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Abstract—We address the problem of optimistic replication for 

collaborative text editing in Peer-to-Peer (P2P) systems. This 

problem is challenging because of concurrent updating at 

multiple peers and dynamic behavior of peers. Operational 

transformation (OT) is a typical approach used for handling 

optimistic replication in the context of distributed text editing. 

However, most of OT solutions are neither scalable nor suited 

for P2P networks due to the dynamic behavior of peers. In this 

paper, we propose a scalable P2P reconciliation infrastructure 

for OT that assures eventual consistency and liveness despite 

dynamicity and failures.  We propose a P2P logging and 

timestamping service called P2P-LTR (P2P Logging and 

Timestamping for Reconciliation) which exploits a distributed 

hash table (DHT) for reconciliation. While updating replica 

copies at collaborating peer editors, updates are stored in a 

highly available P2P log. To enforce eventual consistency, these 

updates must be retrieved in a specific total order to be 

reconciled at the peer editors. P2P-LTR provides an efficient 

mechanism for determining the total order of updates. It also 

deals with the case of peers that may join and leave the system 

during the update operation. We evaluated the performance of 

P2P-LTR through simulation; the results show the efficiency 

and the scalability of our solution.  

Keywords- Optimistic replication; reconciliation; P2P 

systems; distributed hash tables; collaborative text editing 

I.  INTRODUCTION 

Collaborative applications are getting common as a result 
of rapid progress in distributed technologies like the Web 
2.0. Building these applications on top of P2P networks has 
many advantages: decentralization, self-organization, 
scalability and fault-tolerance. One of the main types of 
collaborative applications is collaborative text editing, e.g. 
the wikis that are actually very popular editors. Generally, 
the wiki systems are built over the traditional centralized 
architecture where the whole set of pages of a wiki reside on 
a single server. Consequently, in the case of failure or offline 
work, data are unavailable. Moreover, the system does not 
scale easily. This is why recently there have been some 
efforts to shift the wikis to fully decentralized systems 
relying on P2P networks, e.g. XWiki [27] that is a second 
generation wiki working over a P2P network. However, 
providing data consistency in the presence of concurrent 
updates on the same data is quite challenging in these 

systems due to the dynamicity of peers and the scalability 
and fault-tolerance requirements. 

In a P2P text editing application, users need to work on 
shared documents even though they are disconnected from 
the network, e.g. in a train or another environment that does 
not provide good network connection. This requires that 
users hold local replicas of shared documents. This is a 
typical case of collaborative applications that requires 
optimistic replication to assure data availability at anytime. 
Optimistic replication [21] is a well known and efficient 
solution for multimaster replication.  It allows asynchronous 
updating of replicas so that applications can progress even 
though some nodes are disconnected. This enables 
asynchronous collaboration among users. However, 
concurrent updates may cause replica divergence and 
conflicts, which should be reconciled to enforce that replicas 
converge to the same state, property known as eventual 
consistency. In this paper, we propose a new infrastructure 
for P2P timestamping and reconciliation, that may be useful 
for different types of P2P collaborative applications, 
however to be able to express the functionalities of our 
infrastructure, we focus on P2P collaborative text editing 
applications. 

Operational transformation (OT) [14] is one of the main 
distributed frameworks used for handling optimistic 
replication in the context of distributed text editing 
applications.  The two most important aspects of OTs is that 
they are generic, i.e. they can handle different types of data 
(text, multimedia, etc), and it uses a set of generic operation 
transforms for reconciliation. However, to ensure eventual 
consistency during reconciliation, all involved operations 
must be stamped in continuous total order (timestamps 
values are integer ascending order). One well known OT 
solution [14] uses a centralized timestamp server to stamp 
operations (update, insert…) which limits scalability and 
may block in case of failures, or introduce bottlenecks.  
Besides, the size of the log used by OT at the timestamp 
server tends to be hudge and may be unmanageable in a 
single node.  P2P solutions for text editing [2][13][16] are 
not generic as OT or are quite complex in practice.  

Thus, an important challenge in P2P text editing 
applications is to provide a complete P2P solution facing the 
following problems: eventual consistency management, 
decentralized timestamper service, large scale and consistent 
log management. In this paper, we propose a new scalable 



P2P logging and timestamping infrastructure called P2P-
LTR (Logging and Timestamping for Reconciliation). In our 
solution, replica copies are optimistically updated at 
collaborating peer editors, even if disconnected.  To enforce 
eventual consistency, a necessary condition is that updates 
must be applied in a continuous total ordered during 
reconciliation [21] at each peer editor. Whenever a 
timestamp value is established and valid for an update, then 
the timestamped update is stored in a P2P Log, in our case 
over a distributed hash table (DHT), to be available for the 
other peer editors. Thus, using the P2P Log, each peer editor 
may retrieve concurrent updates in total order to be able to 
reconcile locally. 

Providing total order despite failures and dynamic 
behavior of peers is one of the major challenges of P2P-LTR 
which we address in this paper. P2P-LTR infrastructure 
provides the following capabilities: (a) a scalable P2P 
continuous timestamp protocol for managing timestamps in a 
DHT that assures eventual consistency and liveness; (b) a 
highly available log (P2P-Log) for storing timestamped 
updates; and (c) a retrieval mechanism that retrieves the 
timestamped updates in timestamp order to assure eventual 

consistency [21]. To validate P2P-LTR, we implemented it 
using two popular DHTs: OpenChord [15] and Free Pastry 
[8]. Moreover, we simulated our algorithms, and the 
performance evaluation results show the efficiency and 
scalability of our solution. 

Our work has been done in the context of the XWiki 
Concerto project [27] for collaborative P2P editing. The rest 
of this paper is organized as follows. In Section 2, we present 
the main terms and concepts used in this paper, and we give 
the problem statement. In Section 3, we describe P2P-LTR’s 
model and its main algorithms. In Section 4, we propose a 
complete solution for dealing with peers’ dynamic behavior. 
Section 5 presents our performance evaluation. In Section 6, 
we discuss related work. Section 7 concludes.  

 

II. MAIN CONCEPTS AND PROBLEM DEFINITION 

In this section, we first introduce some terms and 
concepts that constitute the basis of our work. Then, we state 
the problem we address in this paper.  

A. Main Concepts and Assumptions 

A replica is a copy of a document D. We assume 
optimistic multimaster replication, i.e. multiple primary 
copies of a document D, noted D1, D2, …, Dn, are stored at 
different peers for reading and writing. Most of the 
optimistic replication solutions [21] assures eventual 
consistency among replicas, i.e. if all users stop updating the 
replicas (e.g. after a time t), eventually all replicas converge 
to the same state [21].  

P2P-LTR manages the operations in the form of patches. 
A patch is the unit of reconciliation that corresponds to a 
sequence of update operations (insert, update, delete) 
generated when saving a document in a text editor. Once 
these patches are stamped in a continuous timestamp 

order, they are used for reconciliation by the integration 
algorithm of OT solution based on the transformation 
functions proposed by [14] for text reconciliation.  

To be able to express the functionalities and properties of 
our infrastructure we focus on P2P collaborative text editing 
using OTs.  

For reconciliation management, P2P-LTR timestamps the 
patches and enforces the continuous timestamp order 
property: for any two timestamps ts1 and ts2 generated for a 
document respectively at times t1 and t2, if t1 < t2 then we 
have ts1 < ts2 and for two consecutives timestamps values, 
say ts1 and ts2, ts2 = ts1 + 1. Notice that if tsi < tsj   then we 
say that tsi is previous wrt to tsj or we can alternatively say 
that the update operation timestamped with tsi is previous wrt 
to the patch timestamped with tsj.    

P2P-LTR is built over a DHT (distributed hash table) 
overlay [20][23]: peer identifiers are chosen from an 
identifier space. Based on these identifiers, data placement is 
typically determined by a hash function which maps data 
identifiers to peer identifiers. That is, every patch (or any 
type of object) receives an unique identifier or key, and the 
peer with the identifier closest to the patch key is responsible 
for storing the key and its associate patch using the put(key, 

patch) primitive. When a client looks for a patch using the 
get(key) primitive, it contacts any peer in the DHT and the 
request is routed through the DHT ring until the peer with 
the identifier closest to the patch key is found. For simplicity, 
we assume the reliability of the DHT. 

A tentative patch corresponds to a patch whose timestamp 
value is not assured to be in continuous timestamp order with 
respect to concurrent tentative patches on the same 
document. A tentative patch is valid if and only if its 
timestamp value is in continuous timestamp order. It can 
then be safely used by a set of transformation functions to 
perform reconciliation. 

Our network model is semi-synchronous (falls between 
asynchronous and synchronous model), similar to the ones 
proposed in [1][12][13] and we assume no network 
partitions. 

B. Problem Definition 

The main challenges in designing a  P2P  infrastructure 
for collaborative text editing is to decentralize reconciliation 
assuring: (a) eventual consistency (imposes that patches are 
valid) despite dynamicity and failures  (b)  scalability, to 
support  massive optimistic  multi master replication  (c) a 
reliable distributed log, which is used for reconciliation (d) 
and liveness  (non blocking protocols). 

III. P2P-LTR CAPABILITIES 

In this section, we first present the P2P-LTR model with 
respect to how peers collaborate to handle patch validation. 
Then, we present our algorithm used to validate patches. 
Finally, we describe how P2P-LTR ensures eventual 
consistency among replicas. 



A. P2P-LTR Model 

P2P-LTR is built over a DHT network. DHTs [20][23] 
provide a scalable solution for data location and lookup in 
large-scale P2P systems. All DHT systems have a simple 
distributed storage interface. Currently our solution is built 
over a DHT system based on Chord [23] or Pastry [20]. 

In P2P-LTR, each peer of the DHT may have four 
different roles: • User Peer: implements the user application (denoted 

by u) that holds primary copies (in our case, 
documents). When a tentative patch on D is captured 
at u it is afterwards timestamped in continuous 
timestamp order. To accomplish this, the involved 
user peer must interact with a peer responsible for 
generating timestamp for D, called Master-key. By 
taking into account concurrent updates on D, a user 
peer may need to retrieve previous published patches 
at the Log-peers.  • Log-Peer: peer that is responsible for holding a 
valid timestamped patch w.r.t to a document. • Master-key Peer: responsible for generating 
continuous timestamps for a document D. Each 
document is identified by a key value by hashing the 
document name. Using this key, the user peer locates 
the Master-key using a specific hash function hts. 
When a tentative patch is validated, the Master-key 
publishes the timestamped patch in the P2P-Log at 
specific Log-Peers. For this, the Master-key peers 
must provide a set of pairwise independent hash 
functions Hr= {h1, h2, …, hn} which we call 
replication hash functions, used for implementing 
patch replication in the DHT. For a given key, the 
Master-key peer assumes the responsibility of 
sustaining the last timestamp value (denoted by 
last_ts) and mediating between concurrent updates. • Master-key Succ: holds a copy of last_ts and 
replaces the Master-key in case of failures.  

 

B. P2P-LTR Algorithm 

In our model, each user peer has a local primary copy of 
the document. When u1 updates a specific document D, the 
generated patch is considered as a tentative patch because its 
timestamp number is still not validated. The validation 
procedure consists of providing a continuous timestamp 
value to the new patch considering concurrent updates on the 
same document D, performed by other user peers (master of 
the same document). Since updates may be done 
concurrently, it may happen that a user generates new 
tentative patch without knowing that previous validated 
patches on the same document D are available at the P2P-
Log. The patch timestamp validation procedure is done by 
contacting the Master-key of D.  

To handle validation, at each user peer, each document 
has an associated local timestamp value (denoted by ts). 
Recall that the Master-key holds the last timestamp (denoted 
by last_ts) provided for the same document.  

Thus, for a given document D, user peer u1 first contacts 
the corresponding Master-key and asks it to publish the patch 
with the timestamp value ts (Lines 1-3, Algorithm 1). The 
Master-key of the document D is determined by applying a 
hash function ht on D, and is located by using the lookup 
service of the DHT. If the Master-key’s local timestamp 
value (last_ts) is equal to ts, then the Master-key increments 
by one last_ts value, and confirms the user peer u1 that it will 
trigger the patch replication procedure. Then, the Master-key 
replicates the patch in the P2P-Log (at the Log-Peers) and 
acknowledges u1, with a message containing the validated 
timestamp value (Lines 16-22, Algorithm 1). 

In order to avoid having a big difference between the 
replicas on which the users are working, the users 
periodically check for new validated patches published by 
other users, e.g. each δ time units. If such patches exist they 
must be retrieved and locally integrated (Lines 6-7, 
Algorithm 1).  

If the Master-key local timestamp value (last_ts) is 
greater than ts, this means that there are previous validated 
patches, which are generated by other users and must be 
integrated in u1’s document D.  To accomplish this, u1 must 
perform the retrieval procedure to get all missing patches in 
continuous timestamp order. Afterwards, u1 restarts the 
timestamp validation procedure again until last_ts value is 
equal to ts value (see Lines 8-13, Algorithm 1). 

To manage concurrent patch timestamp validation on the 
same document, the corresponding Master-key serves each 
user peer sequentially. That is, a new timestamp ts value for 
a given document D is provided after the replication of the 
previous timestamped (ts-1) patch on D. 

 

 
Figure 1.  P2P-LTR publish Patch process 



C. Eventual Consistency 

In this section, we illustrate how eventual consistency is 
guaranteed by P2P-LTR. For this, we show that if all users 
stop publishing patches (e.g. after a time t), eventually all 
replicas converge to the same state. Therefore, any new user 
who joins the system will see the same state of the document 
reflecting all modifications published before t.  

Assume there are k users maintaining a replica of a 
shared document D, and u1 be the user who has committed 
the last update. We show that if there are no new updates 
then all replicas converge to the same state as that of u1. Let 
u2 be a user that maintains a replica of document D. The user 
u2 has one of the following situations: 1) after t, at least once 
he has got disconnected from the system; 2) after t, always 
he has been connected to the system. For each of these cases, 
we show that the document of u2 eventually converges to that 
of u1.  

Let us first discuss the first case. In this case, when u2 
reconnects, he calls the last-ts(key) operation. Then, he 
compares the last timestamp last_ts generated by the Master-
key peer with its local timestamp value ts. If last_ts is equal 
to ts, it means that there have been no committed patches 
during the absence of u2. Otherwise (i.e. last_ts ≠ ts), u2 
retrieves all missing patches in continuous timestamp order 
and integrates them to its local document by using 
transformational approach. Thus, the state of its document 
becomes equal to that of u1. 

For the second case, i.e. u2 has been always connected, 
recall that the users periodically check for the existence of 
missing patches in the DHT, i.e. each δ time units. If such 
patches exist, they are retrieved and locally integrated to the 
local replica at most after a time t’≤ δ + t. Thus the 
document of u2 eventually converges to that of u1. 

IV. DEALING WITH PEERS’ DYNAMIC BEHAVIOR IN P2P-
LTR 

One of the main characteristics of P2P systems is the 
dynamic behavior of peers. In this section, we discuss how 
P2P-LTR deals with this P2P dynamic behavior. First, we 
consider the cases where a new Master-key peer joins or the 
current one leaves the system normally, i.e. without failing, 
and propose strategies by which P2P-LTR deals with these 
cases. Then, we address the situations where the Master-key 
peer failure. 

A. Master-key Peer’s join and leave  

The Master-key peer of a key k can dynamically change 
due to the join/leave of peers to/from the DHT. 

1) Join 
This scenario focuses on the cases where a new peer 

joins the system and becomes Master-key for certain keys. In 
these cases, the joining peer triggers the DHT’s stabilization 
procedure, which is used to keep nodes’ successor pointers 
up to date in the DHT and to maintain the routing tables of 
all nodes, which is sufficient to guarantee correctness of 
lookups [23]. P2P-LTR sets up an event interrupter in the 
DHT’s stabilization procedure. Using the event interrupter, 
P2P-LTR can get aware of the modifications in the topology 

of the DHT network. When the stabilization procedure is 
invoked, the event interrupter calls a P2P-LTR’s function 
that is responsible for determining the new Master-key peer 
and its successor. Therefore, our system can monitor the 
events of join and leave produced at DHT layer and maintain 
automatically the list of keys and timestamps on P2P-LTR 
layer.  

Once the stabilization of the DHT is completed, P2P-
LTR assures that the old Master-key transfers its timestamps 
(if any) to the new Master-key. Let p and q be two peers, K 
the set of keys for which q is the current Master-key and p is 
a new peer that joins the system and becomes Master-key for 
some keys K’⊆ K. Once q reaches the end of its 
responsibility for the keys involved in K’ (i.e. when p joins 
the system), it first sends to p all the timestamps that have 
been generated for the keys involved in K' and then modifies 
its role towards these keys from Master-key to Master-key-
Succ.  

Let L be an empty set of pairs (key, timestamp), q 
performs the following instructions at the end of its 
responsibility: 

for each k ∈ K do 

if (k ∈ K’) then 

L.add(k, tk); 

Send L to p; 
Before receiving the timestamps from q, the peer p 

generates no timestamp for the keys involved in K’. So, P2P-
LTR produces timestamps only if the DHT is stabilized. 
Therefore, any publish patch request received at the time of 
stabilization is rejected, while sending a message to the 
requester indicating that the system is executing the 
stabilization procedure. 

As an illustration of a new Master-key peer join, consider 
the configuration of the P2P-LTR system shown in Figure 2. 
Assume that new peer P0 joins the system and becomes the 
new Master-key peer of the key k2. Figure 3 shows the new 
configuration of the system after the join operation, where P2 
transfers k2 and t2 to P0. Consequently the new configuration 
of the peers P0 and P2 becomes: 

- P0 becomes Master-key of k2 and Master-key-Succ 
of k1 

- P2 becomes Master-key-Succ of key k1 

 
Figure 2.  Initial configuration of P2P-LTR 



 

Figure 3.  Configuration after the join of P0 

2) Departure 
When a Master-key peer leaves the system normally, it 

transfers its keys and timestamps to its Master-key-Succ 
peer. Notice that, like the join event, the departure of a node 
triggers the DHT stabilization. Therefore, using the event 
interrupter, P2P-LTR can detect the departure event. Once 
the stabilization is completed, the set of keys and timestamp 
values of the previous Master-key are sent to its successor 
that becomes the new Master-key peer and to another peer 
that becomes the new Master-key-Succ. Let q and p be two 
peers, and K’ be the set of keys for which q is the current 
Master-key and p is the Master-key-Succ, i.e. the next 
responsible of timestamping. Once q reaches the end of its 
responsibility for the keys in K’, i.e. when it leaves the 
system, it sends to p all the timestamps that have been 
generated for the keys involved in K’. Consequently, p 
modifies its role towards the keys from Master-key-Succ to 
Master-key and sends these keys with its timestamps to its 
successor. Let Rolep,k be the role of the peer p towards the 
key k. The peer p performs the following instructions: 

for each k ∈ K’ do 

Rolep,k = Master; 

Send (k,k.timestamp) to p.successor; 

end;  
Before receiving the timestamps from q, the peer p 

generates no timestamp for the keys involved in K’. 
As an illustration of a Master-key peer departure, 

consider the initial configuration of the P2P-LTR system 
shown in Figure 2. Assume that P1 leaves the system 
normally and notifies P2 which becomes the new Master-key 
peer of the key k1. Figure 4 shows the new configuration of 
the system after the leave operation, where P2 modifies its 
role towards k1 from Master-key-Succ to Master-key and 
replicates k2 and t2 to P3 (i.e. its successor). Consequently the 
new configuration of the peers P2 and P3 becomes: 

- P2 becomes Master-key of k1 and k2 

- P3 becomes Master-key-Succ of key k1 and k2 

 
Figure 4.  Handling Master-key peer departure 

B. Failure Handling 

Let us now study the effect of peer failures on P2P-LTR 
and discuss how they are handled. With peer failure, we 
mean that a peer disappears from the system without 
notifying other nodes in the system, e.g. it failures. We show 
that no peer failure can block our publish patch algorithm. 
We also show that even in the presence of these failures, 
P2P-LTR guarantees continuous timestamping. For this, it is 
sufficient to show that each generated timestamp is stored 
together with a patch in the DHT before generating the next 
timestamp or it is aborted. 

1) Assumptions 

Let us first describe the assumptions that we make in our 
work.   • Assumption 1. (failure detectors): In order to detect 

Master-key failures, we assume the existence of 
failure detectors [5] which can be installed at each 
peer in order to monitor the Master-key peer. 

• Assumption 2. (log-peer availability): Let T = [t1, 

t2] be a time interval such that t1 and t2 are the 
times at which the system starts and ends 
respectively. At any time t∈T at least one of the 
peers, which are responsible for holding the patch, 
is available in the system. Formally, let D be a 
document, and nt the number of the peers that are 
available at time t and hold a valid patch for D. 

Then, we assume that:∀ t∈T => (nt ≥1) 

• Assumption 3. (reliable message): We assume the 
presence of reliable message transmission between 
different peers of the system. 

• Assumption 4. (correct lookup service): Like 
several other protocols and applications designed 
over DHTs, e.g. [4], in our work we assume that 
the lookup service of the DHT behaves properly. 
That is, given a key k it either finds correctly the 
responsible for k or reports an error, e.g. in the case 
of network partitioning where the responsible is not 
reachable. 

2) Dealing with the Failure of Master-key 
To make P2P-LTR resilient to Master-key failures, we 

modify our patch distribution algorithm, which we proposed 
in Section III, as follows. After receiving the publish patch 



request from a peer p and checking the timestamp value, the 
Master-key peer replicates the patch in the log-peers and 
waits for a confirmation message from log peers. Whenever 
a log-peer receives a patch from the Master-key, it sends a 
reliable message to the Master-key peer to confirm the 
reception of the replica. If at least N confirmation messages 
are received by the Master-key peer (while N < nt is a system 
parameter), it sends an ack message to peer p, i.e. the publish 
patch requester, in order to validate the tentative patches. 
Otherwise, it sends an abort message to p, to indicate that the 
operation was not done successfully, so p should try again.  

The behavior of the Master-key peer can be modeled by 
the Finite State Machine (FSM) [7] shown in Figure 5. A 
state machine is a model of system behavior composed of a 
finite number of states, transitions between those states, and 
actions. 

Below, we discuss how P2P-LTR tolerates the failures in 
each state of this machine. A failure of a Master-key may 
happen in one of the following states: • Failure in the patch reception state (S1). In this 

case, the Master-key peer fails just after receiving 
the publish patch request. Since we use a failure 
detector at requesting peer p, it detects the failure 
of the Master-key peer, and the publish request is 
aborted. Similarly, the failure detector at the 
Master-key-Succ detects the failure and then that 
peer becomes the new Master-key. Therefore, in 
the case of failure in this state, the protocol does 
not block and continuous timestamping is assured, 
i.e. because no publish patch tentative is 
performed. 

• Failure in the timestamp generation state (S2). 
In this state, like in the previous one, the failure 
detector at requesting peer p detects the failure of 
the Master-key peer, and the publish request is 
aborted. Similarly, the failure detector at the 
Master-key-Succ detects the failure and then that 
peer becomes the new Master-key. Therefore, as in 
the previous state, continuous timestamping is 
assured. 

• Failure in the patch replication state (S3). If the 
Master-key peer fails in this state, a fail message is 
sent to peer p to indicate the fail of publish patch 
tentative. Since the fault detectors installed at Log-
Peers detect the fail of the Master-key, they simply 
discard the received patch. After a while, the 
successor of the former Master-key becomes 
Master-key peer. In this state, like in the previous 
one, the protocol does not block and continuous 
timestamping is assured, i.e. because the timestamp 
which is generated by the failed responsible, is 
aborted.  

• Failure in the last_ts replication state (S4). If the 
Master-key fails in this state, a fail message is sent 
to the peer p to indicate the failure of Master-key. 
The successor of the former Master-key becomes 

the new Master-key of the document. Using the set 
of replication hash functions, the new Master-key 
sends a message to the Log-Peers to ask them 
whether they received the patch. If at least N 
positive responses are returned, the Master-key-
Succ sends an ack message to p to indicate the 
success of the publish patch operation. Otherwise, 
it sends an abort message to p. In this state, as in 
the previous state, continuous timestamping is 
assured.   

Lemma 1. If during the execution of our protocol the 
Master-key peers fail, the protocol does not block and 
guarantees continuous timestamping. 

Proof. Implied by the above discussion. 

Master-key-peer

S0

Initial state

Final state

S1: Patch 

reception

Receive publish patch

 request (k, patch, ts)

Failure

Failure event 

S2: 

Timestamp 

generation

Generate timestamp for k

S3: Patch 

replication

Condition: Last_ts = ts

Failure event Condition: #Ack < N

S4: last_ts 

replication

Condition:  #Ack ≥ N

Failure event Send commit messages 
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Figure 5.  Master-key peer state transition machine 

V. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of our P2P-
LTR system through simulation using the PeerSim simulator 
[18]. This section is organized as follows. First, we describe 
our simulation setup, the metrics used for performance 
evaluation and the baseline service used for comparison with 
P2P-LTR. Then, we study the effect of the average number 
of users on the performance of P2P-LTR, and show how it 
scales up. Next, we study the effect of the number of replicas 
and the frequency of updates on the performance of P2P-
LTR. Then, we investigate the effect of peer failures on the 



correctness of P2P-LTR. Finally, we summarize the main 
results.  

A. Simulation Setup 

Our simulation is based on Chord which is a simple and 
efficient DHT. Chord's lookup service [23] is robust in the 
face of frequent node failures, and it can answer queries even 
though the system is continuously changing. 

We implemented our simulation using the PeerSim 
simulator [18]. PeerSim is a Java based simulator 
specifically tailored for P2P protocol simulations. It consists 
of configurable components. It has two types of engines, 
cycle-based and event-driven. It provides different modules 
that manage the overlay building process and the transport 
characteristics. 

Our simulation parameters are shown in Table 1. The 
latency between any two peers is a normally distributed 
random number with a mean of 200 ms. The simulator 
allows us to perform tests up to 10 000 peers. In our 
experiments, at each time T = 30 second, each user selects 
one document who modifies and tries to publish patches on 
the DHT. The default number of shared documents for each 
user is 10. The default average number of users who work on 
the same document is 5. The default average rate for publish 
patch events is α = 1 every 2mn. In our tests, the number of 
replicas of each data is 10, i.e. ⎪Hr⎪=10. 

TABLE I.  EXPERIMENTAL PARAMETERS 

Parameters Values 

Latency Normally distributed random 
number, 
Mean = 200 ms, Variance = 100 

Network size 10 000 peers 
Number of Log peers for each data 10  
Number of shared documents for 
each user 

10 

Update and publish patch 
generated on each replica 

Timed by an uniform random 
process,  Mean = 2 per minute 

Fails rate 2% 

 
In our tests, we compare the performance of P2P-LTR 

with So6*, a variant of So6 [14] that replicates the shared 
data in the DHT to improve data availability. So6* uses a 
central timestamper to determine the total order of the 
operations done on the data.  

In our tests, we measured the performance of publishing 
and retrieving patches in terms of response time. By response 
time, we mean the time needed to publish the patch 
generated after an update.   

B. Scalability 

In this section, we study the scalability of P2P-LTR. For 
this, we study the effect of the average number of users per 
document on performance of P2P-LTR. 

Figure 6 shows the response time of the patch publish 
operation with the average number of users increasing up to 
30 users per document and the other simulation parameters 
set in Table 1. The average number of users working on the 
same document has a very slight impact on the response time 
of P2P-LTR which means an excellent scalability w.r.t. the 

numbers of users. When the number of users per document is 
more than 15, the response time of P2P-LTR is better than 
So6*. The higher is the number of users per document, the 
more is the factor by which P2P-LTR outperforms So6*. The 
reason is that with So6*, the timestamp generation and patch 
publication for all documents are performed by only one 
peer. In contrast, with P2P-LTR the responsibility of 
timestamp generation and patch storage are completely 
distributed over different peers of the DHT. 
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Figure 6.  Response time vs. number of users. 

Using the simulator, Figure 7 depicts the total number of 
messages while increasing the number of user peers per 
document up to 300, with the other simulation parameters set 
as in Table 1. The results show that the communication cost 
for P2P-LTR and So6* increases linearly with the number of 
user peers. However, the communication cost of P2P-LTR is 
a little bit higher than that of So6*. The reason is that P2P-
LTR performs multiple lookups in the DHT for finding the 
Master-key of each document. Notice that each lookup needs 
O(log N) messages where N is the number of peers of the 
DHT. This slight increase in communication cost of P2P-
LTR is the price to pay for guaranteeing continuous 
timestamping and making our solution more resilient to the 
failure cases. 
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Figure 7.  Total number of messages vs. number of users per document. 

C. Effect of the Number of Replicas 

In dynamic systems, we need many replicas to guarantee 
high data availability. We now study the effect of the number 



of replicas, which we replicate for each patch in the DHT (in 
the Log-peers), on the performance of P2P-LTR and So6*. 

Using our simulator, we studied how response time 
evolves while increasing the number of replicas, with the 
number of users per document is 15 and with the other 
simulation parameters set as in Table 1. The results (see 
Figure 8) show that increasing the number of replicas for 
P2P-LTR and So6* decreases the response time for 
publishing patches. The reason is that if we increase the 
number of replicas the average time for finding the missed 
patches decreases. Thus, the response time of the publish 
patch operation decreases. However, the response time of 
P2P-LRR is better than So6*. As explained before, the 
reason is that with So6*, the timestamp generation and patch 
publication for all documents are performed by only one 
peer. 
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Figure 8.  Response time VS number of log-peers. 

D. Effect of Update Frequency on Response Time 

In this section, we study the effect of the frequency of 
updates on the performance of P2P-LTR and So6*. In the 
previous experiments, updates on each data were timed by a 
random process with an average rate of 2 updates per minute. 
In this section, we vary the average rate (i.e. frequency of 
updates) and investigate its effect on response time. 

Using our simulator, Figures 9 shows how response time 
evolves while increasing the frequency of updates with the 
other simulation parameters set as in Table 1. The results 
show that the response time of P2P-LTR decreases by 
increasing the frequency of updates. The reason is that an 
increase in the frequency of updates decreases the distance 
between the time of the current and latest update, thus 
number of missing patches decreases, and this decreases the 
time needed for retrieving the missing patches.  

The response time of P2P-LTR is significantly better 
than So6*. The reason is that with So6*, the operations of 
timestamp generation and storing of timestamped patches for 
all documents are performed by only one peer. Indeed, by 
increasing the frequency of updates the central timestamper 
takes important time to generate timestamp and to publish 
the patches in the DHT.  
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Figure 9.  Publish patches time VS Frequency of updates. 

E. Effect of Peer Failures on Timestamps Continuity 

Let us now study the effect of peer failures on the 
continuity of timestamps used for data updates. In our 
experiments we measure timestamp continuity rate by which 
we mean the percentage of the updates whose timestamps are 
only one unit higher than that of their precedent update. We 
varied the fail rate parameter, and observed its effect on 
timestamp continuity rate. 

Figure 10 shows timestamp continuity rate for P2P-LTR 
and So6* while increasing the fail rate, with the other 
parameters set as in Table 1. The peer failures do not have 
any negative impact on the continuity of timestamps used by 
P2P-LTR, because our protocol assures timestamp 
continuity. However, when increasing the fail rate in So6*, 
the percentage of updates whose timestamps are not 
continuous increases.  In other words, in the presence of peer 
failures, there are gaps in the timestamps used by So6*, so it 
is not suitable for applications that require continuous 
timestamps. 
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Figure 10.  Timestamp continuity vs. fail rate 

F. Concluding Remarks 

In the previous sections, we evaluated the performance of 
P2P-LTR according to the following parameters: the average 
number of users, the number of replicas, the effect of update 
frequency and the effect of failures. In order to evaluate the 
response time (i.e. the time needed to publish a patch), we 



compared P2P-LTR results with the So6* results (variant of 
So6 solution [14]).  

The results show good response time of P2P-LTR since it 
outperforms the So6* solution by a factor around 1.5 when 
30 users concurrently working on the same document (see 
Figure 6).  

The results (see Figure 7) show also that the publish 
patch communication cost of P2P-LTR is linear to the 
number of users who working on the same document. 
However, the communication cost of P2P-LTR is a little bit 
higher than that of So6*. The reason is that P2P-LTR 
performs multiple lookups in the DHT for finding the 
Master-key of each document. Notice that this slight increase 
in communication cost of P2P-LTR is the price to pay for 
guaranteeing continuous timestamping and making our 
solution more resilient to the failure cases. 

In figure 8, the results show that the performance of P2P-
LTR is very good up to 80 Log-peers. However, the number 
of Log-peers can not grow indefinitely due to 
communication overhead. In the figure 9, we investigated the 
effect of frequency of updates on the performance of P2P-
LTR and So6*. The results show that good performance of 
P2P-LTR since it outperforms the So6* solution when the 
frequency of updates up 2.5 updates per minutes. In addition, 
Unlike to So6*, the results show that the response time of 
P2P-LTR decreases by increasing the frequency of updates. 

The latest results (see Figure 10) show that our solution 
works correctly even in the presence of peers failures and 
guarantees the timestamp continuity property. However, 
when increasing the fail rate in So6*, the percentage of 
updates whose timestamps are not continuous increases. 
Therefore, it is not suitable for applications that require 
continuous timestamps. 

VI. RELATED WORK  

Guaranteeing eventual consistency in the presence of 
multimaster replication is a widely researched field. Many 
solutions have been proposed in the context of distributed 
database systems for managing replica consistency [17], in 
particular, using eager or lazy (multimaster) replication 
techniques. However, these techniques either do not scale up 
to large numbers of peers or raise open problems, such as 
replica reconciliation, to deal with the open and dynamic 
nature of P2P systems. 

Distributed version control systems (DVCS) allow many 
users to edit the same documents concurrently. They provide 
the same features as CVS [6] without requiring a central site. 
DVCS do not support the consistency of replicas [3]. There 
are well-known scenarios in which most of DVCS (e.g. Git 
[9]) can not assure the consistency of replicas, see details in 
[3].  

OceanStore [11] is a data management system designed 
to provide a highly available storage utility on top of P2P 
systems. It allows concurrent updates on replicated data, and 
relies on reconciliation to assure data consistency. The 
reconciliation is done by a set of powerful servers using a 
consensus algorithm. The servers agree on which operations 
to apply, and in what order. In the applications, which we 
address, the presence of powerful servers is not guaranteed. 

In our approach, for each data there is an ordinary peer, i.e. 
Master-key peer, that deals with replication management of 
the data, and the Master-key is determined dynamically 
using a hash function. Thus, the load of providing data 
consistency is distributed over all the peers of the system. In 
addition, we use the approach of timestamping which is less 
expensive than consensus.    

Telex [2] is a P2P semantic reconciliation system 
designed for data sharing by distributed collaborative 
applications. Users operate on their local persistent replica of 
shared documents; they can work disconnected and suffer no 
network latency. To detect and correct conflicts, Telex sites 
maintain an Action-Constraint Graph (ACG) [22], i.e. a 
replicated dynamic graph that summarises the concurrency 
semantics of applications. However, the Telex system has a 
main limitation: it suffers from excessive memory 
consumption. The ACG can quickly reach sizes of several 
tens of thousands of nodes, and is accessed concurrently by 
many threads.  

Collaborative editing based on the operational 
transformation approach (OT) [10][19] can be done in a 
decentralized way. There are several algorithms, e.g. GOTO 
[24], SOCT2 [25] and SOCT4 [25], for defining operation 
transformations and detecting concurrent operations. Based 
on these algorithms, many OT services have been developed. 
One of the well known OT services is So6 which is based on 
SOCT4. Although OT services are widely used in 
collaborative editing systems, several of them such as So6 
rely on timestamps generated by a central stamper or a vector 
clocks, thus not appropriate for large scale P2P systems. 

Woot [16] is a distributed merge algorithm recently 
designed for ensuring the convergence among replicas in 
P2P systems. Each site merges its own copy as soon as 
operations are received. The result is independent of the 
reception order. It requires no vector clocks, contrary to most 
operational transformation based algorithms. It is a 
specialized algorithm for linear structures like strings, so it is 
well suited for a wiki application that mainly manages page 
contents as text. However, Woot has its own specific data 
model keeping the history of all the operations brought to the 
data. Woot manages only linear structures and defines 
specific operation profiles. Unlike Woot, P2P-LTR offers the 
advantage of not requiring any specific storage. Moreover, 
P2P-LTR is generic and independent of data types.  

In [26] we present our basic prototype used to 
demonstrate P2P-LTR through several scenarios. In the 
present paper, we describe in details all relevant algorithms 
necessary for patch validation face to peers dynamic 
behavior. In addition we studied the performance evaluation 
of P2P-LTR. 

VII. CONCLUSION 

In this paper, we addressed the problem of optimistic 
replication for P2P collaborative text editing. This problem is 
challenging because of concurrent updating at multiple peers 
and dynamic behavior of peers. Our solution is a scalable 
P2P logging and timestamping infrastructure called P2P-
LTR which exploits a distributed hash table (DHT). While 
updating multimaster copies at collaborating peer editors, 



updates are stored in a highly available P2P log. P2P-LTR 
provides an efficient mechanism for determining the total 
order of updates in order to enforce strong consistency and 
ensure liveness property. It also deals with the case of peers 
that may join and leave the system during the update 
operation. 

We evaluated the performance of P2P-LTR through 
simulation. We compared P2P-LTR with a baseline service, 
i.e. So6*. When the number of users per document is more 
than 15, the results show that the response time for 
publishing a patch with P2P-LTR is significantly better than 
So6*. We also studied the effect of frequency of updates on 
the response time of patch published by P2P-LTR and So6*: 
The results show that the response time of P2P-LTR 
decreases with increasing the frequency of updates, so it 
more appropriate than So6* for large scale systems in which 
the frequency of updates is high. We also investigated the 
effect of peer failures on the correctness of P2P-LTR and 
So6*, the results show that P2P-LTR works correctly even in 
the presence of pee failures: P2P-LTR guarantees continuous 
timestamping. However, in the presence of peer failures, 
there are gaps in the timestamps used by So6*, so it is not 
suitable for applications that require continuous timestamps. 

 P2P-LTR is now an open source software, available at 
http://p2pltr.gforge.inria.fr/. 
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