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Exploring Membranes for Controlling Aspects
Résumé : In most aspect-oriented languages, aspects have an unrestricted
global view of computation. Several approaches for aspect scoping and more
strongly encapsulated modules have been formulated to restrict this controversial
power of aspects. This paper proposes to leverage the concept of programmable
membranes developed by Boudol, Schmitt and Stefani, as a means to tame
aspects by customizing the semantics of aspect weaving locally. Membranes
subsume previous proposals in a uniform framework. Because membranes give
structure to computation, they enable flexible scoping of aspects; because they
are programmable, they make it possible to define visibility and safety constraints,
both for the advised program and for the aspects. We first describe membranes
for AOP without committing to any specific language design. In addition, we
then illustrate an extension of AspectScheme with membranes, and explore the
instantiation of programmable membranes in the Kell calculus. The power
and simplicity of membranes open interesting perspectives to unify multiple
approaches that tackle the unrestricted power of aspect-oriented programming.

Mots-clés : Aspect-oriented programming, aspect scoping, programmable
membranes
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1 Introduction
In the pointcut-advice model of aspect-oriented programming, crosscutting be-
havior is defined by means of pointcuts and advices. Because join points identi-
fied by pointcuts can be scattered, weaving typically requires aspects to have a
global view of computation. The fact that aspects have an unrestricted global
view on computation has however raised many concerns about the pertinence
of AOP, especially in terms of modular reasoning [1]. Different proposals have
emerged to tackle this extreme power given to aspects. On the one hand, some
proposals make it possible to control the scope of aspects; the scope of an aspect
is defined as the set of join points the aspect sees, i.e. against which its pointcuts
are matched. Examples include statically and dynamically-scoped aspects [7],
scoping strategies [15], as well as execution levels [17]. These proposals can
be seen as ways to reduce the impact of an aspect on the aspect deployment
side. On the other hand, other proposals have adopted the dual perspective
and focused on how to make it possible for a given module to protect its own
computation from advising. Examples include Open Modules [1], XPIs [8], and
IIIA [14]. Yet other proposals rely on types to control the effects that aspects
can induce [10].

Stepping back, aspect-oriented programming can be seen as exposing com-
putation as events to which aspects can react. The underlying issues discussed
above are therefore related to scoping and control of events in general. These
issues have been explored in particular by the distributed systems community
(where, of course, many other concerns apply). In this respect, we find the
notion of programmable membranes developed by Boudol [5] and Schmitt and
Stefani [12], themselves loosely inspired by the biological notion of cells and
membranes, to be particularly appealing as a general control mechanism. This
paper proposes to adapt the notion of programmable membranes to control
the controversial power of aspects. We describe a notion of membranes in an
AOP context, which subsumes and makes it possible to combine various existing
proposals for controlling aspects, in a single uniform framework.

To introduce our proposal, let us first consider Figure 1, which depicts the
basic weaving protocol between a base program and an aspect. The program
emits join points that are passed to the aspect for weaving. The aspect may
then proceed (with a possibly modified join point). When the program is done
with the original computation, the value is passed back to the aspect so that it
can complete its advice. Finally, the advice returns a (possibly modified) value,
which is used to resume the base program.

weave(jp)

proceed(jp')

value(v)
resume(v')

program aspect

Figure 1: Aspect weaving protocol.
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The basic idea of our proposal is to wrap the program and the aspect of Fig-
ure 1 inside their own membranes. In our approach, membranes are thus over-
laid on top of computation, in charge of propagating joint points and controlling
the weaving protocol of their inner computation. We introduce the possibility
to register aspects in membranes, and to bind membranes so as to advise the
computation of other membranes. Because membranes are programmable, join
point propagation and weaving can be customized locally.

Programmable membranes bring two major benefits to AOP: (a) because
they give structure to computation, they enable flexible scoping (they actually
generalize the notion of execution levels [17] to arbitrary topologies); (b) because
they are programmable, they make it possible to define visibility and safety
constraints on both the “base” and “aspect” sides of the weaving protocol, hence
tailoring particular weaving semantics and guarantees locally.

This paper first explores the notion of programmable membranes for AOP,
describing the general concepts and benefits of membranes for taming aspects—
without committing to a specific language design. Still, beyond this conceptual
contribution, this paper contributes both a concrete and a formal instantiation
of membranes for AOP.

After a brief introduction to execution levels, highlighting their topological
limitations (Section 2), we give a high-level overview of membranes for AOP,
describing their application to control visibility of join points and enforce safety
and encapsulation properties (Section 3). Section 4 describes the benefits of
membranes derived from flexible topological scoping, which completely sub-
sumes execution levels [17]. Section 5 goes further by describing different rela-
tions between membranes (co-observation, hierarchical nesting, and crosscutting
membranes) and their applications. Once the different concepts and benefits
of the proposals are presented, we progressively dive into more details. Sec-
tion 6 clarifies the relation between membranes and computation, and discusses
a range of possible instantiations of the model for concrete membrane-based
AOP languages. We illustrate a specific point in the design space of membrane-
based AOP languages with MAScheme, an extension of AspectScheme [7] with
membranes, showing how different examples can be expressed. In Section 8,
we explore the instantiation of membranes for AOP in the Kell calculus [12],
describing different kinds of programmable membranes. Finally, Section 9 puts
membranes in perspectives and Section 10 concludes.

2 Execution Levels: Benefits and Limits
An aspect observes the execution of a program through its pointcuts, and affects
it with its advice. An advice is a piece of code, and therefore its execution also
produces join points. Similarly, pointcuts as well can produce join points. For
instance, in AspectJ, one can use an if pointcut designator to specify an arbitrary
Java expression that ought to be true for the pointcut to match. The evaluation
of this expression is a computation that produces join points. In higher-order
aspect languages like AspectScheme [7] and others, all pointcuts and advice are
standard functions, whose application and evaluation produce join points as
well.

The fact that aspectual computation produces join points raises the crucial
issue of the visibility of these join points. In most languages, aspectual compu-
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pc(          )

..p.move(..)..

call

..this.setX(..)..

call

ctx
adv(..ctx..) ...before... proceed(p); ...after...

call call call... ...

...

call ...

L0

L1

L2

Figure 2: Execution levels in action: pointcut and advice are evaluated at level 1,
proceed goes back to level 0 (from [17]).

tation is visible to all aspects—including themselves. This of course opens the
door to infinite regression and unwanted interference between aspects. These
issues are typically addressed with ad-hoc checks (e.g., using !within and cflow
checks in AspectJ) or primitive mechanisms (like AspectScheme’s app/prim).
However, all these approaches eventually fall short for they fail to address the
fundamental problem, which is that of conflating levels that ought to be kept
separate [6].

2.1 Execution levels in a nutshell
In order to address the above issue, Tanter proposed execution levels for AOP [17].
A program computation is structured in levels. Computation happening at
level 0 produces join points observable at level 1 only. Aspects are deployed
at a particular level, and observe only join points at that level. This means
that an aspect deployed at level 1 only observes join points produced by level-0
computation. In turn, the computation of an aspect (i.e. the evaluation of its
pointcuts and advice) is reified as join points visible at the level immediately
above: therefore, the activity of an aspect standing at level 1 produces join
points at level 2.

An aspect that acts around a join point can invoke the original computa-
tion; in AspectJ, this is done by invoking proceed in the advice. The original
computation ought to run at the same level at which it originated!1 In order to
address this issue, it is important to remember that when several aspects match
the same join point, the corresponding advices are chained, such that calling
proceed in advice k triggers advice k + 1. Therefore, the semantics of execution
levels guarantees that the last call to proceed in a chain of advice triggers the
original computation at the lower original level.

This is shown in Figure 2. A call to a move method in the program produces
a call join point (at level 1), against which a pointcut pc is evaluated. The
evaluation of pc produces join points at level 2. If the pointcut matches, it
passes context information ctx to the advice. Advice execution produces join

1This issue is precisely why using control flow checks in AspectJ in order to discriminate
advice computation is actually flawed [17].
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X

Y Z

X

Y Z

X

Y Z

X

Y Z

A

deploy m1 deploy m2 deploy and bind m3control
flow

m1 m1 m1

m2 m2

m3

(a) (b) (c) (d)

Figure 3: Membranes deployment and aspectual bindings. Membrane m1 (resp.
m2) wraps computation X and Y (resp. Y and Z). Membrane m3 is bound to
m1: join points from m1’s computation will be visible to m3’s aspect, A.

points at level 2, except for proceed: control goes back to level 0 to perform the
original computation, then goes back to level 1 for the after part of the advice.

2.2 Benefits and limits
By separating execution into levels, unwanted interactions between aspects are
avoided. For instance, it becomes possible to reuse off-the-shelf dynamic analysis
aspects and apply them to a given program, with consistent semantics [18]. It
is also possible to apply aspects to other aspects, by deploying aspects at higher
levels (for instance, detecting data races in a profiling aspect running at level 1
with an instance of Racer [4] running at level 2).

The structure that execution levels bring to computation is crucial to prop-
erly scope aspects and therefore limit their “global view” of a program compu-
tation. However, because execution levels are directly inspired by work on the
reflective tower [13], they represent but one possible topology for computation:
that of a one-dimensional tower. Such a tower is actually quite restrictive. For
instance, it is not possible to have an aspect at level 2 observe only the compu-
tation of one aspect at level 1, without seeing at the same time all computation
that happens at level 1. Similarly, if an aspect needs to observe computation at
both levels 0 and 1, because execution levels are not “transparent” (an aspect
only sees computation at the level immediately below it), the only possibility is
to deploy the aspect twice, at levels 1 and 2; but this raises the possibility for
the aspect to see its own computation again, thereby defeating one of the main
motivation for execution levels.

To sum up, giving structure to computation is important in aspect-oriented
programming; but there is no reason to stick to a rigid topology like that of
execution levels. This paper subsumes execution levels by exploring a much
more flexible structuring mechanism: membranes.

3 Programmable Membranes
We propose to adapt the notion of programmable membranes [5, 12] as a means
to structure execution and control aspect weaving: membranes can be deployed
around a given computation and serve as a scoping mechanism for the join points
emitted by that computation. A membrane is itself a programmable entity that
is responsible for a number of decisions, such as dealing with the propagation
of join points produced by its inner computation.
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jp

X

jp

m1
jp

m3

jp
weave(jp)

A

(2)
(3) m3 (4)

(5)

(6)(1)

Figure 4: From join point emission to aspect weaving. Computation X produces
a join point (1), which travels through membranes m1 and m3 (2-5) before being
processed by aspect A (6).

3.1 Deploying and binding membranes
In the general case, membranes can be deployed around any computation. Con-
sider for instance a control flow graph between arbitrary computations X, Y
and Z (Fig. 3(a)). One can deploy a membrane m1 around the computations
X and Y (b); and a membrane m2 around Y and Z (c). Membranes control
propagation of join points produced by these computations. Membranes give
structure to the computation so that aspects can be flexibly scoped. Aspects
can be registered in a membrane. We call advising membrane a membrane that
is bound to another membrane, called advised membrane. Aspects registered in
an advising membranes are woven on the join points emitted by advised mem-
branes. In our example, aspect A is registered in membrane m3; m3 is bound
to m1 (d), as denoted by the lollypop arrow. As a result, join points produced
by the computation of X and Y will be visible to A. The advising relation be-
tween membranes derived from binding opens the door for topological scoping
of aspects (Sections 4 and 5).

3.2 Propagation of join points and aspect weaving
Binding m3 to m1 informs m1 that m3 wishes to see (and potentially affect)
the join points produced by the computation inside m1. For each produced
join point, m1 is then free to decide whether to propagate the join point to
m3 or not (and also to enforce certain restrictions, as will be discussed later).
Figure 4 illustrates join point propagation and aspect weaving with membranes.
Computation X produces a join point jp (1); this join point is then absorbed by
the membrane m1 (2). Since m1 is a programmable membrane, it can implement
different visibility policies. Suppose that m1 decides to propagate the join point
to m3, it will then make the join available in its outer environment, tagging
it with the destination membrane m3 (3). On its side, m3 always listens for
join points addressed to it in its outer environment. When a join point is
addressed to it, it is absorbed in the membrane m3 (4). Here again, because m3
is programmable, it may decide to discard the join point, or to actually weave
its inner aspects (5); in that case, aspects residing inside m3 are woven on the
join point (6).
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3.3 Visibility and safety policies
Binding membranes together produces particular topological arrangements, which
can be used for flexible scoping of aspects; this is explored further in Sections 4
and 5. In addition to topological scoping, programmable membranes can be
used to control at a fine-grained level the propagation of join points between
membranes. Transparent membranes simply relay join points that are either
emitted by their inner computation or received (for advising) from their outer
environment. For either security or encapsulation reasons, it is however some-
times necessary to protect some computation from aspect advising. This can be
achieved with membranes by defining opaque membranes, i.e. that never let any
join point traverse through them. In between transparent and opaque mem-
branes, translucent membranes relay only a subset of the join points produced
by their inner computation. This makes it possible to use membranes to model
Open Modules [1]. The model also allows for opacity to be dynamic; a given
membrane can transition from transparent to translucent or opaque based on
characteristics of its execution environment.

Programmable membranes can also be used to enforce safety policies that
limit the power of aspects, as in [10], for instance by preventing aspects from
changing the arguments of proceed, or its return value. To see how this can
be achieved, it is necessary to detail a bit more the weaving process described
above (Figure 4). When aspect A is woven on join point jp, it executes its
before advice and then informs m1 that it wants to proceed (potentially with a
different join point jp′) by sending a message. The message flows from m3 to
m1, and then m1 invokes the original computation X. The base result v is then
repropagated back to m3 so that A can execute its after advice. Finally, when
A finishes, it tells m1 to resume (potentially with a different result v′) .

Therefore, a membrane can simply store the original join point jp and use it
(instead of the potentially modified jp′) in order to trigger the original computa-
tion. This means that any modification to the join point (e.g., new arguments)
will not be considered. Similarly, the return value of the original computation
can also be stored and used when resuming the base computation after weaving
has finished. Another example of a safety policy is to program the membrane
such that there is exactly one proceed call to the original computation. If an
aspect tries to perform more than one proceed, the membrane can skip it and
return the result of the previous proceed or a default value. It can also insert a
call to proceed when no aspect call it (for instance with the original arguments,
their current values if they have been modified by the advice, or default val-
ues). An immutable membrane is a membrane that enforces all the properties
described above: exactly one call to proceed, with a fixed join point, and a fixed
return value.

For instance, let us consider a web browser executed in one membrane and a
caching aspect running in another membrane bound to the browser membrane.
When the browser wishes to download a URL with get(URL), the corresponding
join point is propagated to the aspect that checks if the corresponding page
is already stored in its cache. A translucent membrane around the browser
computation can filter out HTTPS requests so that they are not visible to the
caching aspect. If the browser membrane is made immutable, then we are
sure that even an untrusted cache aspect cannot create security leaks, e.g., by
changing the actual URL being retrieved.

RR n° 7739
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cache

quota

browser

cache

quota

quota

b ca

cache quota

browser browser

Figure 5: Topological scoping. (a) tower—corresponds to execution levels; (b)
tree; (c) DAG.

Variations are endless. For instance, a translucent membrane can anonymize
outgoing join points by erasing or obfuscating information (e.g., login or pass-
word parameters). A membrane can also adapt parameters of incoming join
points before they are passed to its registered aspects.

3.4 Symmetry of the model
Membranes can play a dual role, as both advised and advising membranes. On
the one hand, they control the emission of join points from their inner compu-
tation towards advising membranes. This is useful to control if and how specific
join points are propagated, to which advising membranes and in which order,
and possibly implementing safety policies as described above. On the other
hand, membranes receive join points for weaving by their registered aspects,
thereby controlling which join points are actually seen, and possibly controlling
the weaving order of its registered aspects.

The model is therefore totally symmetric. Both roles of a membrane can be
programmed independently of each other, or cooperate if required. This is par-
ticularly important when talking about transparent/translucid/opaque mem-
branes. Indeed, a membrane can be programmed with a translucent advised
interface and a transparent advising interface. As a consequence, its aspects see
all join points that it receives, and it can control which join points of its inner
computation are visible to the outside.

4 Basic Topological Scoping
In addition to enabling safety properties, membranes make it possible to express
flexible topologies of computation, going beyond execution levels [17]. This
section shows how basic topological scoping can be achieved. We illustrate the
flexibility of the model by first describing how to express the execution levels
(Section 4.1). We then go beyond levels by describing tree-based (Section 4.2)
and DAG-based topologies (Section 4.3).

4.1 Membranes in a tower: execution levels
The basic example of a browser and a caching aspect, each running in their
own membranes, has a two-level topology: the browser running at level 0, and

RR n° 7739
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the caching aspect at level 1. Having more aspects at level 1 could be done by
registering them in the same membrane with the caching aspect. There is a
one-to-one correspondence between execution levels and membranes stacked on
top of each other (one membrane per level), each membrane advising the one
below.

For instance, suppose that the cache aspect stores the pages in a file and that
we wish to limit the disk consumption of this aspect. We can simply introduce
a quota aspect that applies to the cache aspect: in other words, we can register
the cache aspect in a new membrane (corresponding to level 2), and bind this
level-2 membrane to the level-1 membrane (Figure 5a). Note that this specific
membrane topology respects the guarantees provided by execution levels: the
quota aspect (at level 2) does not see the join points of the browser (at level 0)
but only those of the caching aspect. This way the browser can still consume
arbitrary disk space.

In essence, execution levels give rise to a restricted topological picture—a
linear order between groups of aspects. This makes execution levels not well
suited in the general case when there is no such meaningful order; the rest of
this section illustrates how membranes go beyond levels.

4.2 Membranes in a tree
Suppose we also want to control the disk consumption of the browser, separately
from the disk consumption of the web cache. We can create two instances of the
quota aspects, register them in two different membranes, and then bind these
membranes to the browser and cache membranes, respectively (Figure 5b). The
resulting tree-based composition ensures that one quota aspect observes only
the join points of the browser, while the other quota aspect observes only the
join points of the cache aspect.

With execution levels, this kind of scenarios cannot be expressed. The fact
that the second quota aspect observes the browser means that it resides at
level 1; as a consequence, its computation is visible to all aspects deployed at
level 2 (the other quota instance). In other words, it is not possible with levels
to have an aspect observe only part of the lower level.

4.3 Membranes in a DAG
In the previous scenario, we controlled the consumption of the browser and the
web cache separately. If the overall consumption of the complete application is
required, a single instance of the quota aspect can be used. This is illustrated
in Figure 5c: the membrane in which quota is registered advises both the cache
and browser membranes.

With execution levels, this scenario means that the quota aspect must ob-
serve computation at two levels at the same time. The only way to achieve this
is to deploy the same aspect instance at both levels [18]. This however reopens
the door to infinite regression, because the aspect deployed at both levels can
now observe its own computation. Adopting a graph-based topology allows us
to express this scenario without reintroducing conflation.

Supporting a DAG topology is strictly more expressive than the linear topol-
ogy of levels. In addition, because the graph is acyclic, the properties of execu-
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cache log

browser1 browser2

cache log

browser1

cache log

browser1

cache log

browser1 browser2

1a 1b 2a 2b

Figure 6: Co-observation in action. 1a) Browser1 is advised by Cache and Log.
1b) Browser2 is dynamically created, it should be advised by both aspects but
there is an error. 2a) Browser1 is advised by Cache and Log (as Log co-observes
Cache). 2b) Browser2 is dynamically created, it is advised by both aspects (for
Log co-observes Cache).

tion levels (no conflation, no possibilities for infinite regression due to weaving)
are preserved2.

5 Advanced Topological Scoping
We now show how membranes enable us to express advanced topological scop-
ing features. All these features ensure properties when the topology evolves
dynamically. First, in section 5.1 we introduce the notion of co-observation
that specifies that different advising membranes receive exactly the same join
points. Second, in section 5.2 we explore the use of hierarchical membranes
(i.e.membranes around membranes) to define “firewalls” for join points. Finally,
in section 5.3 we consider the possibility to define crosscutting membranes.

5.1 Co-observation
We introduce a new notion of composition between two advising membranes—
coined co-observation.

For instance, let us consider a base web browser, a web caching aspect and
a logging aspect. These two aspects can be applied to the browser as in sce-
nario 1a of Figure 6 in order to both cache its internet communications and log
the URLs it accesses. The cache and log aspects are registered in new mem-
branes: the cache and log membranes, respectively. A membrane is deployed
around the browser computation and this membrane is advised by the two as-
pect membranes. Both aspects have the same pointcut: get(URL). When the
web caching aspect lets the base computation actually download a page, the
URL is logged for security reason. When a second web browser is dynamically
created, we wish the caching aspect and the logging aspect are applied to it.
However, nothing prevents us from applying only the web caching aspect to the
new browser. In scenario 1b, the cache membrane is bound to the membrane of
the second browser, but the log membrane is not.

Co-observation offers a more robust solution. In scenario 2a, the membrane
of log co-observes (noted with a dotted arrow) the membrane of cache, hence

2This property vanishes when we introduce crosscutting membranes, as discussed later on.
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cache

browser

a

cache

browser

b

fir
ew
all

log log

Figure 7: Hierarchical membranes. In b), a firewall membrane prevents secured
URLs (HTTPS) from being cached.

both membranes receive the same join points. This is equivalent to scenario 1a.
However, when a new browser and its membrane are dynamically created, the
cache membrane only has to be bound to the new browser membrane as in
scenario 2b. Indeed, co-observation ensures that advising membranes of both
aspects will receive exactly the same join points (there is no way to use the
cache and not be logged).

5.2 Hierarchical membranes
A membrane can be deployed around any computation. In particular, a mem-
brane can be deployed around a composed system (such as depicted in earlier
Figures 5-6). A hierarchical membrane controls propagation of join points pro-
duced by the composed system, as well as reception of join points sent by other
membranes to the system.

For instance, let us consider in Figure 7a a web browser advised by a log
aspect that stores the accessed URLs and a caching aspect that stores a copy
of the downloaded pages. For security reason, we can decide secured URLs
(i.e.HTTPS) should not be cached. This can be performed as depicted in Fig-
ure 7b by deploying around the browser and its log aspect a hierarchical mem-
brane (firewall) that propagates only join points corresponding to non secured
URL accesses. In order to control the propagation of the join points produced
by the composed system, the hierarchical membrane has to be bound to the
browser and the log membranes (as depicted by the lollypop arrows inside the
firewall). The web cache membrane bound to the hierarchical membrane will
only receive join points corresponding to non secure requests, hence the cache
will only store the non secured pages. Note that, if the membrane of an aspect
co-observes the firewall membrane, it will only receive join points that the fire-
wall membrane receives from the outside. So, outside aspects cannot access the
secured URLs. Such a membrane plays the role of a firewall for join points. It
ensures secured URLs cannot be observed even if new aspects are dynamically
introduced.
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cache log

admin user guest

Figure 8: Crosscuting membranes.

Also note that when a firewall membrane is introduced, some bindings have
to be modified. Bindings cannot cross the firewall membrane. Advising mem-
branes outside of the firewall now have to be bound to the firewall. And the
firewall membrane must be bound to its inner sub-membranes. In the current
example, the cache membrane is bound to the firewall membrane, and the fire-
wall membrane is bound to the browser and the log membranes.

5.3 Crosscutting membranes
Let us consider two different concerns. We can deploy a membrane around the
computations that depend on the first concern, and deploy a second membrane
around the computations that depend on the second concern. Such membranes
crosscut when some computation happens in both membranes.

For instance, let us consider three base computation: a web browser for
an administrator, one for a standard user and one for a guest. For efficiency
reasons, the administrator and the standard user browsers must use a web cache.
There is no point in caching internet accesses of the guest because we consider
they have a short life span. On the other hand, the standard user and guest
accesses must be logged for security reasons, while administrator accesses are
not. Such a scenario can be expressed with crosscutting membranes, as depicted
in Figure 8. A first membrane is deployed around the admin and standard user
browser computations, as depicted by the stripped membrane. The cache aspect
is registered in another membrane and this cache membrane is bound to the
stripped membrane. A second membrane is deployed around the standard user
and guest browser computations, as depicted by the black membrane. The log
aspect is registered in another membrane and this log membrane is bound to
the black membrane. The membranes crosscut for the standard user browser
computation, which is concerned with both security and efficiency.

Crosscutting membranes make it simple to maintain the topology of the
system when new membranes are created dynamically. For instance, when a
new security aspect is created dynamically, it only has registered in a membrane
that gets bound to the black membrane. Similarly, ensuring that a new guest
browser is executed in the black membrane ensures that all security aspects
apply to it.
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Figure 9: Membranes in action in a level-like setting.

6 Membranes and Computation
The previous sections have developed various facets of the membrane-based
model we propose for flexible aspect scoping. We have seen how programmable
membranes themselves can play an important role in controlling how join points
get exposed to aspects in a system. We have also shown how the binding
relation between membranes enables the definition of flexible topologies. We
now zoom in and clarify the relation between membranes and the actual program
computation.

6.1 Membranes and computation planes
We have mentioned repeatedly that membranes “contain computation”, as op-
posed to code. This is fundamental. To visualize this fact, we now represent
membranes and computation in two separate planes, as in Figure 9. This draw-
ing makes clear that membranes are an overlay on top of computation, solely
dedicated to aspect scoping. In the computation plane, arrows and nodes repre-
sent a call graph. Squiggling arrows represent the shifts between the computa-
tion plane and the membranes plane. Three membranes are depicted, such that
m3 is bound to m2, which is bound to m1. This corresponds to the execution
levels topology, illustrated previously on Figure 5a.

Figure 9 illustrates the dynamic relation between computation and mem-
branes; this relation is a generalization of the fact that execution levels them-
selves are a property of the execution flow, not of (static) code artefacts. A given
piece of code can produce a join point observed by a membrane, and later a join
point observed by a different membrane. Indeed, consider that the program is
initiated by deploying m1 over the main expression. When computation flows
from T to V, a join point j1 is generated (1), and consequently, j1 appears inside
membrane m1. Join point j1 then possibly flows through m1 to inside m2 (2).
An aspect registered in m2 is then woven on j1 (3), causing some computation
to happen (e.g., its advice computation). If this computation flows again from
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Figure 10: Crosscutting membranes: the same join point appears in two mem-
branes.

T to V, another join point j2 is generated (4), but this time it appears inside m2:
this reflects the fact that at this point in time, computation “happens inside”
m2. Join point j2 is therefore not propagated to m2 for advising, but only to
m3 (5). Any aspect registered in m3 is then woven on j2.

6.2 Crosscutting membranes revisited
In Section 5.3 we have presented crosscutting membranes: membranes crosscut
each other when some computation is inside each of them. With execution
levels [17], such a crosscutting cannot occur (execution is always happening at
one level). With membranes, this situation can be permitted, for instance to
support the example described in the previous section, where the user browser
computation is included inside a membrane advised by a caching aspect, as well
as a membrane advised by a log aspect.

We previously depicted this situation with overlapping membranes. In fact,
using a third dimension to separate computation from membranes clarifies what
crosscutting membranes really mean (Figure 10): there is no need to depict the
membranes as overlapping. For instance, when computation flows from T to V,
the same join point j1 has to appear inside both advised membranes3. There are
multiple possible semantics for dealing with this joint appearance. A concrete
membrane system could choose non-deterministically a unique membrane, or
choose the most recent one; it could also compose sequentially (or even concur-
rently) both membranes, serving as a low-level composition medium.

3As the same join point can now appear inside two membranes, the properties of execution
levels (no conflation, no possibilities for infinite regression due to weaving) are no longer
preserved, even for acyclic topologies. With this multiple deployment—which corresponds
to an aspect executing at several levels in execution levels—an advising membrane that is
crosscutting with one of its advised membranes is exposed to its own join points.
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6.3 Membrane creation and configuration
Our description of programmable membranes for expressive aspect scoping does
not commit to any specific API or set of language constructs that deal with
membrane creation, deployment and configuration. This is intentional, because
the design space in that regard is wide, and it is not our objective to settle for a
specific point in that space. It is the responsibility of concrete implementations
of membrane-based aspect systems to specify these features precisely. Here, we
just briefly describe some possible approaches. Section 7 presents a particular
implementation for Scheme.

Membrane creation and configuration could all be done statically, similarly
to the extension of AspectJ with execution levels proposed recently [18]. Mem-
branes are defined statically by specifying the aspects that are registered in
each of them, and by describing how membranes are bound together. An initial
startup membrane is created for the main program. With such a static ap-
proach, the same efficient implementation technique as that used for execution
levels can be applied.In addition, it can be possible to ensure that membranes
never crosscut each other.

It is also possible to support a much more dynamic set of mechanisms for
membrane creation and deployment, such as creating a new membrane object
and explicitly spawning some computation in it, similarly to how dynamically-
scoped aspects are deployed in many aspect languages; or deploying membranes
explicitly on objects. It could even be possible to define membrane deployment
more intentionally, by specifying activation predicates (e.g., all computation
that is in the control flow of X and not Y is considered to be inside m). Of
course, dynamic creation and deployment of membranes can easily produce
crosscutting membranes. Yet another possibility is to design a DSL for specify-
ing possibly dynamic topologies, and support static analyses to enforce proper-
ties of the topology, such as acyclicity or the absence of problematic crosscutting
membranes.

7 A Scheme Implementation of Membranes for
AOP

To illustrate a particular point in the design space of membrane-based aspect
languages, we have developed MAScheme—an extension of AspectScheme [7]
with membranes. In the current version, membranes in MAScheme support
topological scoping as well as a limited form a programmability, namely to con-
trol the visibility of their computation. Section 7.1 shows how membranes are
created and deployed in MAScheme, and how aspects are registered with mem-
branes. Section 7.2 shows how the different topological scenarios of Section 4
are expressed in MAScheme. Finally, Section 7.3 explains how membranes with
a programmable visibility filter make it possible to enforce encapsulation a la
Open Modules [1].

Due to space limitation, we do not expose the implementation details of
MAScheme here. The MAScheme implementation and examples of this section
are available online: http://pleiad.cl/research/mascheme
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7.1 Creating and deploying membranes
MAScheme includes primitives for creating, deploying and binding membranes,
as well as for registering aspects with membranes.

Membranes are created with (new-membrane):
(define m0 (new-membrane))
(define m1 (new-membrane))

Aspects in MAScheme are specified with a pointcut and an advice function,
like in AspectScheme. The difference is that aspects now have to be registered
in membranes:
(register (call get-url) cache m1)

This expression registers a cache advice in membrane m1, with a pointcut
that matches calls to the get-url function.

The following deploys membrane m0 around a browser execution:
(deploy-fluid m0 (browser))

deploy-fluid specifies that all the join points occurring within the dynamic
extent of the execution of browser happen “inside” membrane m0. Of course,
because membrane m0 is not advised by any membrane so far, no aspect apply.
If prior to the above, m1 (in which the caching aspect is registered) is made to
advise m0:
(advise m1 m0)

then the execution of the browser is cached.
Deploying a membrane with deploy-fluid gives it dynamic scoping. Sim-

ilarly to the aspect deployment features of AspectScheme [7], membranes in
MAScheme can also be deployed with lexical scoping. For instance, we could
define browser as follows:
(define browser

(deploy-static m0
(lambda ()

(get-url "http://foo.com"))))

Membrane m0 now wraps all computation that is lexically in the body of
deploy-static. This means that m0 is “captured” in the lambda, and sees
the call to get-url each time browser is applied. It is possible to go beyond
deploy-static and deploy-fluid using scoping strategies [15, 16].

Finally, MAScheme supports crosscutting membranes, since different mem-
branes can be deployed around the same computation. Crosscutting membranes
are composed sequentially exactly like multiple aspects are composed in As-
pectScheme, i.e. in reverse order of deployment [7].

7.2 Topological scoping in MAScheme
We now show how the basic topological scoping examples of Section 4 are ex-
pressed in MAScheme4. In these scenarios, browser is a function that in turn
calls get-url and access-disk. cache and quota are advices for the caching
and quota aspects, respectively.

4The MAScheme examples are fully presented in Appendix A and are available online (also
including an illustration of crosscutting membranes, following Figure 8).
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Tower. We first create the three membranes corresponding to the three exe-
cution levels, then bind advising membranes following the tower topology:
(let ((l0 (new-membrane)) ;; level-0

(l1 (new-membrane)) ;; level-1
(l2 (new-membrane))) ;; level-2

(advise l1 l0)
(advise l2 l1)

Then, the caching aspect is registered with level 1, and quota with level 2.
(register (call get-url) cache l1)
(register (call access-disk) quota l2)

Finally, the browser is run at level 0:
(deploy-fluid l0 (browser))

Disk accesses performed by the caching aspects are advised by the quota
aspect, but the quota aspect does not see disk accesses performed by the browser.

Tree. In this scenario, a fourth membrane l3 is created and made to advise
the browser computation, and the quota aspect is also registered with it:
...
(advise l3 l0)
(register (call access-disk) quota l3)
...

Now the disk consumption of the browser is monitored, separately from that
of the web cache.

DAG. The DAG scenario is similarly simple to obtain. It suffices to change
the advising declarations above to:
...
(advise l1 l0)
(advise l2 l0)
(advise l2 l1)
...

This way, l2 advises both l0 and l1, ensuring that the quota aspect controls
both the browser computation and the caching aspect.

7.3 Encoding Open Modules with programmable mem-
branes

Open Modules [1] have been proposed to consider the base computation as a
grey box rather than a glass box. This is achieved by considering the base
computation inside (ML-like) modules that can choose to expose only some
join points to the outside. This encapsulation enables to reason formally and
modularly about observational equivalence of programs under advice. In this
section, we sketch how to encode open modules using programmable membranes
in MAScheme with the main example used by Aldrich [1].

The Fibonacci caching example, described in Figure 11, is a module that
computes the Fibonacci function. The function fib is implemented as its base
case, returning 1. Then, an around advice intercepts any calls to fib to handle
the recursive part. The rest of the module describes an aspect that caches calls
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structure Math = struct

val fib = fn x:int => 1;

around call(fib) (x:int) =

if (x > 2)

then fib(x-1) + fib(x-2)

else proceed x;

(* advice to cache calls to fib *)

val inCache = fn ...;

val lookupCache = fn ...;

val updateCache = fn ...;

pointcut cacheFunction = call(fib);

around cacheFunction(x:int) =

if (inCache x)

then lookupCache x

else let v = proceed x

in updateCache x v; v

end :> sig

fib : int->int

Figure 11: Fibonacci caching example with Open Modules (adapted from [1]).

to fib, thus allowing the exponential function to run linearly (the cache data
structure is not described).

The fib function is then encapsulated inside the Math module. The last line
of the definition of this module describes which join points are exposed—in this
case, only calls to fib can be intercepted from the outside. This means that a
computation outside the Math module is not able to tell whether caching has
been applied or not. Thus, from an observational equivalence point of view, this
implementation of the Fibonacci function inside the module Math is equivalent
to a purely functional implementation.

MAScheme makes it possible, when creating a membrane, to specify a filter
function from join points to booleans which tells when a joint point is exposed to
advising membranes. This mechanism can be used to achieve a similar purpose
as Open Modules. To illustrate the encoding of Open Modules in MAScheme,
we introduce a simple representation of a module as a pair of a function, and a
membrane:
;; simple representation of a module
;; = function + membrane
(define-struct module (fun membrane))

We now define the Math “module”. As in [1], the definition of the fib function
in itself is simply given by a constant function that is advised by two aspects,
here called fib_rec and cache (provided in Appendix A). The encoding then
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consists of specifying two crosscutting membranes. First, an internal membrane
int_memb, transparent, allows internal aspects (here, fib_rec and cache) to ad-
vise any join point inside the module. Second, an external membrane ext_memb,
translucent, propagates only join points described in the signature of the mod-
ule, as specified by the filter function (call fib) (a pointcut):
;; the Math module
(define Math

(let* ((fib (lambda (n) 1))
(int_memb (new-membrane))
(ext_memb (new-membrane (call fib))))

(advise int_memb int_memb)
(register (call fib) fib_rec int_memb)
(register (call fib) cache int_memb)
(module

(lambda (n)
(deploy-fluid ext_memb

(deploy-fluid int_memb
(fib n))))

ext_memb)))

The external membrane ext_memb is designed to expose only calls to fib.
Join points occurring inside ext_memb but not matching call(fib) are invisible
to advising membranes.

The module Math consists of the fib function together with the ext_memb
membrane. Therefore, a client can import (deconstruct) the module Math, ad-
vise its external membrane, and use its function:
;; importing the module Math
(let ((fib (module-fun Math))

(fib_memb (module-membrane Math)))
;; advising it
(let ((log_memb (new-membrane)))

(register call? logging log_memb)
(advise log_memb fib_membrane)
;; using fib
(fib 10)))

The logging aspect registered in the log_memb membrane cannot observe
the internal computation of the Math module: even though its pointcut call?
matches any call join point, it only sees one. Of course, this exercise is just a
proof-of-concept. Properly integrating membranes with a real module system,
like that of Racket (the dialect of Scheme in which MAScheme is implemented),
is a topic of future work.

8 A Kell Implementation of Membranes for AOP
While MAScheme is a good prototype to explore the power of topological scoping
and translucent membranes, it does not fully support programmable membranes
and their applications sketched in Section 3. In this section, we leave aside the
sequential world and explore an instantiation of programmable membranes for
AOP in the Kell calculus of Schmitt and Stefani [12].

The motivation for doing so is multifold. First, because our inspiration comes
in part from work on membrane computing and calculi, it is natural to see how
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using a language with an explicit notion of membrane eases the task. In that
respect, the Kell calculus has the proper level of abstraction; in contrast, the
generic membrane model of Boudol [5] is too abstract for our purpose here.

Second, the Kell calculus directly supports programmable membranes in a
naturally concurrent and distributed setting. It is built around a π-calculus core,
and follows five design principles, which are essential in distributed and mobile
programming: hierarchical localities, local actions, higher-order communication,
programmable membranes, and dynamic binding. Therefore, using the Kell
calculus naturally provides the potential to deal with taming aspects in presence
of concurrency and distributed computing and reasoning principles based on
bisimulations; although we have not yet explored these tracks (see Section 9.2
for a brief discussion).

Third, the Kell calculus is not only a foundational model for distributing
programming; it has been concretely implemented [3]. It can thus be a solid
base for implementing our framework on top of existing AOP systems.

For the reader not familiar with the Kell calculus, Section 8.1 gives a brief in-
troduction, including the basic formulation of programmable membranes. While
it already has programmable membranes, the Kell has no notion of aspect weav-
ing; our contribution in this section is then to formulate a precise protocol
between membranes and computation (Section 8.2), and to define in the Kell
calculus several membranes discussed previously (Section 8.3).

8.1 The Kell calculus in a nutshell
Most of this subsection is only a condensed (slightly adapted) version of the
reference description of the Kell calculus [12], included for convenience. We
refer the reader to [12] for a more detailed description of the Kell calculus.

Syntax of processes. The Kell calculus—whose central notion is that of
processes communicating on ports—has the same basic constructs as the π-
calculus, which is a reference for concurrent computing [9]. In particular, there
are:

• Output on port: a〈v〉.T is an output on port a with argument v and
continuation process T .

• Input on port: ξ .P is an input on port a, where ξ is an input pattern
(e.g., a〈x〉 with x an input variable), and P is a process. An input pattern
can possess an annotation ↑ (resp. ↓) to indicate that the message will be
received from the outside (resp. inside) of the kell.

• Permanent input on port: ξ3T is a permanent input5 on port a, where
ξ is an input pattern and P is a process.

• Parallel composition: (P | Q) denotes the parallel composition of pro-
cesses P and Q.

• Restriction: νa.P denotes the creation of a fresh name a whose initial
scope is P .

5Permanent inputs can be encoded in a more basic version of the Kell calculus, but we
introduce them explicitly to ease membranes definitions.
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• Null process: 0 is the process that does not perform any action.

The main reduction rule is the message reception

a〈Q〉.T | (a〈x〉 .P ) → T | P{Q/x}

which in case of ., consumes the input, while for 3, the input remains in the
solution.

Hierarchical localities. Name of localities in the Kell calculus are called
kells. A locality, noted k[P ], means that the process P executes at kell (a.k.a.location)
k. The structure of kells is hierarchical. In the basic setting of the Kell cal-
culus, a message a〈x〉 can go across a kell (for example moving up) only if the
environment of the kell possesses the trigger

a〈x〉↓ .P.

As it is not suitable in our setting, we introduce syntactic sugar (only when
executing inside a programmable membrane)

ξ3P ↑ and ξ3P ↓

meaning that the membrane is emitting the process P upwardly or downwardly.

Programmable membranes. In the Kell calculus, the computation of a
process P is located in a kell. All non local communications must explicitly
go through each kell and Schmitt and Stefani exploit this fact to introduce
an intermediate kell, whose role is to control communications, the whole thing
forming a membrane. A programmable membrane

νl.l[M | k[P ]]

on the kell k[P ] is thus encoded as a new external kell l together with a com-
munication process M that drives communication to and from the kell k.

8.2 Protocol between membranes and computations
We now introduce the protocol used between computations and membranes.
We use here a particular protocol based on the notion of around advice, as
introduced in Figure 1: aspects can do some computation, then proceed (zero,
one, or more times), and then do some final computation. Of course, this is
not the only way aspect and base computation can interact with each other
and our framework gives the freedom to implement any protocol of interest.
For instance, in a strongly concurrent setting, it would make sense to define a
protocol where asynchronous advice is supported.

Weaving protocol. The weaving protocol is described in Figure 12, which
refines Figure 1 with communication ports from the Kell calculus. Ports are rep-
resented as black rectangles. We call source the computation that is generating
a join point and target the advising computation.
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v′

Ps

Rs Vt

Wt

source target

Figure 12: Weaving protocol, with communication ports.

• When computation reaches a point of interest, a join point jp is emit-
ted on communication port weave (Wt), together with two fresh callback
communication ports proceed and resume (Ps and Rs).

• When source receives on its proceed port (Ps) a join point jp′ and a
port value (Vt), it executes the original computation (with the parame-
ters contained in jp′), then sends on value the value v computed by the
original computation.

• Finally, when source receives on resume a value v′, it resumes its execution
after the current point of interest, using v′.

These events occur in a particular order. The protocol of the base interface
can be described by the following regular expression:

weave < jp, proceed, resume >↑

(proceed < jp′, value >
↓
value < v >↑)∗

resume < v′ >
↓

In the style of the Kell calculus, arrows in the expression above indicate when
the computation receives (down arrow) or emits (up arrow) a message.

Note that the original computation can be executed zero or many times.
Also, only the weave port has to be known upfront to initiate the commu-
nication; the proceed, resume, and value ports are freshly created for each
instantiation of the protocol.

Dually, each advising computation implements the interface:

• An advice starts its execution when it receives on weave a join point jp
and two callback ports proceed and resume.

• It stops before the proceed instruction and sends on proceed the join
point jp′ (that can contain new modified arguments) and the port value.

• Its execution is resumed after the proceed instruction by receiving a value
v on value.

• Finally, at the end of the advice, it sends a value v′ on resume.

The protocol of the advising interface can be described by the following
regular expression; which is obtain from the previous one by simply flipping
arrows:
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Figure 13: Weaving protocol with two membranes.

weave < jp, proceed, resume >↓

(proceed < jp′, value >
↑
value < v >↓)∗

resume < v′ >
↑

Membranes. Membranes are introduced as extra levels of indirection in the
weaving protocol. Wrapping the base computation source and the advising com-
putation target into membranes allows control over propagation of and effects
on join points. Figure 13 depicts the weaving protocol with two membranes,
S deployed around source, and T deployed around target. Note that from the
point of view of source and target, the protocol is unchanged: S acts exactly
as target from the point of view of source, and vice-versa.

Taken individually, each membrane combines both protocols. As an advised
membrane, S plays the role of an advising computation for its inside (source),
and plays the role of an advised computation for its outside (T ). Dually, as an
advising membrane, T plays the role of an advising computation for its outside
(S), and plays the role of a base computation for its inside (target).

8.3 Defining membranes in the Kell calculus
We now describe the definition of different kinds of membranes in the Kell calcu-
lus. We only present how to define advised membranes; advising membranes are
defined dually by reverting the sense of emission. In the sequel, every membrane
has a unique permanent port weave, which interprets messages from the inside
as join point emission, and messages from the outside as join point reception.

Transparent membrane. The transparent advised membrane Mtransparent(weavein, weaveout)—
which receives join points on weavein and communicates them on port weaveout
of a given advising membrane—is defined by the following Kell program:

Mtransparent(weavein, weaveout) =

weavein〈jp, proceed, resume〉↓3
weaveout〈jp, proceed, resume〉↑

| proceed〈jp′, value〉↑3 proceed〈jp′, value〉↓

| value〈v〉↓ . value〈v〉↑

| resume〈v〉↑ . resume〈v〉↓
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Figure 14: An opaque advised membrane.

The membrane Mtransparent(weavein, weaveout) receives messages on port weavein
initiated by a sub-membrane and then (in parallel):

• emits weaveout〈jp, proceed, resume〉 upward, a message on port weaveout
to propagate the join point jp and fresh callback ports proceed and
resume to a given advising membrane

• listens on port proceed a call to proceed from the advise. In that case, it
emits downward the call to proceed to the base computation and triggers
from port value the result from the inside to the outside of the membrane.

• creates a trigger for port resume from the outside to the inside of the
membrane

The astute reader will have noticed that the interaction described here uses less
ports than depicted in Figure 13. For instance, ports PT and PS are simply
aliases to Ps (which corresponds to proceed). This is safe, because of explicit
migration: the membrane still acts as an intermediary and cannot be bypassed.

We now turn to the definition of less transparent membranes as introduced
in Section 3.

Opaque membrane. Opaque membranes never let a join point traverse through
them. Therefore, an opaque advised membrane protects the computation inside
it from aspect advising. Such an advised membrane can simply be defined by
directly sending a call to proceed to the computation, with the continuation
port resume itself. Then the computation proceeds and publishes the return
value on its own resume port, which makes it go through. An opaque advising
membrane is illustrated on Figure 14. Its definition is:

Mopaque(weavein) =

weavein〈jp, proceed, resume〉↓3 proceed〈jp, resume〉↓

Translucent membrane. Translucent membranes are just a mix between
opaque and transparent membranes parametrized by a join point filter. For each
join point received on port weavein, a translucent advised membrane decides to
return directly to the computation or to make the join point (or an altered
version of the join point) visible to advising membranes.
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Immutable membrane. Immutable advising membranes are transparent mem-
branes augmented with safety policies. Namely, an immutable advising mem-
brane enforces exactly one call to proceed, with a fixed join point, and a fixed
return value. This is done by making the computation in the membrane itself
more sequential, in particular by waiting for a call to proceed before waiting for
a call to resume.

Mimmutable(weavein, weaveout) =

weavein〈jp, proceed, resume〉↓3
weaveout〈jp, proceed, resume〉↑ |
proceed〈jp′, value〉↑ .

proceed〈jp, value〉↓ |
value〈v〉↓ . value〈v〉↑ |

resume〈v′〉↑ . resume〈v〉↓

The call to proceed transmitted inside the membrane is done with the original
join point jp instead of the potentially new join point jp′ received from the
advice. Furthermore, the fact that the triggering rule for proceed is linear
(using . instead of 3) forces exactly one call to proceed. Finally, the value v

returned by the original computation on port value is conserved and used to
resume the original computation—instead of the potentially new value v′.

9 Putting membranes in perspective

9.1 Modularity and encapsulation
Programmable membranes can express most interesting proposals for protecting
base code from unwanted advising. Open Modules [1] make it possible to define
that only certain public pointcuts are advisable by aspects outside the module.
As illustrated in Section 7.3, translucent membranes can encode open modules
by exposing only the join points corresponding to these public pointcuts. In
the same way as Aldrich uses logical equivalence to justify modular reasoning,
we can use bisimulation techniques at the level of membranes. A fundamen-
tal difference between open modules and membranes is that membranes can
be dynamic. EffectiveAdvice [10] uses monads to explicitly reason about the
effects of advice. Membranes can enforce restrictions on computational effects
like number of calls to proceed, as well as modification of arguments and return
values, etc. Interestingly, membranes support these restrictions even in pres-
ence of quantification (pointcuts), which is missing in EffectiveAdvice. On the
other hand, because EffectiveAdvice uses monads, it can statically enforce these
restrictions, and also supports arbitrary effects. Extending membranes in these
directions is an interesting perspective.

Beyond existing proposals, membranes suggest new mechanisms. Most inter-
estingly, membranes can not only be used to protect the advised computation,
but also the advising one. In other words, it is possible to protect aspects from
seeing unwanted join points. This can be particularly useful in two scenarios.
First, we have seen that in presence of crosscutting membranes, infinite regres-
sion can happen; an advising membrane can filter out reentrant join points to
avoid this. Generalizing, an advising membrane can also filter out join points
for security reasons, for instance join points produced by untrusted threads, or
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under suspicious conditions. To the best of our knowledge, this dual view on
encapsulation has not been explored elsewhere.

Because membranes control both emission and reception of join points, they
can as well be used to raise the level of abstraction of join points to domain-
specific join points, similarly to the mechanisms for explicit custom event an-
nouncements in Ptolemy and IIIA [11, 14]. The advantage of using membranes
is that custom join points can be generated by the membranes themselves (ei-
ther upon reception or upon emission), thereby preserving the implicit nature
of join points. This suggests that membranes can combine aspect-based and
event-based systems in a unified framework with flexible topologies.

9.2 Towards concurrent and distributed membranes
As mentioned at the beginning of Section 8, we believe that membranes consti-
tute a convenient framework for AOP systems integration in a concurrent and
distributed settings. Indeed, the fact that several planes of computation can
be integrated through the membrane plane makes it possible to advise distinct
threads or remote machines without changing the computational planes. During
the weaving, each order to proceed, return a value or resume is done on a fresh
private port between the advised membrane and its advising membrane. Thus,
executions can be completely concurrent while preventing from name mismatch
during the weaving process. Of course, synchronization on shared states remains
necessary (e.g., when a stateful aspects can advise several computation at the
same time).

“Pointcutlets”. Taking distribution into account, a membrane can be asked
to pre-compute some (logical) part of a pointcut on behalf of a remote aspect.
Such a “pointcutlet” makes it possible to reduce communication of join points
along the network, limiting the set of transmitted join points to those that have a
chance to be matched by the remote aspect. A pointcutlet can be loaded by the
advised membrane when an advising membrane asks for binding. The pointcut-
let can also evolve in time. For instance, an advice can send (using higher-order
communication features of the language) some updates to the pointcutlet in
order to filter the next join point. This can be particularly useful for stateful
aspects that match a sequence of join points. Indeed, the pointcuts of state-
ful aspects change with their state. A particularly interesting case is that of a
remote trace matching aspect, which ships (part of) its state machine to the
advised membrane, so that the state machine can advance locally.

10 Conclusion
This paper proposes to adapt the notion of programmable membranes [5, 12]
in order to control the controversial power of aspects. We describe a notion of
membranes in an AOP context, where membranes are just an overlay on top of
computation, dedicated to controlling propagation of join points and local as-
pect weaving. In addition, the topological relation between advising and advised
membranes supports flexible scoping scenarios, subsuming execution levels [17].
The notion of membranes for AOP proposed in this paper can be instantiated
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in a variety of ways. We have detailed two initial technical treatments of mem-
branes for aspects. First, to illustrate membrane deployment, configuration
and topological scoping, we have developed an extension of AspectScheme with
membranes, MAScheme. MAScheme also supports a form of translucent mem-
branes, used to encode Open Modules. Second, in the frame of the Kell calculus,
we have illustrated a particular weaving protocol and membrane programming
techniques. With respect to the development of MAScheme, a particular area
of future work is the integration with the module system of Racket. We are
also looking at instantiating the Kell-based approach for specific aspect lan-
guages. More generally, while it is clear that this paper leaves many questions
unresolved, we believe that unleashing the potential of membranes for modular
reasoning, encapsulation, security, and scoping of aspects, including in presence
of concurrency and distribution, opens many venues for future investigation.
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A MAScheme Examples

#lang racket

(require "mascheme.rkt")

;; Basic utility functions

(define (browser)

(get-url "http://test.url")

(access-disk))

(define (get-url url)

(write ’Url))

(define (access-disk)

(write ’Disk))

(define (check-cache)

(access-disk))

;; caching aspect

(define (((cache proceed) . ctx) . args)

(write ’Cache)

(check-cache)

(apply proceed args))

;; quota aspect

(define (((quota proceed) . ctx) . args)

(write ’Quota)

(apply proceed args))

;; Figure 5a: tower

(let ((l0 (new-membrane))

(l1 (new-membrane))

(l2 (new-membrane)))

(advise l1 l0)

(advise l2 l1)

(register (call get-url) cache l1)

(register (call access-disk) quota l2)

(deploy-fluid l0 (browser)))

;; Figure 5b: tree

(let ((l0 (new-membrane))

(l1 (new-membrane))

(l2 (new-membrane))

(l3 (new-membrane)))

(advise l1 l0)

(advise l2 l1)

(advise l3 l0)

(register (call get-url) cache l1)

(register (call access-disk) quota l2)

(register (call access-disk) quota l3)

(deploy-fluid l0 (browser)))

;; Figure 5c: graph

(let ((l0 (new-membrane))

(l1 (new-membrane))

(l2 (new-membrane)))

(advise l1 l0)

(advise l2 l0)

(advise l2 l1)

(register (call get-url) cache l1)

(register (call access-disk) quota l2)

(deploy-fluid l0 (browser)))

Figure 15: Topological scoping examples in MAScheme

#lang racket

(require "mascheme.rkt")

;; simple representation of a module

;; = function + membrane

(define-struct openModule (fun membrane))

;; cache data structure

(define cacheStruct (make-hash))

(define (inCache key hash)

(hash-has-key? hash key))

(define (lookupCache key hash)

(hash-ref hash key))

(define (updateCache key value hash)

(hash-set! hash key value))

;; logging aspect

(define (((logging proceed) . ctx) . args)

(let ((value (apply proceed args)))

(printf "~a -> ~a is logged~n" args value)))

;; importing the module Math

(let ((fib (openModule-fun Math))

(fib_memb (openModule-membrane Math)))

;; advising it

(let ((log_memb (new-membrane)))

(register call? logging log_memb)

(advise log_memb fib_memb)

;; using fib

(fib 10)))

;; the Math module

(define Math

(let* ((fib (lambda (n) 1))

(int_memb (new-membrane))

(ext_memb (new-membrane (call fib))))

;; Fibonacci recursion aspect

(define (((fib_rec proceed) . ctx) . args)

(let ((arg (first args)))

(if (> arg 2)

(+ (fib (- arg 1)) (fib (- arg 2)))

(apply proceed args))))

;; caching aspect

(define (((cache proceed) . ctx) . args)

(let ((arg (first args)))

(if (inCache arg cacheStruct)

(lookupCache arg cacheStruct)

(let ((value (apply proceed args)))

(begin (updateCache arg value cacheStruct))

value))))

(fib_rec (lambda arg (fib_rec arg)))

(advise int_memb int_memb)

(register (call fib) fib_rec int_memb)

(register (call fib) cache int_memb)

(openModule

(lambda (n) (deploy-fluid int_memb

(deploy-fluid ext_memb

(fib n))))

ext_memb)))

Figure 16: Fibonacci caching example (with Open Modules) in MASchemeRR n° 7739
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