,
it is reported to the user.

Several works are dedicated to aspect interference analysis in
AOP. For example, Goldman et al. [17] model the base program, the



aspects, and the woven system with state machines in order to for-
mally check properties. Their weaving process is implemented by
inlining the aspect state machine directly in the base system. More-
over, they focus on LTL and use two kinds of properties. First, they
check if the base system satisfies aspect assumptions that enable
their weaving. Second, they check if the woven system guarantees
the expected behavior of aspects. The limitations of this approach
are: they weave an aspect at a time and they only consider weakly
invasive aspects. Moreover, when an interference is detected (i.e. a
property is not satisfied) the programmer is responsible to fix it:
they do not provide composition operators. Krishnamurthi et al.
[18] also use state machines to model both aspects and base sys-
tems. However, the proposed approach defines a state machine for
each advice. Moreover, the work is limited to treat aspects that do
not modify data variables of base systems. Temporal logic has pre-
viously been used by Katz et al. [19] to describe the expected be-
havior of aspects. In this work, a semi-automatic interactive process
is proposed to define the assume-guarantee properties of aspects
in LTL formulas. Aspect interferences are checked independently
of any base system by checking their guaranties properties. At the
weaving stage, another check should be performed to show if the
base system satisfies the assumptions of all the aspects to be woven.
In [20] advices are annotated with assumptions about their compo-
sition. Interferences are detected by matching the assumptions of
an advice and all the other advices. Finally, we should mention that
our current proposal is a byproduct of our previous work on as-
pect interference detection and resolution [21] and formalization
of aspects in a concurrent context [22]. The first work focuses on
interferences at shared join points and introduces composition op-
erators. The second models the woven system as FSP processes and
checks properties with LTSA.

8. Conclusion
In this article, we have shown how to formally analyze aspect in-
terferences in the context of component-based systems. First, a sys-
tem is specified in a architecture description language (ADL) where
primitive component behaviors and aspects are specified in UP-
PAAL. Second, we have detailed a transformation scheme from the
ADL to UPPAAL generating a formal model of the complete sys-
tem that can be model checked. In particular this makes it possible
to check whether the base system properties are violated by aspects
and whether the desired properties of aspects are violated by as-
pect interferences. Third, our aspect advices explicitly return either
proceed or skip. This enables us to define composition operators for
aspects. We have proposed several operators and discussed how our
approach makes it easy to define new ones. We have also formally
model these operators. This makes it possible to check whether a
composition of aspects solves the interferences among them. We
have illustrated our approach with different extension scenarios for
a wireless Internet system for airports. Note that our approach is
not component model dependent. We have already shown how it
can be applied to Fractal [5] and we plan to apply it to other mod-
els. This may require few adaptations (e.g., Sofa [23] will require to
extend our transformations in order to take into account component
connectors for enabling several communication styles).
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“The fractal component model and its support in java,” Software-
Practice and Experience, vol. 36, no. 11-12, pp. 1257–1284, 2006.

[5] A. Hannousse, R. Douence, and G. Ardourel, “Composable controllers
in fractal: Implementation and interference analysis,” in proceedings
of the 37th EUROMICRO Conference on Software Engineering and
Advanced Applications. IEEE Computer Society, to appear, 2011.

[6] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in
SFM-RT, ser. LNCS, no. 3185. Springer-Verlag, 2004, pp. 200–236.
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