
Scalable P2P Reconciliation Infrastructure for

Collaborative Text Editing

Mounir Tlili, Reza Akbarinia, Esther Pacitti, Patrick Valduriez

To cite this version:

Mounir Tlili, Reza Akbarinia, Esther Pacitti, Patrick Valduriez. Scalable P2P Reconciliation
Infrastructure for Collaborative Text Editing. DBKDA’10: International Conference on Ad-
vances in Databases, Knowledge, and Data Applications, Apr 2010, Les Ménuires, France.
pp.155-164, 2010. <lirmm-00607940>

HAL Id: lirmm-00607940

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00607940

Submitted on 11 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53011156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00607940

Scalable P2P Reconciliation Infrastructure for Collaborative Text Editing

Mounir Tlili, Reza Akbarinia
INRIA and LINA

Nantes, France
Mounir.Tlili@univ-nantes.fr, Reza.Akbarinia@inria.fr

Esther Pacitti, Patrick valduriez
INRIA and LIRMM
Montpellier, France

pacitti@lirmm.fr, Patrick.Valduriez@inria.fr

Abstract—We address the problem of optimistic replication for

collaborative text editing in Peer-to-Peer (P2P) systems. This

problem is challenging because of concurrent updating at

multiple peers and dynamic behavior of peers. Operational

transformation (OT) is a typical approach used for handling

optimistic replication in the context of distributed text editing.

However, most of OT solutions are neither scalable nor suited

for P2P networks due to the dynamic behavior of peers. In this

paper, we propose a scalable P2P reconciliation infrastructure

for OT that assures eventual consistency and liveness despite

dynamicity and failures. We propose a P2P logging and

timestamping service called P2P-LTR (P2P Logging and

Timestamping for Reconciliation) which exploits a distributed

hash table (DHT) for reconciliation. While updating replica

copies at collaborating peer editors, updates are stored in a

highly available P2P log. To enforce eventual consistency, these

updates must be retrieved in a specific total order to be

reconciled at the peer editors. P2P-LTR provides an efficient

mechanism for determining the total order of updates. It also

deals with the case of peers that may join and leave the system

during the update operation. We evaluated the performance of

P2P-LTR through simulation; the results show the efficiency

and the scalability of our solution.

Keywords- Optimistic replication; reconciliation; P2P

systems; distributed hash tables; collaborative text editing

I. INTRODUCTION

Collaborative applications are getting common as a result
of rapid progress in distributed technologies like the Web
2.0. Building these applications on top of P2P networks has
many advantages: decentralization, self-organization,
scalability and fault-tolerance. One of the main types of
collaborative applications is collaborative text editing, e.g.
the wikis that are actually very popular editors. Generally,
the wiki systems are built over the traditional centralized
architecture where the whole set of pages of a wiki reside on
a single server. Consequently, in the case of failure or offline
work, data are unavailable. Moreover, the system does not
scale easily. This is why recently there have been some
efforts to shift the wikis to fully decentralized systems
relying on P2P networks, e.g. XWiki [27] that is a second
generation wiki working over a P2P network. However,
providing data consistency in the presence of concurrent
updates on the same data is quite challenging in these

systems due to the dynamicity of peers and the scalability
and fault-tolerance requirements.

In a P2P text editing application, users need to work on
shared documents even though they are disconnected from
the network, e.g. in a train or another environment that does
not provide good network connection. This requires that
users hold local replicas of shared documents. This is a
typical case of collaborative applications that requires
optimistic replication to assure data availability at anytime.
Optimistic replication [21] is a well known and efficient
solution for multimaster replication. It allows asynchronous
updating of replicas so that applications can progress even
though some nodes are disconnected. This enables
asynchronous collaboration among users. However,
concurrent updates may cause replica divergence and
conflicts, which should be reconciled to enforce that replicas
converge to the same state, property known as eventual
consistency. In this paper, we propose a new infrastructure
for P2P timestamping and reconciliation, that may be useful
for different types of P2P collaborative applications,
however to be able to express the functionalities of our
infrastructure, we focus on P2P collaborative text editing
applications.

Operational transformation (OT) [14] is one of the main
distributed frameworks used for handling optimistic
replication in the context of distributed text editing
applications. The two most important aspects of OTs is that
they are generic, i.e. they can handle different types of data
(text, multimedia, etc), and it uses a set of generic operation
transforms for reconciliation. However, to ensure eventual
consistency during reconciliation, all involved operations
must be stamped in continuous total order (timestamps
values are integer ascending order). One well known OT
solution [14] uses a centralized timestamp server to stamp
operations (update, insert…) which limits scalability and
may block in case of failures, or introduce bottlenecks.
Besides, the size of the log used by OT at the timestamp
server tends to be hudge and may be unmanageable in a
single node. P2P solutions for text editing [2][13][16] are
not generic as OT or are quite complex in practice.

Thus, an important challenge in P2P text editing
applications is to provide a complete P2P solution facing the
following problems: eventual consistency management,
decentralized timestamper service, large scale and consistent
log management. In this paper, we propose a new scalable

P2P logging and timestamping infrastructure called P2P-
LTR (Logging and Timestamping for Reconciliation). In our
solution, replica copies are optimistically updated at
collaborating peer editors, even if disconnected. To enforce
eventual consistency, a necessary condition is that updates
must be applied in a continuous total ordered during
reconciliation [21] at each peer editor. Whenever a
timestamp value is established and valid for an update, then
the timestamped update is stored in a P2P Log, in our case
over a distributed hash table (DHT), to be available for the
other peer editors. Thus, using the P2P Log, each peer editor
may retrieve concurrent updates in total order to be able to
reconcile locally.

Providing total order despite failures and dynamic
behavior of peers is one of the major challenges of P2P-LTR
which we address in this paper. P2P-LTR infrastructure
provides the following capabilities: (a) a scalable P2P
continuous timestamp protocol for managing timestamps in a
DHT that assures eventual consistency and liveness; (b) a
highly available log (P2P-Log) for storing timestamped
updates; and (c) a retrieval mechanism that retrieves the
timestamped updates in timestamp order to assure eventual

consistency [21]. To validate P2P-LTR, we implemented it
using two popular DHTs: OpenChord [15] and Free Pastry
[8]. Moreover, we simulated our algorithms, and the
performance evaluation results show the efficiency and
scalability of our solution.

Our work has been done in the context of the XWiki
Concerto project [27] for collaborative P2P editing. The rest
of this paper is organized as follows. In Section 2, we present
the main terms and concepts used in this paper, and we give
the problem statement. In Section 3, we describe P2P-LTR’s
model and its main algorithms. In Section 4, we propose a
complete solution for dealing with peers’ dynamic behavior.
Section 5 presents our performance evaluation. In Section 6,
we discuss related work. Section 7 concludes.

II. MAIN CONCEPTS AND PROBLEM DEFINITION

In this section, we first introduce some terms and
concepts that constitute the basis of our work. Then, we state
the problem we address in this paper.

A. Main Concepts and Assumptions

A replica is a copy of a document D. We assume
optimistic multimaster replication, i.e. multiple primary
copies of a document D, noted D1, D2, …, Dn, are stored at
different peers for reading and writing. Most of the
optimistic replication solutions [21] assures eventual
consistency among replicas, i.e. if all users stop updating the
replicas (e.g. after a time t), eventually all replicas converge
to the same state [21].

P2P-LTR manages the operations in the form of patches.
A patch is the unit of reconciliation that corresponds to a
sequence of update operations (insert, update, delete)
generated when saving a document in a text editor. Once
these patches are stamped in a continuous timestamp

order, they are used for reconciliation by the integration
algorithm of OT solution based on the transformation
functions proposed by [14] for text reconciliation.

To be able to express the functionalities and properties of
our infrastructure we focus on P2P collaborative text editing
using OTs.

For reconciliation management, P2P-LTR timestamps the
patches and enforces the continuous timestamp order
property: for any two timestamps ts1 and ts2 generated for a
document respectively at times t1 and t2, if t1 < t2 then we
have ts1 < ts2 and for two consecutives timestamps values,
say ts1 and ts2, ts2 = ts1 + 1. Notice that if tsi < tsj then we
say that tsi is previous wrt to tsj or we can alternatively say
that the update operation timestamped with tsi is previous wrt
to the patch timestamped with tsj.

P2P-LTR is built over a DHT (distributed hash table)
overlay [20][23]: peer identifiers are chosen from an
identifier space. Based on these identifiers, data placement is
typically determined by a hash function which maps data
identifiers to peer identifiers. That is, every patch (or any
type of object) receives an unique identifier or key, and the
peer with the identifier closest to the patch key is responsible
for storing the key and its associate patch using the put(key,

patch) primitive. When a client looks for a patch using the
get(key) primitive, it contacts any peer in the DHT and the
request is routed through the DHT ring until the peer with
the identifier closest to the patch key is found. For simplicity,
we assume the reliability of the DHT.

A tentative patch corresponds to a patch whose timestamp
value is not assured to be in continuous timestamp order with
respect to concurrent tentative patches on the same
document. A tentative patch is valid if and only if its
timestamp value is in continuous timestamp order. It can
then be safely used by a set of transformation functions to
perform reconciliation.

Our network model is semi-synchronous (falls between
asynchronous and synchronous model), similar to the ones
proposed in [1][12][13] and we assume no network
partitions.

B. Problem Definition

The main challenges in designing a P2P infrastructure
for collaborative text editing is to decentralize reconciliation
assuring: (a) eventual consistency (imposes that patches are
valid) despite dynamicity and failures (b) scalability, to
support massive optimistic multi master replication (c) a
reliable distributed log, which is used for reconciliation (d)
and liveness (non blocking protocols).

III. P2P-LTR CAPABILITIES

In this section, we first present the P2P-LTR model with
respect to how peers collaborate to handle patch validation.
Then, we present our algorithm used to validate patches.
Finally, we describe how P2P-LTR ensures eventual
consistency among replicas.

A. P2P-LTR Model

P2P-LTR is built over a DHT network. DHTs [20][23]
provide a scalable solution for data location and lookup in
large-scale P2P systems. All DHT systems have a simple
distributed storage interface. Currently our solution is built
over a DHT system based on Chord [23] or Pastry [20].

In P2P-LTR, each peer of the DHT may have four
different roles: • User Peer: implements the user application (denoted

by u) that holds primary copies (in our case,
documents). When a tentative patch on D is captured
at u it is afterwards timestamped in continuous
timestamp order. To accomplish this, the involved
user peer must interact with a peer responsible for
generating timestamp for D, called Master-key. By
taking into account concurrent updates on D, a user
peer may need to retrieve previous published patches
at the Log-peers. • Log-Peer: peer that is responsible for holding a
valid timestamped patch w.r.t to a document. • Master-key Peer: responsible for generating
continuous timestamps for a document D. Each
document is identified by a key value by hashing the
document name. Using this key, the user peer locates
the Master-key using a specific hash function hts.
When a tentative patch is validated, the Master-key
publishes the timestamped patch in the P2P-Log at
specific Log-Peers. For this, the Master-key peers
must provide a set of pairwise independent hash
functions Hr= {h1, h2, …, hn} which we call
replication hash functions, used for implementing
patch replication in the DHT. For a given key, the
Master-key peer assumes the responsibility of
sustaining the last timestamp value (denoted by
last_ts) and mediating between concurrent updates. • Master-key Succ: holds a copy of last_ts and
replaces the Master-key in case of failures.

B. P2P-LTR Algorithm

In our model, each user peer has a local primary copy of
the document. When u1 updates a specific document D, the
generated patch is considered as a tentative patch because its
timestamp number is still not validated. The validation
procedure consists of providing a continuous timestamp
value to the new patch considering concurrent updates on the
same document D, performed by other user peers (master of
the same document). Since updates may be done
concurrently, it may happen that a user generates new
tentative patch without knowing that previous validated
patches on the same document D are available at the P2P-
Log. The patch timestamp validation procedure is done by
contacting the Master-key of D.

To handle validation, at each user peer, each document
has an associated local timestamp value (denoted by ts).
Recall that the Master-key holds the last timestamp (denoted
by last_ts) provided for the same document.

Thus, for a given document D, user peer u1 first contacts
the corresponding Master-key and asks it to publish the patch
with the timestamp value ts (Lines 1-3, Algorithm 1). The
Master-key of the document D is determined by applying a
hash function ht on D, and is located by using the lookup
service of the DHT. If the Master-key’s local timestamp
value (last_ts) is equal to ts, then the Master-key increments
by one last_ts value, and confirms the user peer u1 that it will
trigger the patch replication procedure. Then, the Master-key
replicates the patch in the P2P-Log (at the Log-Peers) and
acknowledges u1, with a message containing the validated
timestamp value (Lines 16-22, Algorithm 1).

In order to avoid having a big difference between the
replicas on which the users are working, the users
periodically check for new validated patches published by
other users, e.g. each δ time units. If such patches exist they
must be retrieved and locally integrated (Lines 6-7,
Algorithm 1).

If the Master-key local timestamp value (last_ts) is
greater than ts, this means that there are previous validated
patches, which are generated by other users and must be
integrated in u1’s document D. To accomplish this, u1 must
perform the retrieval procedure to get all missing patches in
continuous timestamp order. Afterwards, u1 restarts the
timestamp validation procedure again until last_ts value is
equal to ts value (see Lines 8-13, Algorithm 1).

To manage concurrent patch timestamp validation on the
same document, the corresponding Master-key serves each
user peer sequentially. That is, a new timestamp ts value for
a given document D is provided after the replication of the
previous timestamped (ts-1) patch on D.

Figure 1. P2P-LTR publish Patch process

C. Eventual Consistency

In this section, we illustrate how eventual consistency is
guaranteed by P2P-LTR. For this, we show that if all users
stop publishing patches (e.g. after a time t), eventually all
replicas converge to the same state. Therefore, any new user
who joins the system will see the same state of the document
reflecting all modifications published before t.

Assume there are k users maintaining a replica of a
shared document D, and u1 be the user who has committed
the last update. We show that if there are no new updates
then all replicas converge to the same state as that of u1. Let
u2 be a user that maintains a replica of document D. The user
u2 has one of the following situations: 1) after t, at least once
he has got disconnected from the system; 2) after t, always
he has been connected to the system. For each of these cases,
we show that the document of u2 eventually converges to that
of u1.

Let us first discuss the first case. In this case, when u2
reconnects, he calls the last-ts(key) operation. Then, he
compares the last timestamp last_ts generated by the Master-
key peer with its local timestamp value ts. If last_ts is equal
to ts, it means that there have been no committed patches
during the absence of u2. Otherwise (i.e. last_ts ≠ ts), u2
retrieves all missing patches in continuous timestamp order
and integrates them to its local document by using
transformational approach. Thus, the state of its document
becomes equal to that of u1.

For the second case, i.e. u2 has been always connected,
recall that the users periodically check for the existence of
missing patches in the DHT, i.e. each δ time units. If such
patches exist, they are retrieved and locally integrated to the
local replica at most after a time t’≤ δ + t. Thus the
document of u2 eventually converges to that of u1.

IV. DEALING WITH PEERS’ DYNAMIC BEHAVIOR IN P2P-
LTR

One of the main characteristics of P2P systems is the
dynamic behavior of peers. In this section, we discuss how
P2P-LTR deals with this P2P dynamic behavior. First, we
consider the cases where a new Master-key peer joins or the
current one leaves the system normally, i.e. without failing,
and propose strategies by which P2P-LTR deals with these
cases. Then, we address the situations where the Master-key
peer failure.

A. Master-key Peer’s join and leave

The Master-key peer of a key k can dynamically change
due to the join/leave of peers to/from the DHT.

1) Join
This scenario focuses on the cases where a new peer

joins the system and becomes Master-key for certain keys. In
these cases, the joining peer triggers the DHT’s stabilization
procedure, which is used to keep nodes’ successor pointers
up to date in the DHT and to maintain the routing tables of
all nodes, which is sufficient to guarantee correctness of
lookups [23]. P2P-LTR sets up an event interrupter in the
DHT’s stabilization procedure. Using the event interrupter,
P2P-LTR can get aware of the modifications in the topology

of the DHT network. When the stabilization procedure is
invoked, the event interrupter calls a P2P-LTR’s function
that is responsible for determining the new Master-key peer
and its successor. Therefore, our system can monitor the
events of join and leave produced at DHT layer and maintain
automatically the list of keys and timestamps on P2P-LTR
layer.

Once the stabilization of the DHT is completed, P2P-
LTR assures that the old Master-key transfers its timestamps
(if any) to the new Master-key. Let p and q be two peers, K
the set of keys for which q is the current Master-key and p is
a new peer that joins the system and becomes Master-key for
some keys K’⊆ K. Once q reaches the end of its
responsibility for the keys involved in K’ (i.e. when p joins
the system), it first sends to p all the timestamps that have
been generated for the keys involved in K' and then modifies
its role towards these keys from Master-key to Master-key-
Succ.

Let L be an empty set of pairs (key, timestamp), q
performs the following instructions at the end of its
responsibility:

for each k ∈ K do

if (k ∈ K’) then

L.add(k, tk);

Send L to p;
Before receiving the timestamps from q, the peer p

generates no timestamp for the keys involved in K’. So, P2P-
LTR produces timestamps only if the DHT is stabilized.
Therefore, any publish patch request received at the time of
stabilization is rejected, while sending a message to the
requester indicating that the system is executing the
stabilization procedure.

As an illustration of a new Master-key peer join, consider
the configuration of the P2P-LTR system shown in Figure 2.
Assume that new peer P0 joins the system and becomes the
new Master-key peer of the key k2. Figure 3 shows the new
configuration of the system after the join operation, where P2
transfers k2 and t2 to P0. Consequently the new configuration
of the peers P0 and P2 becomes:

- P0 becomes Master-key of k2 and Master-key-Succ
of k1

- P2 becomes Master-key-Succ of key k1

Figure 2. Initial configuration of P2P-LTR

Figure 3. Configuration after the join of P0

2) Departure
When a Master-key peer leaves the system normally, it

transfers its keys and timestamps to its Master-key-Succ
peer. Notice that, like the join event, the departure of a node
triggers the DHT stabilization. Therefore, using the event
interrupter, P2P-LTR can detect the departure event. Once
the stabilization is completed, the set of keys and timestamp
values of the previous Master-key are sent to its successor
that becomes the new Master-key peer and to another peer
that becomes the new Master-key-Succ. Let q and p be two
peers, and K’ be the set of keys for which q is the current
Master-key and p is the Master-key-Succ, i.e. the next
responsible of timestamping. Once q reaches the end of its
responsibility for the keys in K’, i.e. when it leaves the
system, it sends to p all the timestamps that have been
generated for the keys involved in K’. Consequently, p
modifies its role towards the keys from Master-key-Succ to
Master-key and sends these keys with its timestamps to its
successor. Let Rolep,k be the role of the peer p towards the
key k. The peer p performs the following instructions:

for each k ∈ K’ do

Rolep,k = Master;

Send (k,k.timestamp) to p.successor;

end;
Before receiving the timestamps from q, the peer p

generates no timestamp for the keys involved in K’.
As an illustration of a Master-key peer departure,

consider the initial configuration of the P2P-LTR system
shown in Figure 2. Assume that P1 leaves the system
normally and notifies P2 which becomes the new Master-key
peer of the key k1. Figure 4 shows the new configuration of
the system after the leave operation, where P2 modifies its
role towards k1 from Master-key-Succ to Master-key and
replicates k2 and t2 to P3 (i.e. its successor). Consequently the
new configuration of the peers P2 and P3 becomes:

- P2 becomes Master-key of k1 and k2

- P3 becomes Master-key-Succ of key k1 and k2

Figure 4. Handling Master-key peer departure

B. Failure Handling

Let us now study the effect of peer failures on P2P-LTR
and discuss how they are handled. With peer failure, we
mean that a peer disappears from the system without
notifying other nodes in the system, e.g. it failures. We show
that no peer failure can block our publish patch algorithm.
We also show that even in the presence of these failures,
P2P-LTR guarantees continuous timestamping. For this, it is
sufficient to show that each generated timestamp is stored
together with a patch in the DHT before generating the next
timestamp or it is aborted.

1) Assumptions

Let us first describe the assumptions that we make in our
work. • Assumption 1. (failure detectors): In order to detect

Master-key failures, we assume the existence of
failure detectors [5] which can be installed at each
peer in order to monitor the Master-key peer.

• Assumption 2. (log-peer availability): Let T = [t1,

t2] be a time interval such that t1 and t2 are the
times at which the system starts and ends
respectively. At any time t∈T at least one of the
peers, which are responsible for holding the patch,
is available in the system. Formally, let D be a
document, and nt the number of the peers that are
available at time t and hold a valid patch for D.

Then, we assume that:∀ t∈T => (nt ≥1)

• Assumption 3. (reliable message): We assume the
presence of reliable message transmission between
different peers of the system.

• Assumption 4. (correct lookup service): Like
several other protocols and applications designed
over DHTs, e.g. [4], in our work we assume that
the lookup service of the DHT behaves properly.
That is, given a key k it either finds correctly the
responsible for k or reports an error, e.g. in the case
of network partitioning where the responsible is not
reachable.

2) Dealing with the Failure of Master-key
To make P2P-LTR resilient to Master-key failures, we

modify our patch distribution algorithm, which we proposed
in Section III, as follows. After receiving the publish patch

request from a peer p and checking the timestamp value, the
Master-key peer replicates the patch in the log-peers and
waits for a confirmation message from log peers. Whenever
a log-peer receives a patch from the Master-key, it sends a
reliable message to the Master-key peer to confirm the
reception of the replica. If at least N confirmation messages
are received by the Master-key peer (while N < nt is a system
parameter), it sends an ack message to peer p, i.e. the publish
patch requester, in order to validate the tentative patches.
Otherwise, it sends an abort message to p, to indicate that the
operation was not done successfully, so p should try again.

The behavior of the Master-key peer can be modeled by
the Finite State Machine (FSM) [7] shown in Figure 5. A
state machine is a model of system behavior composed of a
finite number of states, transitions between those states, and
actions.

Below, we discuss how P2P-LTR tolerates the failures in
each state of this machine. A failure of a Master-key may
happen in one of the following states: • Failure in the patch reception state (S1). In this

case, the Master-key peer fails just after receiving
the publish patch request. Since we use a failure
detector at requesting peer p, it detects the failure
of the Master-key peer, and the publish request is
aborted. Similarly, the failure detector at the
Master-key-Succ detects the failure and then that
peer becomes the new Master-key. Therefore, in
the case of failure in this state, the protocol does
not block and continuous timestamping is assured,
i.e. because no publish patch tentative is
performed.

• Failure in the timestamp generation state (S2).
In this state, like in the previous one, the failure
detector at requesting peer p detects the failure of
the Master-key peer, and the publish request is
aborted. Similarly, the failure detector at the
Master-key-Succ detects the failure and then that
peer becomes the new Master-key. Therefore, as in
the previous state, continuous timestamping is
assured.

• Failure in the patch replication state (S3). If the
Master-key peer fails in this state, a fail message is
sent to peer p to indicate the fail of publish patch
tentative. Since the fault detectors installed at Log-
Peers detect the fail of the Master-key, they simply
discard the received patch. After a while, the
successor of the former Master-key becomes
Master-key peer. In this state, like in the previous
one, the protocol does not block and continuous
timestamping is assured, i.e. because the timestamp
which is generated by the failed responsible, is
aborted.

• Failure in the last_ts replication state (S4). If the
Master-key fails in this state, a fail message is sent
to the peer p to indicate the failure of Master-key.
The successor of the former Master-key becomes

the new Master-key of the document. Using the set
of replication hash functions, the new Master-key
sends a message to the Log-Peers to ask them
whether they received the patch. If at least N
positive responses are returned, the Master-key-
Succ sends an ack message to p to indicate the
success of the publish patch operation. Otherwise,
it sends an abort message to p. In this state, as in
the previous state, continuous timestamping is
assured.

Lemma 1. If during the execution of our protocol the
Master-key peers fail, the protocol does not block and
guarantees continuous timestamping.

Proof. Implied by the above discussion.

Master-key-peer

S0

Initial state

Final state

S1: Patch

reception

Receive publish patch

 request (k, patch, ts)

Failure

Failure event

S2:

Timestamp

generation

Generate timestamp for k

S3: Patch

replication

Condition: Last_ts = ts

Failure event Condition: #Ack < N

S4: last_ts

replication

Condition: #Ack ≥ N

Failure event Send commit messages

Failure event

Abort

Commit

Condition: Last_ts ≠ ts

Figure 5. Master-key peer state transition machine

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our P2P-
LTR system through simulation using the PeerSim simulator
[18]. This section is organized as follows. First, we describe
our simulation setup, the metrics used for performance
evaluation and the baseline service used for comparison with
P2P-LTR. Then, we study the effect of the average number
of users on the performance of P2P-LTR, and show how it
scales up. Next, we study the effect of the number of replicas
and the frequency of updates on the performance of P2P-
LTR. Then, we investigate the effect of peer failures on the

correctness of P2P-LTR. Finally, we summarize the main
results.

A. Simulation Setup

Our simulation is based on Chord which is a simple and
efficient DHT. Chord's lookup service [23] is robust in the
face of frequent node failures, and it can answer queries even
though the system is continuously changing.

We implemented our simulation using the PeerSim
simulator [18]. PeerSim is a Java based simulator
specifically tailored for P2P protocol simulations. It consists
of configurable components. It has two types of engines,
cycle-based and event-driven. It provides different modules
that manage the overlay building process and the transport
characteristics.

Our simulation parameters are shown in Table 1. The
latency between any two peers is a normally distributed
random number with a mean of 200 ms. The simulator
allows us to perform tests up to 10 000 peers. In our
experiments, at each time T = 30 second, each user selects
one document who modifies and tries to publish patches on
the DHT. The default number of shared documents for each
user is 10. The default average number of users who work on
the same document is 5. The default average rate for publish
patch events is α = 1 every 2mn. In our tests, the number of
replicas of each data is 10, i.e. ⎪Hr⎪=10.

TABLE I. EXPERIMENTAL PARAMETERS

Parameters Values

Latency Normally distributed random
number,
Mean = 200 ms, Variance = 100

Network size 10 000 peers
Number of Log peers for each data 10
Number of shared documents for
each user

10

Update and publish patch
generated on each replica

Timed by an uniform random
process, Mean = 2 per minute

Fails rate 2%

In our tests, we compare the performance of P2P-LTR

with So6*, a variant of So6 [14] that replicates the shared
data in the DHT to improve data availability. So6* uses a
central timestamper to determine the total order of the
operations done on the data.

In our tests, we measured the performance of publishing
and retrieving patches in terms of response time. By response
time, we mean the time needed to publish the patch
generated after an update.

B. Scalability

In this section, we study the scalability of P2P-LTR. For
this, we study the effect of the average number of users per
document on performance of P2P-LTR.

Figure 6 shows the response time of the patch publish
operation with the average number of users increasing up to
30 users per document and the other simulation parameters
set in Table 1. The average number of users working on the
same document has a very slight impact on the response time
of P2P-LTR which means an excellent scalability w.r.t. the

numbers of users. When the number of users per document is
more than 15, the response time of P2P-LTR is better than
So6*. The higher is the number of users per document, the
more is the factor by which P2P-LTR outperforms So6*. The
reason is that with So6*, the timestamp generation and patch
publication for all documents are performed by only one
peer. In contrast, with P2P-LTR the responsibility of
timestamp generation and patch storage are completely
distributed over different peers of the DHT.

Publish Patch Response Time

0

5

10

15

20

25

30

1 5 10 15 20 25 30

Average number of users per document
re

s
p

o
n

s
e

 t
im

e
 (

s
)

P2P-LTR

So6*

Figure 6. Response time vs. number of users.

Using the simulator, Figure 7 depicts the total number of
messages while increasing the number of user peers per
document up to 300, with the other simulation parameters set
as in Table 1. The results show that the communication cost
for P2P-LTR and So6* increases linearly with the number of
user peers. However, the communication cost of P2P-LTR is
a little bit higher than that of So6*. The reason is that P2P-
LTR performs multiple lookups in the DHT for finding the
Master-key of each document. Notice that each lookup needs
O(log N) messages where N is the number of peers of the
DHT. This slight increase in communication cost of P2P-
LTR is the price to pay for guaranteeing continuous
timestamping and making our solution more resilient to the
failure cases.

Publish Patch Communication Cost

0

100

200

300

400

500

600

700

50 100 150 200 250 300

Number of users per document

T
o

ta
l

n
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s

P2P-LTR

So6*

Figure 7. Total number of messages vs. number of users per document.

C. Effect of the Number of Replicas

In dynamic systems, we need many replicas to guarantee
high data availability. We now study the effect of the number

of replicas, which we replicate for each patch in the DHT (in
the Log-peers), on the performance of P2P-LTR and So6*.

Using our simulator, we studied how response time
evolves while increasing the number of replicas, with the
number of users per document is 15 and with the other
simulation parameters set as in Table 1. The results (see
Figure 8) show that increasing the number of replicas for
P2P-LTR and So6* decreases the response time for
publishing patches. The reason is that if we increase the
number of replicas the average time for finding the missed
patches decreases. Thus, the response time of the publish
patch operation decreases. However, the response time of
P2P-LRR is better than So6*. As explained before, the
reason is that with So6*, the timestamp generation and patch
publication for all documents are performed by only one
peer.

Effect of the number of replicas

0

2

4

6

8

10

12

14

16

18

20

10 25 40 80 100

Number of replicas

P
u

b
li

s
h

 p
a
tc

h
e
s
 r

e
s
p

o
n

s
e
 t

im
e
 (

s
)

P2P-LTR

So6*

Figure 8. Response time VS number of log-peers.

D. Effect of Update Frequency on Response Time

In this section, we study the effect of the frequency of
updates on the performance of P2P-LTR and So6*. In the
previous experiments, updates on each data were timed by a
random process with an average rate of 2 updates per minute.
In this section, we vary the average rate (i.e. frequency of
updates) and investigate its effect on response time.

Using our simulator, Figures 9 shows how response time
evolves while increasing the frequency of updates with the
other simulation parameters set as in Table 1. The results
show that the response time of P2P-LTR decreases by
increasing the frequency of updates. The reason is that an
increase in the frequency of updates decreases the distance
between the time of the current and latest update, thus
number of missing patches decreases, and this decreases the
time needed for retrieving the missing patches.

The response time of P2P-LTR is significantly better
than So6*. The reason is that with So6*, the operations of
timestamp generation and storing of timestamped patches for
all documents are performed by only one peer. Indeed, by
increasing the frequency of updates the central timestamper
takes important time to generate timestamp and to publish
the patches in the DHT.

Effect of Update Frequency

0

2

4

6

8

10

12

14

16

18

2 2,5 3 3,5 4 4,5 5

Frequency of updates (per mn)

R
e
s
p

o
n

s
e
 t

im
e
 (

s
)

P2P-LTR

So6*

Figure 9. Publish patches time VS Frequency of updates.

E. Effect of Peer Failures on Timestamps Continuity

Let us now study the effect of peer failures on the
continuity of timestamps used for data updates. In our
experiments we measure timestamp continuity rate by which
we mean the percentage of the updates whose timestamps are
only one unit higher than that of their precedent update. We
varied the fail rate parameter, and observed its effect on
timestamp continuity rate.

Figure 10 shows timestamp continuity rate for P2P-LTR
and So6* while increasing the fail rate, with the other
parameters set as in Table 1. The peer failures do not have
any negative impact on the continuity of timestamps used by
P2P-LTR, because our protocol assures timestamp
continuity. However, when increasing the fail rate in So6*,
the percentage of updates whose timestamps are not
continuous increases. In other words, in the presence of peer
failures, there are gaps in the timestamps used by So6*, so it
is not suitable for applications that require continuous
timestamps.

Timestamp continuity

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10

Fail rate (%)

T
im

e
s
ta

m
p

 c
o

n
ti

n
u

it
y
 (

%
)

P2P-LTR

So6*

Figure 10. Timestamp continuity vs. fail rate

F. Concluding Remarks

In the previous sections, we evaluated the performance of
P2P-LTR according to the following parameters: the average
number of users, the number of replicas, the effect of update
frequency and the effect of failures. In order to evaluate the
response time (i.e. the time needed to publish a patch), we

compared P2P-LTR results with the So6* results (variant of
So6 solution [14]).

The results show good response time of P2P-LTR since it
outperforms the So6* solution by a factor around 1.5 when
30 users concurrently working on the same document (see
Figure 6).

The results (see Figure 7) show also that the publish
patch communication cost of P2P-LTR is linear to the
number of users who working on the same document.
However, the communication cost of P2P-LTR is a little bit
higher than that of So6*. The reason is that P2P-LTR
performs multiple lookups in the DHT for finding the
Master-key of each document. Notice that this slight increase
in communication cost of P2P-LTR is the price to pay for
guaranteeing continuous timestamping and making our
solution more resilient to the failure cases.

In figure 8, the results show that the performance of P2P-
LTR is very good up to 80 Log-peers. However, the number
of Log-peers can not grow indefinitely due to
communication overhead. In the figure 9, we investigated the
effect of frequency of updates on the performance of P2P-
LTR and So6*. The results show that good performance of
P2P-LTR since it outperforms the So6* solution when the
frequency of updates up 2.5 updates per minutes. In addition,
Unlike to So6*, the results show that the response time of
P2P-LTR decreases by increasing the frequency of updates.

The latest results (see Figure 10) show that our solution
works correctly even in the presence of peers failures and
guarantees the timestamp continuity property. However,
when increasing the fail rate in So6*, the percentage of
updates whose timestamps are not continuous increases.
Therefore, it is not suitable for applications that require
continuous timestamps.

VI. RELATED WORK

Guaranteeing eventual consistency in the presence of
multimaster replication is a widely researched field. Many
solutions have been proposed in the context of distributed
database systems for managing replica consistency [17], in
particular, using eager or lazy (multimaster) replication
techniques. However, these techniques either do not scale up
to large numbers of peers or raise open problems, such as
replica reconciliation, to deal with the open and dynamic
nature of P2P systems.

Distributed version control systems (DVCS) allow many
users to edit the same documents concurrently. They provide
the same features as CVS [6] without requiring a central site.
DVCS do not support the consistency of replicas [3]. There
are well-known scenarios in which most of DVCS (e.g. Git
[9]) can not assure the consistency of replicas, see details in
[3].

OceanStore [11] is a data management system designed
to provide a highly available storage utility on top of P2P
systems. It allows concurrent updates on replicated data, and
relies on reconciliation to assure data consistency. The
reconciliation is done by a set of powerful servers using a
consensus algorithm. The servers agree on which operations
to apply, and in what order. In the applications, which we
address, the presence of powerful servers is not guaranteed.

In our approach, for each data there is an ordinary peer, i.e.
Master-key peer, that deals with replication management of
the data, and the Master-key is determined dynamically
using a hash function. Thus, the load of providing data
consistency is distributed over all the peers of the system. In
addition, we use the approach of timestamping which is less
expensive than consensus.

Telex [2] is a P2P semantic reconciliation system
designed for data sharing by distributed collaborative
applications. Users operate on their local persistent replica of
shared documents; they can work disconnected and suffer no
network latency. To detect and correct conflicts, Telex sites
maintain an Action-Constraint Graph (ACG) [22], i.e. a
replicated dynamic graph that summarises the concurrency
semantics of applications. However, the Telex system has a
main limitation: it suffers from excessive memory
consumption. The ACG can quickly reach sizes of several
tens of thousands of nodes, and is accessed concurrently by
many threads.

Collaborative editing based on the operational
transformation approach (OT) [10][19] can be done in a
decentralized way. There are several algorithms, e.g. GOTO
[24], SOCT2 [25] and SOCT4 [25], for defining operation
transformations and detecting concurrent operations. Based
on these algorithms, many OT services have been developed.
One of the well known OT services is So6 which is based on
SOCT4. Although OT services are widely used in
collaborative editing systems, several of them such as So6
rely on timestamps generated by a central stamper or a vector
clocks, thus not appropriate for large scale P2P systems.

Woot [16] is a distributed merge algorithm recently
designed for ensuring the convergence among replicas in
P2P systems. Each site merges its own copy as soon as
operations are received. The result is independent of the
reception order. It requires no vector clocks, contrary to most
operational transformation based algorithms. It is a
specialized algorithm for linear structures like strings, so it is
well suited for a wiki application that mainly manages page
contents as text. However, Woot has its own specific data
model keeping the history of all the operations brought to the
data. Woot manages only linear structures and defines
specific operation profiles. Unlike Woot, P2P-LTR offers the
advantage of not requiring any specific storage. Moreover,
P2P-LTR is generic and independent of data types.

In [26] we present our basic prototype used to
demonstrate P2P-LTR through several scenarios. In the
present paper, we describe in details all relevant algorithms
necessary for patch validation face to peers dynamic
behavior. In addition we studied the performance evaluation
of P2P-LTR.

VII. CONCLUSION

In this paper, we addressed the problem of optimistic
replication for P2P collaborative text editing. This problem is
challenging because of concurrent updating at multiple peers
and dynamic behavior of peers. Our solution is a scalable
P2P logging and timestamping infrastructure called P2P-
LTR which exploits a distributed hash table (DHT). While
updating multimaster copies at collaborating peer editors,

updates are stored in a highly available P2P log. P2P-LTR
provides an efficient mechanism for determining the total
order of updates in order to enforce strong consistency and
ensure liveness property. It also deals with the case of peers
that may join and leave the system during the update
operation.

We evaluated the performance of P2P-LTR through
simulation. We compared P2P-LTR with a baseline service,
i.e. So6*. When the number of users per document is more
than 15, the results show that the response time for
publishing a patch with P2P-LTR is significantly better than
So6*. We also studied the effect of frequency of updates on
the response time of patch published by P2P-LTR and So6*:
The results show that the response time of P2P-LTR
decreases with increasing the frequency of updates, so it
more appropriate than So6* for large scale systems in which
the frequency of updates is high. We also investigated the
effect of peer failures on the correctness of P2P-LTR and
So6*, the results show that P2P-LTR works correctly even in
the presence of pee failures: P2P-LTR guarantees continuous
timestamping. However, in the presence of peer failures,
there are gaps in the timestamps used by So6*, so it is not
suitable for applications that require continuous timestamps.

 P2P-LTR is now an open source software, available at
http://p2pltr.gforge.inria.fr/.

REFERENCES

[1] R. Akbarinia, E. Pacitti, P. Valduriez. Data Currency in Replicated

DHTs. ACM SIGMOD Int. Conf. on Management of Data, 211-222,
2007.

[2] L. Benmouffok, J. Busca, J. Marquès, M. Shapiro, P. Sutra, G.
Tsoukalas. Telex: Principled System Support for Write-Sharing in
Collaborative Applications. Research Report RR6546, INRIA, 2008.

[3] G. Canals, P. Molli, J. Maire, S. Laurière, E. Pacitti, M. Tlili : XWiki
Concerto : A P2P Wiki System Supporting Disconnected Work. Int.
Conf. on Cooperative Design, Visualization and Engineering
(CDVE), 98-106, 2008.

[4] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S.
Shenker, J.M. Hellerstein. A case study in building layered DHT
applications. ACM SIGCOMM Conf, 97-108, 2005.

[5] G. Chockler, I. Keidar and R. Vitenberg. Group communication
specifications: a comprehensive study. ACM Computing Surveys,
33(4), 427-469, 2001.

[6] CVS: http://www.cvshome.org/docs/manual.

[7] D. Lee and M. Yannakakis. Principles and methods of testing finite
state machines: A survey. In Proceedings of the IEEE, 84(8):1090-
1126, 1996.

[8] FreePastry: http://freepastry.org/FreePastry/

[9] Git. http://git-scm.com/

[10] A. Imine, P. Molli, G. Oster, and P. Urso, “Vote: Group editors
analyzing tool: System description.” Electr. Notes Theor. Comput.
Sci, 86(1), 153-161, 2003.

[11] J. Kubiatowicz, et al. OceanStore: An Architecture for Global-Scale
Persistent Storage. Int. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 190-
201, 2000.

[12] P. Linga et. Al.: Guaranteeing Correctness and Availability in P2P
Range Indices, ACM SIGMOD Int. Conf. on Management of Data,
323-334, 2005.

[13] V. Martins and E. Pacitti. Dynamic and distributed reconciliation in
P2P-DHT networks. European Conf. on Parallel Computing (Euro-
Par), 337-349, 2006.

[14] P. Molli, and. Al. Using the transformational approach to build a safe
and generic data synchronizer. ACM SIGGROUP Conf. on
Supporting Group Work, 212-220, 2003.

[15] Open Chord version 1.0.2 User’s Manual. http://www.uni-
bamberg.de

[16] G. Oster, P. Urso, P. Molli, H. Skaf-Molli and A. Imine. Optimistic
Replication for Massive Collaborative Editing. Research Report RR-
5719, INRIA, 2005.

[17] T. Özsu, P. Valduriez. Principles of Distributed Database Systems.
2nd Edition, Prentice Hall, 1999.

[18] PeerSim simulator. http://peersim.sourceforge.net/

[19] M. Ressel, D. Nitsche-Ruhland and R. Gunzenhäuser. An Integrating,
Transformation-Oriented Approach to Concurrency Control and
Undo in Group Editors. ACM Conf. on Computer supported
cooperative work (CSCW), 288-297, 1996.

[20] A. Rowstron, P. Druschel. Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems.
Middleware Conf., 329-350, 2001.

[21] Y. Saito and M. Shapiro. Optimistic replication. ACM Computing
Surveys, 42-81, 2005.

[22] M. Shapiro, K. Bhargavan, and N. Krishna. A constraint-based
formalism for consistency in replicated systems. In Int. Conf. on
Principles of Dist. Sys. (OPODIS), number 3544 in Lecture Notes in
Comp. Sc, 331-345, 2004.

[23] I. Stoica and. Al. Chord: a scalable peer-to-peer lookup service for
internet applications. ACM SIGCOMM Conf, 149-160, 2001.

[24] C. Sun and C. Ellis. Operational Transformation in Real-Time Group
Editors: Issues, Algorithms and Achievements. In Proceedings of the
ACM Conf. on Computer supported cooperative work, 59-68, 1998.

[25] M. Suleiman, M. Cart, and J. Ferrié. Serialization of Concurrent
Operations in a Distributed Collaborative Environment. ACM
SIGGROUP Conf. on Supporting Group Work, 435-445, 1997.

[26] M. Tlili and. Al. P2P Logging and Timestamping for Reconciliation.
In Conf. on Very Large Data Bases VLDB, (Demonstration session),
1420-1423, 2008.

[27] XWiki Concerto: http://concerto.xwiki.com.

