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To cite this version:

Guillaume Blin, Guillaume Fertin, Romeo Rizzi, Stéphane Vialette. What Makes the Arc-
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Abstract. Given two arc-annotated sequences (S, P ) and (T, Q) representing RNA struc-
tures, the Arc-Preserving Subsequence (APS) problem asks whether (T, Q) can be
obtained from (S, P ) by deleting some of its bases (together with their incident arcs, if
any). In previous studies [3, 6], this problem has been naturally divided into subproblems
reflecting intrinsic complexity of arc structures. We show that APS(Crossing, Plain) is
NP-complete, thereby answering an open problem [6]. Furthermore, to get more insight into
where actual border of APS hardness is, we refine APS classical subproblems in much the
same way as in [11] and give a complete categorization among various restrictions of APS
problem complexity.

Keywords: RNA structures, Arc-Preserving Subsequence, Computational complexity.

1 Introduction

At a molecular state, the understanding of biological mechanisms is subordinated to RNA functions
discovery and study. Indeed, it is established that the conformation of a single-stranded RNA
molecule (a linear sequence composed of ribonucleotides A, U , C and G, also called primary
structure) partly determines the molecule function. This conformation results from the folding
process due to local pairings between complementary bases (A−U and C−G). The RNA secondary
structure is a collection of folding patterns that occur in it.

RNA secondary structure comparison is important in many contexts, such as (i) identification
of highly conserved structures during evolution which suggest a significant common function for
the studied RNA molecules [9], (ii) RNA classification of various species (phylogeny)[2], (iii) RNA
folding prediction by considering a set of already known secondary structures [13].

Structure comparison for RNA has thus become a central computational problem bearing many
challenging computer science questions. At a theoretical level, RNA structure is often modelled
as an arc-annotated sequence, that is a pair (S, P ) where S is a sequence of ribonucleotides and P
represents hydrogen bonds between pairs of elements of S. Different pattern matching and motif
search problems have been investigated in the context of arc-annotated sequences among which
we can mention Arc-Preserving Subsequence (APS) problem, Edit Distance problem,
Arc-Substructure (AST) problem and Longest Arc-Preserving Subsequence (LAPCS)
problem (see for instance [3, 8, 7, 6, 1]). For other related studies concerning algorithmic aspects of
(protein) structure comparison using contact maps, refer to [5, 10].

In this paper, we focus on APS problem: given two arc-annotated sequences (S, P ) and (T, Q),
this problem asks whether (T, Q) can be exactly obtained from (S, P ) by deleting some of its bases
together with their incident arcs, if any. This problem is commonly encountered when one is search-
ing for a given RNA pattern in an RNA database [7]. Moreover, from a theoretical point of view,
APS problem can be seen as a restricted version of LAPCS problem, and hence has applications in
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structural comparison of RNA and protein sequences [3, 5, 12]. APS problem has been extensively
studied in the past few years [6, 7, 3]. Of course, different restrictions on arc-annotation alter APS
computational complexity, and hence this problem has been naturally divided into subproblems
reflecting the complexity of the arc structure of both (S, P ) and (T, Q): plain, chain, nested,
crossing or unlimited (see Section 2 for details). All of them but one have been classified as
to whether they are polynomial time solvable or NP-complete. The problem of the existence of a
polynomial time algorithm for APS(Crossing,Plain) problem was mentioned in [6] as the last
open problem in the context of arc-preserving subsequences. Unfortunately, as we shall prove in
Section 4, APS(Crossing,Plain) is NP-complete even for restricted special cases.

In analyzing the computational complexity of a problem, we are often trying to define a precise
boundary between polynomial and NP-complete cases. Therefore, as another step towards estab-
lishing the precise complexity landscape of APS problem, we consider that it is of great interest
to subdivide existing cases into more precise ones, that is to refine classical complexity levels of
APS problem, for determining more precisely what makes the problem hard. For that purpose,
we use the framework introduced by Vialette [11] in the context of 2-intervals (a simple abstract
structure for modelling RNA secondary structures). As a consequence, the number of complexity
levels rises from 4 to 8, and all the entries of this new complexity table need to be filled. Previous
known results concerning APS problem, along with our NP-completeness proofs, allow us to fill
all the entries of this new table, therefore determining what exactly makes the APS problem hard.

The paper is organized as follows. Provided with notations and definitions (Section 2), in
Section 3 we introduce and explain new refinements of the complexity levels we are going to
study. In Section 4, we show that APS({⊏, ≬}, ∅) is NP-complete thereby proving that classical
APS(Crossing, Plain) is NP-complete as well. As another refinement to that result, we prove
that APS({<, ≬}, ∅) is NP-complete. Finally, in Section 5, we give new polynomial time solvable
algorithms for restricted instances of APS(Crossing, Plain).

2 Preliminaries

An RNA structure is commonly represented as an arc-annotated sequence (S, P ) where S is a
sequence of ribonucleotides (or bases) and P is a set of arcs connecting pairs of bases in S. Let
(S, P ) and (T, Q) be two arc-annotated sequences such that |S| ≥ |T | (in the following, n = |S|
and m = |T |). APS problem asks whether (T, Q) can be exactly obtained from (S, P ) by deleting
some of its bases together with their incident arcs, if any.

Since the general problem is easily seen to be intractable [3], the arc structure must be re-
stricted. Evans [3] proposed four possible restrictions on P (resp. Q) which were largely reused
in subsequent literature: (1) there is no base incident to more than one arc, (2) there are no arcs
crossing, (3) there is no arc contained in another and (4) there is no arc.

These restrictions are used progressively and inclusively to produce five different levels of al-
lowed arc structure: Unlimited - general problem with no restrictions, Crossing - restriction (1);
Nested - restrictions (1) and (2); Chain - restrictions (1), (2) and (3); Plain - restriction (4).

Guo proved in [7] that APS(Crossing, Chain) is NP-complete. Guo et al. observed in [6] that
NP-completeness of APS(Crossing, Crossing) and APS(Unlimited, Plain) easily follows
from results of Evans [3] concerning LAPCS problem. Furthermore, they gave a O(nm) time
algorithm for APS(Nested, Nested). This algorithm can be applied to easier problems such as
APS(Nested, α) and APS(Chain, α) with α ∈ {Chain,Plain}. Finally, Guo et al. mentioned
in [6] that APS(Chain, Plain) can be solved in O(n + m) time. Observe that Unlimited level
has no restrictions, and hence is of limited interest in our study. Consequently, from now on we
will not be concerned anymore with that level. Until now, the question of the existence of an exact
polynomial algorithm for APS(Crossing, Plain) remained open. We will show in the present
paper that APS(Crossing,Plain) is NP-complete.

3 Refinement of APS problem

In this section, we propose a refinement of APS problem. We first state formally our approach
and explain why such a refinement is relevant for both theoretical and experimental studies.



3.1 Splitting the levels.

As we will show soon, APS(Crossing, Plain) is NP-complete. That result answers the last open
problem concerning APS computational complexity with respect to classical complexity levels.
However, we are mainly interested in the elaboration of a precise border between NP-complete
and polynomially solvable cases. Indeed, both theorists and practitioners might naturally ask for
more information concerning APS hard cases in order to get valuable insight into what makes the
problem difficult. As a next step towards better understanding what makes APS problem hard, we
propose to refine classically models used for classifying arc-annotated sequences. Our refinement
consists in splitting those models of arc-annotated sequences into more precise relations between
arcs. For example, such a refinement provides a general framework for investigating polynomial
time solvable and hard restricted instances of APS(Crossing, Plain), thereby refining in many
ways Theorem 1 (see Section 5).

We use three relations first introduced by Vialette [11] in the context of 2-intervals. Actually,
his definition of 2-intervals could almost apply in this paper (the main difference lies in the fact
that 2-intervals are used for representing sets of contiguous arcs). Vialette defined three possible
relations between 2-intervals that can be used for arc-annotated sequences as-well. They are the
following: for any two arcs A1 = (i, j) and A2 = (k, l) in P , we will write A1 < A2 if i < j < k < l
(precedence relation), A1 ⊏ A2 if k < i < j < l (nested relation) and A1 ≬ A2 if i < k < j < l
(crossing relation). Two arcs A1 and A2 are τ -comparable for some τ ∈ {<, ⊏, ≬} if A1τA2 or
A2τA1. Let P be a set of arcs and R be a non-empty subset of {<, ⊏, ≬}. The set P is said
to be R-comparable if any two distinct arcs of P are τ -comparable for some τ ∈ R. An arc-
annotated sequence (P, A) is said to be an R-arc-annotated sequence for some non-empty subset
R of {<, ⊏, ≬} if A is R-comparable. By abuse of notation, we write R = ∅ in case A = ∅. Observe
that our model cannot deal with arc-annotated sequences which contain only one arc. However,
having only one arc or none can not really affect the problem computational complexity. Just one
guess reduces from one case to the other.

As a straightforward illustration of above definitions, classical complexity levels for APS prob-
lem can be expressed in terms of combinations of our new relations: Plain is fully described by
R = ∅, Chain by R = {<}, Nested by R = {<, ⊏} and Crossing by R = {<, ⊏, ≬}. The key
point is to observe that our refinement allows us to consider new structures for arc-annotated
sequences, namely R ∈ {{⊏}, {≬}, {<, ≬}, {⊏, ≬}}, which could not be considered using classical
complexity levels. Although other refinements may be possible (in particular well-suited for param-
eterized complexity analysis), we do believe that such an approach allows a more precise analysis
of APS complexity.

Of course one might object that some of these subdivisions are unlikely to appear in RNA
secondary structures. However, it is of great interest to answer, at least partly, the following
question: Where is the precise boundary between polynomial and NP-complete cases ? Indeed,
such a question is relevant for both theoretical and experimental studies.

3.2 Immediate results

First, observe that we only have to consider cases of APS(R1,R2) where R1 and R2 are compatible,
i.e. R2 ⊆ R1. Indeed, if this is not the case, we can immediately answer negatively since there
exists two arcs in T which satisfy a relation in R2 which is not in R1, and hence T simply cannot
be obtained from S by deleting bases of S. Those useless cases are simply denoted by hatched
areas in Table 1.

Some known results allow us to fill many entries of the new complexity table derived from our
refinement. The remainder of this subsection is devoted to detailing these first easy statements. We
begin with an easy observation concerning complexity propagation properties of APS problem.

Observation 1 Let R1, R2, R′

1
and R′

2
be four subsets of {<, ⊏, ≬} such that R′

2
⊆ R2 ⊆ R1

and R′

2
⊆ R′

1
⊆ R1. If APS(R′

1
, R′

2
) is NP-complete (resp. APS(R1, R2) is polynomial time

solvable) then so is APS(R1, R2) (resp. APS(R′

1
, R′

2
)).



On the positive side, Guo et al. have shown that APS(Nested, Nested) is solvable in O(nm)
time [6]. Another way of stating this is to say that APS({<, ⊏}, {<, ⊏}) is solvable in O(mn)
time. That result together with Observation 1 may be summarized by saying that APS(R1, R2)
for any compatible R1 and R2 such that ≬/∈ R1 and ≬/∈ R2 is polynomial time solvable.

Conversely, Evans has proved that APS(Crossing,Crossing) is NP-complete [3]. A simple
reading shows that her proof is concerned with {<, ⊏, ≬}-arc-annotated sequences, and hence
she actually proved that APS({<, ⊏, ≬}, {<, ⊏, ≬}) is NP-complete. Similarly, in proving that
APS(Crossing,Chain) is NP-complete [7], Guo actually proved that APS({<, ⊏, ≬}, {<}) is
NP-complete. Note that according to Observation 1, this latter result implies that APS({<, ⊏, ≬ },
{<, ⊏}) and APS({<, ⊏, ≬},{<, ≬}) are NP-complete. Table 1 surveys known and new results for
various types of our refined APS problem. Observe that this paper answers all questions concerning
APS problem with respect to both classical and new complexity levels.

APS

R1\ R2 {<, ⊏, ≬} {⊏, ≬} {<, ≬} {≬} {<, ⊏} {⊏} {<} ∅

{<,⊏, ≬} NP-C [3] NP-C ⋆ NP-C [7] NP-C ⋆ NP-C [7] NP-C ⋆ NP-C [7] NP-C ⋆

{⊏, ≬} NP-C ⋆ //// NP-C ⋆ //// NP-C ⋆ //// NP-C ⋆

{<, ≬} NP-C ⋆ NP-C ⋆ //// //// NP-C ⋆ NP-C ⋆

{≬} O(nm2) ⋆ //// //// //// O(nm2) ⋆

{<, ⊏} O(nm) [6] O(nm) [6] O(nm) [6] O(nm) [6]

{⊏} O(nm) [6] //// O(nm) [6]

{<} O(nm) [6] O(n + m) [6]

∅ O(n + m) [6]

Table 1. Complexity results after complexity levels refinement. ////: useless cases. ⋆: results from this
paper.

4 Hardness results

We show in this section that APS({⊏, ≬}, ∅) is NP-complete thereby proving that APS(Crossing,
Plain) is NP-complete. That result answers an open problem posed by Gramm, Guo and Nieder-
meier in [6] which is the last open problem concerning the APS computational complexity with
respect to classical complexity levels, i.e., Plain, Chain, Nested and Crossing.

We provide a polynomial time reduction from the well known NP-complete 3-Sat problem [4]:
Given a set Vn of n variables and a set Cq of q clauses (each composed of three literals) over Vn,
the problem asks to find a truth assignment for Vn that satisfies all clauses of Cq.

It is easily seen that APS({⊏, ≬}, ∅) is in NP. The remainder of the section is devoted to
proving that it is also NP-hard. Let Vn = {x1, x2, ...xn} be a finite set of n variables and Cq =
{c1, c2, . . . , cq} a collection of q clauses. Observe that there is no loss of generality in assuming
that literals are left-right ordered, i.e., if ci = (xj ∨ xk ∨ xl) then j < k < l. Let us first detail the
construction of sequences S and T :

S = Ss
x1

A Ss
x1

Ss
x2

A Ss
x2

. . . Ss
xn

A Ss
xn

Sc1
Sc2

. . . Scq
Se

x1
Se

x2
. . . Se

xn

T = T s
x1

T s
x2

. . . T s
xn

Tc1
Tc2

. . . Tcq
T e

x1
T e

x2
. . . T e

xn

We now detail subsequences composing S and T . Let γm (resp. γm) be the number of oc-
currences of literal xm (resp. xm) in Cq. For each variable xm ∈ Vn, 1 ≤ m ≤ n, we con-
struct words Ss

xm
= ACkm , Ss

xm
= CkmA and T s

xm
= ACkmA where Ckm represents a word

of km = max(γm, γm) consecutive bases C. For each clause ci of Cq, 1 ≤ i ≤ q, we construct words
Sci

= UGGGA and Tci
= UGA. Finally, for each variable xm ∈ Vn, 1 ≤ m ≤ n, we construct

words Se
xm

= UUA and T e
xm

= UA.
Having disposed of the two sequences, we now turn to defining the corresponding two arc

structures (see Figure 1). In the following, Seq[i] will denote the ith base of a sequence Seq and,
for any 1 ≤ m ≤ n, lm = |Ss

xm
|. For all 1 ≤ m ≤ n, we create the two following arcs: (Ss

xm
[1],Se

xm
[1])

and (Ss
xm

[lm],Se
xm

[2]). For each clause ci of Cq, 1 ≤ i ≤ q, and for each 1 ≤ m ≤ n, if the kth



(i.e. 1st, 2nd or 3rd) literal of ci is xm (resp. xm) then we create an arc between any free (i.e. not
already incident to an arc) base C of Ss

xm
(resp. Ss

xm
) and the kth base G of Sci

(note that this
is possible by definition of Ss

xm
, Ss

xm
and Sci

). On the whole, the instance we have constructed
is composed of 3q + 2n arcs. We denote by APS-cp-construction any construction of this type.
In the following, we will distinguish arcs between bases A and U , denoted by AU -arcs, from arcs
between bases C and G, denoted by CG-arcs. An illustration of an APS-cp-construction is given
in Figure 1. Clearly, our construction can be carried out in polynomial time. Moreover, the result
of such a construction is indeed an instance of APS({⊏, ≬}, ∅), since Q = ∅ (no arc is added to T )
and P is a {⊏, ≬}-comparable set (since there are no arcs {<}-comparable).

Lemma 1. Let (S, P ) and (T, Q) be any two arc-annotated sequences obtained from an APS-cp-
construction. If (T, Q) can be obtained from (S, P ) by deleting some of its bases together with their
incident arcs, if any, then for each 1 ≤ i ≤ q and 1 ≤ m ≤ n : (i) Tci

is obtained from Sci
by

deleting two of its three bases G, (ii) T e
xm

is obtained from Se
xm

by deleting one of its two bases
U, (iii) T s

xm
is obtained from Ss

xm
ASs

xm
by deleting either Ss

xm
or Ss

xm
.

Proof. Let (S, P ) and (T, Q) be two arc-annotated sequences resulting from an APS-cp-construction.
(i) By construction, the first base U appearing in S (resp. T ) is Sc1

[1] (resp. Tc1
[1]). Thus, Tc1

[1]
is obtained from a base U of S at, or after, Sc1

[1]. Moreover, the number of bases A appearing
after Sc1

[1] in S is equal to the number of bases A appearing after Tc1
[1] in T . Therefore, every

base A appearing after Sc1
[1] and Tc1

[1] must be matched. That is, for each 1 ≤ i ≤ q, Tci
[3] is

matched to Sci
[5]. In particular, Tcq

[3] is matched to Scq
[5]. But since there are as many bases U

between Sc1
[1] and Scq

[5] as there are between Tc1
[1] and Tcq

[3], any base U in this interval in S
must be matched to any base U in this interval in T ; that is, for any 1 ≤ i ≤ q, Tci

[1] is matched
to Sci

[1]. Thus, we conclude that for any 1 ≤ i ≤ q, Tci
is obtained by deleting two of the three

bases G of Sci
.

(ii) By the above argument concerning the bases A appearing after Sc1
[1] and Tc1

[1], we know
that if (T, Q) can be obtained from (S, P ), then T e

xm
[2] is matched to Se

xm
[3] for any 1 ≤ m ≤ n.

Thus, for any 1 ≤ m ≤ n, T e
xm

is obtained from Se
xm

, and in particular T e
xm

[1] is matched to either
Se

xm
[1] or Se

xm
[2].

(iii) By definition, as there is no arc incident to bases of T , at least one base incident to every
arc of P has to be deleted. We just mentioned that T e

xm
[1] is matched to either Se

xm
[1] or Se

xm
[2]

for any 1 ≤ m ≤ n. Thus, since by construction there is an arc between Se
xm

[1] and Ss
xm

[1] (resp.
Se

xm
[2] and Ss

xm
[lm]), for any 1 ≤ m ≤ n either Ss

xm
[1] or Ss

xm
[lm] has to be deleted; and all these

arcs connect a base A appearing before Sc1
[1] to a base U appearing after Scq

[5]. Therefore, for
any 1 ≤ m ≤ n a base A appearing before Sc1

[1] in S is deleted. Originally, there are 3n bases
A appearing before Sc1

[1] in S and 2n appearing before the first base of Tc1
[1] in T . Thus, the

number of bases A not deleted in S and appearing before Sc1
[1] is equal to the number of bases

A appearing before Tc1
[1] in T . But since, for each 1 ≤ m ≤ n, a base A of either Ss

xm
or Ss

xm
is

deleted, we conclude that for each 1 ≤ m ≤ n, T s
xm

is obtained from Ss
xm

ASs
xm

, by deleting either
Ss

xm
or Ss

xm
. ⊓⊔

Fig. 1. Example of an APS-cp-construction with Cq = (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).



We now turn to proving that our construction is a polynomial time reduction from 3-Sat to
APS(Crossing, Plain).

Lemma 2. Let I be an instance of 3-Sat problem with n variables and q clauses, and I ′ an
instance ((S, P ); (T, Q)) of APS({⊏, ≬}, ∅) obtained by an APS-cp-construction from I. An as-
signment of the variables that satisfies the boolean formula of I exists iff T is an Arc-Preserving
Subsequence of S.

Proof. (⇒) Suppose we have an assignment AS of the n variables that satisfies the boolean formula
of I. By definition, for each clause there is at least one literal that satisfies it. In the following,
ji will define, for any 1 ≤ i ≤ q, the smallest index of the literal of ci (i.e. 1, 2 or 3) which, by
its assignment, satisfies ci. Let (S, P ) and (T, Q) be two sequences obtained from an APS-cp-
construction from I. We look for a set B of bases to delete from S in order to obtain T .

For each variable xm ∈ AS with 1 ≤ m ≤ n, we define B as follows: (i) if xm = True then B
contains each base of Ss

xm
and Se

xm
[1], (ii) if xm = False then B contains each base of Ss

xm
and

Se
xm

[2], (iii) if ji = 1 then B contains Sci
[3] and Sci

[4], (iv) if ji = 2 then B contains Sci
[2] and

Sci
[4], (v) if ji = 3 then B contains Sci

[2] and Sci
[3].

Since a variable has a unique value (i.e. True or False), either each base of Ss
xm

and Se
xm

[1]
or each base of Ss

xm
and Se

xm
[2] are in B for all 1 ≤ m ≤ n. Thus, B contains at least one base in

S of any AU -arc of P .
For any 1 ≤ i ≤ q, two of the three bases G of Sci

are in B. Thus, B contains at least one
base in S of two thirds of CG-arcs of P . Moreover, Sci

[ji + 1] is the base G that is not in B. We
suppose in the following that the jth

i literal of clause ci is xm, with 1 ≤ m ≤ n. Thus, by the
way we build the APS-cp-construction, there is an arc between a base C of Ss

xm
and Sci

[ji + 1]
in P . By definition, if AS is an assignment of the n variables that satisfies the boolean formula,
AS satisfies ci and thus xm = True. We mentioned, in the definition of B that if xm = True then
each base of Ss

xm
is in B. Thus, the base C of Ss

xm
incident to the CG-arc in P with Sci

[ji + 1] is

in B. A similar result can be found if the jth
i literal of clause ci is xm. Thus, B contains at least

one base in S of any CG-arc of P .
If S′ is the sequence obtained from S by deleting all the bases of B together with their incident

arcs, if any, then there is no arc in S′ (i.e. neither AU -arcs or CG-arcs). By the way we define B,
S′ is obtained from S by deleting all the bases of either Ss

xm
or Ss

xm
, two bases G of Sci

and either
Se

xm
[1] or Se

xm
[2], for 1 ≤ i ≤ q and 1 ≤ m ≤ n. It is easily seen that sequence S′ is similar to T .

(⇐) Let I be an instance of 3-Sat problem with n variables and q clauses. Let I ′ be an
instance ((S, P ); (T, Q)) of APS{⊏, ≬}, ∅) obtained by an APS-cp-construction from I such that
(T, Q) can be obtained from (S, P ) by deleting some of its bases (i.e. a set of bases B) together
with their incident arcs, if any. By Lemma 1, either all bases of Ss

xm
or all bases of Ss

xm
are in B.

Consequently, for 1 ≤ m ≤ n, we define an assignment AS of the n variables of I as follows: (i) if
all bases of Ss

xm
are in B then xm = True, (ii) if all bases of Ss

xm
are in B then xm = False.

Now, let us prove that for any 1 ≤ i ≤ q clause ci is satisfied by AS. By Lemma 1, for any
1 ≤ i ≤ q there is a base G of segment Sci

(say the ji + 1th) that is not in B. By the way we build
the APS-cp-construction, there is a CG-arc in P between Sci

[ji + 1] and a base C of Ss
xm

(resp.

Ss
xm

) if the jth
i literal of ci is xm (resp. xm).

Suppose, w.l.o.g., that the jth
i literal of ci is xm. Since Q is an empty set, at least one base of

any arc of P is in B. Thus, the base C of Ss
xm

incident to the CG-arc in P with Sci
[ji + 1] is in

B (since Sci
[ji + 1] 6∈ B). Therefore, by Lemma 1, all the bases of Ss

xm
are in B. By the way we

define AS, xm = True and thus ci is satisfied. A similar result can be obtained if the jth
i literal of

ci is xm. ⊓⊔

We have thus proved the following.

Theorem 1. APS({⊏, ≬}, ∅) is NP-complete.

It follows immediately from Theorem 1 that APS({<, ⊏, ≬}, ∅), and hence APS(Crossing,
Plain), are NP-complete. One might naturally ask for more information concerning hard cases



of APS problem in order to get valuable insight into what makes the problem difficult. Another
refinement of the hardness of APS(Crossing,Plain) is given by the following theorem.

Theorem 2. APS({<, ≬}, ∅) is NP-complete.

Proof (Sketch of). The proof is also by reduction from 3-Sat. Due to space considerations, the
rather technical proof is deferred to the full version of the paper and only sketch main ideas behind
Theorem 2. One of the reasons making the proof complicated is that all arcs have to be {<, ≬}-
comparable, and hence we can not close an arc before closing all arcs which have been opened
before. To overcome this problem we need pairs of strings gadgets which act as “signal repeaters”
so that we can close and re-open a link carrying a truth value. Actually, repeaters unfortunately
invert truth value and hence we need to deal with pairs of repeaters (first kind and second kind
repeaters) where each repeater of the second kind is paired with a repeater of the first kind. ⊓⊔

5 Two polynomial time solvable APS problems

We prove in this section that APS({≬}, ∅) and APS({≬},{≬}) are polynomial time solvable. In
other words, relation ≬ alone does not imply NP-completeness. We need the following notations.
Sequences are the concatenation of zero or more elements from an alphabet. We use the period “.”
as the concatenation operator, but frequently the two operands are simply put side by side. Let
T = T [1] T [2] . . .T [m] be a sequence of length m. For all 1 ≤ i ≤ j ≤ m, we write T [i : j] to denote
T [i] T [i + 1] . . . T [j]. The reverse of T is the sequence T R = T [m] . . . T [2] T [1]. A factorization of
T is any decomposition T = x1 x2 . . . xq where x1, x2, . . . xq are (possibly empty) sequences. Let
(T, A) be a {≬}-arc-annotated sequence and (i, j) ∈ A, i < j, be an arc. We call T [i] a forward base
and T [j] a backward base. We will denote by LFT the position of the last forward base in (T, A)
and by FBT the position of the first backward base in (T, A), i.e., LFT = max{i : (i, j) ∈ A} and
FBT = min{j : (i, j) ∈ A}. By convention, we let LFT = 0 and FBT = |T | + 1 if A = ∅. Observe
that LFT < FBT . We begin by proving a factorization result on {≬}-arc-annotated sequences.

Lemma 3. Let S and T be two {≬}-arc-annotated sequences of length n and m, respectively. If
T occurs as an arc preserving subsequence in S, then there exists a factorization (possibly trivial)
T [LFT +1 : FBT −1] = xy such that T [1 : LFT ] · x · (y · T [FBT : m])R occurs as an arc preserving
subsequence in S[1 : FBS −1] · S[FBS : n]R.

Proof. Suppose that T occurs as an arc preserving subsequence in S. Since both S and T are
{≬}-arc-annotated sequences, then there exist two factorizations S[1 : LFS ] = uw and S[FBS :
n] = zv such that: (i) T [1 : LFT ] occurs in u, (ii) T [LFT +1 : FBT −1] occurs in w · S[LFS +1 :
FBS −1] · z and (iii) T [FBT : m] occurs in v. Then it follows that there exists a factorization
T [LFT +1 : FBT −1] = xy such that x occurs in w · S[LFS +1 : FBS −1] and y occurs in z,
and hence T ′ = T [1 : LFT ] · x · (y · T [FBT : m])R occurs as an arc preserving subsequence in
S′ = S[1 : FBS −1] · S[FBS : n]R ⊓⊔

Theorem 3. APS({≬},{≬}) is solvable in O(nm2) time.

Proof. The algorithm is as follows:

Data : Two {≬}-arc-annotated sequences S and T of length n and m, respectively

Result : true iff T occurs as an arc-preserving subsequence in S

begin

1 S′ = S[1 : FBS −1] · S[FBS : n]R

2 foreach factorization T [LFT +1 : FBT −1]| = xy do

3 T ′ = T [1 : LFT ] · x · (y · T [FBT : m])R

4 if T ′ occurs as an arc preserving subsequence in S′ then

5 return true

6 return false

end



Correctness of the algorithm follows from Lemma 3. What is left is to prove the time complexity.
Clearly, S′ = S[1 : FBS −1] · S[FBS : n]R is a {⊏}-arc-annotated sequence. The key point is to
note that, for any factorization T [LFT +1 : FBT −1]| = xy, the obtained T ′ = T [1 : LFT ] · x · (y ·
T [FBT : m])R is a {⊏}-arc-annotated sequence as-well. Now let k be the number of arcs in T .
So there are at most m − 2k iterations to go before eventually returning false. According to the
above, Line 4 constitutes an instance of APS({⊏},{⊏}). But APS({⊏},{⊏}) is a special case of
APS({<, ⊏},{<, ⊏}), and hence is solvable in O(nm) time [6]. Then it follows that the algorithm
as a whole runs in O(nm(m − 2k)) = O(nm2) time. ⊓⊔

Clearly, the proof of Theorem 3 relies on an efficient algorithm for solving APS({⊏},{⊏}): the
better the complexity for APS({⊏},{⊏}), the better the complexity for APS({≬},{≬}). We have
used only the fact that APS({⊏},{⊏}) is a special case of APS({<, ⊏},{<, ⊏}). It remains open,
however, wether a better complexity can be achieved for APS({⊏},{⊏}). Theorem 3, combined
with Observation 1, carries out easily to restricted versions.

Corollary 1. APS({≬},∅) is solvable in O(nm2) time.

6 Conclusion

In this paper, we investigated the APS problem time complexity and gave a precise charac-
terization of what makes the APS problem hard. We proved that APS(Crossing,Plain) is
NP-complete thereby answering an open problem posed in [6]. Note that this result answers the
last open problem concerning APS computational complexity with respect to classical complexity
levels, i.e., Plain, Chain, Nested and Crossing. Also, we refined the four above mentioned
levels for exploring the border between polynomial time solvable and NP-complete problems. We
proved that both APS({⊏, ≬}, ∅) and APS({<, ≬}, ∅) are NP-complete and gave positive results
by showing that APS({≬}, ∅) and APS({≬},{≬}) are polynomial time solvable. Hence, the refine-
ment we suggest shows that APS problem becomes hard when one considers sequences containing
{≬, α}-comparable arcs with α 6= ∅. Therefore, crossing arcs alone do not imply APS hardness.
It is of course a challenging problem to further explore the complexity of the APS problem, and
especially the parameterized views, by considering additional parameters such as the cutwidth or
the depth of the arc structures.
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