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Abstract not all chaotic maps are suitable for encryption
This paper presents the first results of the stiedil purposes. However, most of the authors simply

and dynamical analysis of a new function showing neglected the statistical properties, which havédo
random properties firstly proposed by Lozi. The satisfied by the chaotic map, if used as PRNG. &his

phase plane analysis via the critical lines toluvedd typically the case when the basin of attractiomas
to delimit analytically the holes in the chaotitrattor dense or exhibits holes, so the state variablesaire
and to follow their evolution. In addition, the uvds equidistributed.

of the statistical NIST tests for pseudo-randomness The most widely and universally used test todatk
showed to be successful and significantly improved PRNG is the National Institute of Standards and

after an under-sampling of the output signal. Technology Test, known as NIST tests.

Key words 2  System Definition

Lozi map, chaotic map, Random Number

Generator, NIST test The system under consideration has been proposed
first by Lozi in [1] who emphasized its random

1 Introduction features. It is defined on the p-dimensional tofiis=

[-1,1[° by the map M: TP =>T°
The incessantly increasing demand for secure data
storage and transmission (e-banking, e-payments,
personal data encoding...) motivates the reseanch f

. : xi+;=f—2|xi|+k‘r X 7o
newer and more secure data encryption techniques. ®

The latter are classically performed via Pseudo R N 2
Random Number Generators (PRNG) which, besides My xow = 1= 2|zl H i x 1)
being highly reliable, should be able to generate a

many different encoding sequences (hidden in the o o .
encryption keys) as possible. The encryption kéeys | Tapr =4 — 2|1y | i T x 10

in the system parameters, since the structurenizyal
supposed to be known by the pirates. For this reaso
during the last decade, there has been a pletHora o
papers devoted to the nonlinear maps used for ichaot
encryption.

Indeed, the well known intrinsic sensitivity to &ln
parameter changes and initial conditions exhibitgd _ _ _ _
the chaotic maps makes them perfect candidates for if xl,=1- Z‘X,’q‘ +k! xxit<-1
encryption. Thus, for each - even infinitesimal -

where the parameteks= (-1)"*or K = 1, the latter
case being considered hereafter. The flow x is
contained on the torus:

parameter change, a different chaotic sequencéwill add 2 @
generated, so in theory an infinite number of efmupd ; i =1 =i+ L x it >
sequences can be obtained - and therefore, arténfin it Xn =1 Z‘X”‘ k' *xa"21
number of keys (if we make abstraction of the substract 2

quantization). Nevertheless, designing a chaotic
PRNG remains a very tough problem, because
chaoticity is only a necessary, but not a sufficien
feature. Indeed, the encrypting sequence has tbiexh
also a set of statistical properties [3], [4] ahdrefore

[X,| denotes the absolute valuexgftherefore the map
(1) is a noninvertible map (i.e. the backward itesa
are not unique, or do not exist).



Hereafter we deal with the dynamical analysighef Singularities of type 2. Critical lines.
second order system \on the torus 3, here simply
denoted as M. The critical lines CL [2] are singularities of
dimension 1 and represent an important tool for the
Therefore, considering thq can take two different ~ analysis of noninvertible maps. By definition, the
values, there are four regions if With locally linear ~ critical lines separate regions of the phase spaite
behaviour (two forxt, and two forx?). Thus the map different number of preimages (backward iterates).

can also be considered as a piece-wise linear one. the case of piece-wise linear maps, they are tise fi
iterates of the lines of discontinuity GLof the

2.1 Analysis of the 2D-System system.

Singularities of type 1. Fixed and periodic points. For the two dimensional system,Nhere are four

groups of critical lines CL with preimages ¢lgiven

The fixed points are to be studied independeintly ~ bY:
the four regions of AThey are defined by: . .
Critical Lines A
M (x) = x 3) .
For cLA : x =0, we have:
Keeping in mind thatx= (x!, %% and X <[-1,1],
for xX!>0,x*>0, the fixed point is located at

2 _ .

(x}, x®) = (0.5,0.5) It is unstable with eigenvalues CL:x =-2x -1 if ¥*>0

(A1, A2) = (-3,-1). But it is numerically stable because AZ. 9 iy 2

of the structure of the floating point numbers. CLi*:1x*=2x' -1 if x¥*<0
Forx'< 0, x*< 0, each point of the ling?=-1 - x* Critical Lines B

is an unstable fixed point with positive

eigenvalues)(y, Ay) =(3,1). For CLE:x'=-1

Iiorx1 >0, X2 < 0, there is only one fixed point at CL{ : x*=2x if x¥*<0,x0 [0,0.5]
(<}, ¥%) = (0, -1), which is unstable. The eigenvalues CLE?: 2 =25 =2 if >0, xlD[— 1_05]

are {u, XZ):(\/E-_\/E)' CLfg:XZZZXl_Z if X2<O )(1|:|[05,1[

Forx'< 0,X*>0, the single fixed point x{, x%) = B4. 2= _9 if v2>0. 0]~ 050
(-1, 0) has the same eigenvalues as before, aaldds Cli™-x X X*>0,x [ o ]
unstable.

Critical Lines C

Due to the piece-wise linear nature of (Eql- Eq.2 For CL%: x°=0
closed formulas can be found for every periodic
solution, see fig.1 with all period-2 cycles: CLS!: 2 = _E (Xl + 1) if x>0
2

In= Xatd

CLlczix2=%(x1+1) if xX<0

0al . Critical Lines D
0B+ o » * -

* *
04t . » 1 [#cyerd For CL_Dl: X2 = —1
02F » 4 |OCycle 2 Xl

» Cycle 3 X
-*znj: o 0 o | foes CL: X = if x<0,x°0[005]

04F B Xl
° T CLP?:x*=-2--1 if ¥>0,x*0[-1-05
08¢

R L L L L L L
- j—

2
o8 06 m4 02 U 0z 04 08 08 1 CLPs:XZ———
Xy 2

2

Figure 1. Period 2 solutions of the map K1)
+1 if ¥ <0,x20[05]

if x>0, x’0[- 050]

2 _ 114172
on thetorud“ = [-1,1] CLP*: 2=



shows the projection of the invariant measure of 3D
(resp.4D) - systems onto the',(x%) coordinates for
values ofx’ and x* chosen inside the diamond-like

holes,0.49 < x® £0.51 (resp0.49 < x*,x* <0.51).

Figure 2. Critical lines of the mapM1) on the 0B
torus T2 = [-1,1[ 2

08

Fig.2 shows the invariant measure associated to the 08 05 04 02 0 02 04 0B 08 1

chaotic mapping for the second order system (the , o
Figure 4. Invariant measure associated to the mafi Mn the

torus ® = [-1, 1[®

1

transient of the first 1076 iterations has beenaff)t

It can be observed that this measure is not constan
everywhere and vanishes on two diamond-like holes.
The latter are completely delimited by segmenthef !

critical lines CL;*, CL2*, CcLY?, cLP?, and 08

CL™, CLE, cL:, CLP? so there evolution can

be analytically followed under parameter or system
order variation. Moreover, as the holes are
symmetrical, the signal could be considered as *°
symmetrically distributed as well (i.e. there ae a 02
many points in the half plang<0 than in the half a4
plane x>0). In the case where'Xl and k=-1, the

invariant measure does not present the same pattern
see fig. 3, and needs a more sophisticated study.
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Figure 5. Invariant measure associated to the mafibn the
torus T = [-1, 1[*

050

The output of the system has been arbitrary chasen

Yo = X

064

The NIST tests proposed by the National Institfte
Standards and Technology [4] require a binary s$jgna
s . . ‘ ‘ ‘ whereas the generated chaotic output contains real

EE 4 25 o o5 f 15 values (floating point numbers), therefore an

* appropriate binarization has to be performed pidor
applying the tests. Several types of floating-point
binarization have been tested, such as the standard
IEEE754 [5] that allows the conversion in singledan
double formats (32 or 64 bits). However, as the map
(1) generates only numbers betw[ee , a

The measure of the holes decreases with the s&rea significant number of bits remain always constant.
of the system dimension, and becomes neglectable fo Thus, periodic patterns appear necessarily in the
the four dimensional Lozi system,NiL) which shall sequence.
be considered hereafter. As an example Fig 4 Ggsp.

Figure 3. Invariant measure associated to the maglylon the
torusT?=[-1,1[? where =1 and R=-1

3 NIST Tests for the 4D-System



Finally, the selected approach in this paperhbeen PVALUE PROPORTION STATISTICAL TEST
to choose a threshold value, and classify all the ;=7 -co7——— "2 7=~~~ "—7--————==—-

. 0.500934 a0/60 Freguenc
numbers above this threshold as ones, and all theg.ozoozs 59560 Bmgkpreguency
0.468595 a0,/a0 Cumulativesums
others as zeros. 0.862344 G060 cumulativesums
0.862544 56,60 RUNS
The optimal threshold is a tricky problem, foeth  £-982277 ggjgg LongestRUn
system (1) it has been naturally chosen as: 0. 148094 B0/60 FFT
0.000000 % 47/60 % nonowerlappingTemplate
0.000000 % 46780 % oOverlappingTemplate
if y >0 b =1 0.671779 S9/60 Universal
n=— n 4 0.000000 ¥ 1/60 ¥ ooapproximateEntropy
_ ( ) 0.509162 46,/47 RandomExcursions
else bn =0 0. 098036 46,47 rRandomExcursionswvariant
0. 000000 54,760 ¥ serial
0.706145 59,60 LinearcompTlexity

For the & order systenM 4, the holes become much
smaller, and it can be assumed that the outpuékign Table 1.
equidistributed. ) )
Conclusion: four of the tests fail.
Length of the original sequence: 10”8 bits. o
For the second test, the original sequence &as b
Initial condition (randomly chosen) divided into 100 bit strings, each of length 10"6.

x,=[0.6324,-00975,0.278,-0.5469 Ig;;tzh(;f‘givtvgt‘r?n;f‘g:\j two)

. Quantity of bit strings: 100
The statistical test evaluates the randomnegseof
sequence: the null hypothesis (HO) assumes that it
rand_om, and the alternative hypothesis (Ha) assumes. . C™ frorortion  eTATIoTICAL TEoT
that it is not random.
For a successful test, the sequence must be adcepte) t0i%%  100/100  6iodkerciuency

as being a random. The P-value (table 1) is a cexnpl ©.719747 90,100 Cumulativesums

quantifier used to measure if the zeroes and tles on §: 334338 227100 fumulanivesums
in the sequence can be considered as uniformly . 017912 26,100 LongestRun
distributed 0.4159021 1004100 Ran

Istributed. _ _ _ 0. 058984 98,100 FET )

A test is successful if the p-value is supermthe g- gggggg " g%ﬁgg " gﬂﬂo\{erwpp;ﬂgT?m_{tﬂate
significance level (for this case 0.01). In additithe 0 An6097 557100 R L
minimum pass rate for each statistical test with th ©.000000 * 20100 * ApproximateEntropy

. . . . 0.392456 G2 /63 RandomExcursions
exception of the random excursion (variant) test is g 131645 60763 RandomExeurss ansvars ant
approximately = 57 for a sample size = 60 binary 9.01358% 957100 *  serial .

. . 0.437274 93,100 LinearComplexity
sequences (approximately = 96 for a sample size =
100). The minimum pass rate for the random Table 2.

excursion (variant) test is approximately = 46 #or

sample size = 49 binary sequences (approximately =Conclusion: again, four of the tests fail.

64 for a sample size = 68). The failing tests are

denoted by an asterisk (¥). To improve the results, we applied an under-

sampling which has been shown to improve the

For the NIST test, each bit stream is consideed  statistical properties of the signal [3]. For alseure

different sequence, so in order to evaluate thelts S we take one bit out of ten, periodically.

different lengths bit stream have been tested and

compared. S0k ke N
For the first test, the original sequence hasnbee

divided into ten sub-sequences (or bit strings)iigav ~ Same initial condition:

a length of 10"7 points.

xo=[0.6324,-00975,0.278,-0.5469

Test 1 (shown in Table one) Test 1

Length of bit string: 1.666.666

Length of bit string: 1.666.666 Quantity of bit strings: 60

Quantity of bit strings: 60



FP=-VALUE FROPORTICHN
0.407091 60,60
0.074177 60,60
0.232760 60,60
0.568055 60,60
0,.602458 580,60
0,178278 59,/60
0.148004 59,/60
0.232750 59,/60
0.834308 59,60
0.468535 59,60
0.500934 59,/60
0.275709 60,60
0, 611108 47,/40
0.027405 49,/40
0.772760 59,/60
0.602458 59,/60
0,253551 59,/60
Tabl
Test 2

Length of bit string: 1M

Freguency
BlockFreguency
Cumulativesums
cumulativesums

RLUNS

LongestRUN

Ran

FFT

Monover lappingTemplate
overlappingTemplate
Universal
ApproximateEntropy
randomExcursions
randomExcursionsvariant
serial

serial
LinearComplexity

e 3.

Quantity of bit strings: 100

Freguency
BlockFreguency
CumuTativesums
CumuTativesums

Runs

LongestRUN

Ran

FFT

Monower lappingTemplate
overlappingTemplate
universal
ApproximateEntropy
RandomExcursions
Randomexcursionsvariant
serial
LinearComplexity

P-vALUE PROPORTION
0.224821 100,100
0. 678688 G99,/2100
0.3345358 100100
0.035174 100,100
0.383827 99,100
0.9538355 97 /100
0. 7309918 99,2100
0.4584302 G%,/100
0.437274 G800
0. 678688 100100
0.45558357 95,100
0. 678888 99,2100
0.3592456 62 /63

0. 756476 G163

0. 779188 G99,/2100
0. 730518 G8,/100

Tabl

Now, all tests are statistically successful; @eower
it should be emphasized that the results do no¢ntp

on the bit strings quantity

e 4.

4 Conclusion

Dynamical and statistical analysis demonstrated t
efficiency of a new map firstly proposed by Lozher
NIST tests carried out have been improved using a
constant under-sampling. Future work with chaotic
under-sampling has to be envisaged. The main
difference between this model and other chaotic
pseudo-random number generators is that this map no
only provides one single stream of pseudo-random
number but several uncorrelated parallel streams of
numbers. This property is very useful in the cake o
simulation of multi-agent complex problem.
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