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Abstract

In the context of the European Water Framework Directive (WFD), monitoring programs and
related indicators have been developed to assess anthropogenic impacts on various components
of aquatic ecosystems. While great precautions are usually taken when selecting and
calculating relevant core metrics, little attention is generally paid to the generation of the
multimetric indicator, i.e. the combination of the different core metrics. Indeed, most
multimetric indicators are generated by simply averaging or summing metrics, without taking
into account their sensitivity and their variability. Moreover, few indicators provide a rigorous
estimate of the uncertainty of the assessments, while this estimation is essential for managers.
In this context, we developed a Bayesian framework to build multimetric indicators aiming at
improving those two weaknesses. This framework is based on two phases. First, pressure-
impact statistical models are developed to quantify the impact of pressure on various fish
metrics. Then the Bayesian theorem is applied to estimate probabilities of being at a certain
anthropogenic pressure level from fish observation and pressure-impact models outputs. The
Bayesian theorem allows to combine objectively the different core metrics, taking into account
their sensitivity and their variability, and to provide rigorous uncertainty quantification, which
is especially valuable in the WFD context.

The method is applied as illustrative example on transitional French water bodies to
demonstrate its relevance, especially in the Water Framework Directive context though the

method is generic enough to be applied in various contexts.

keywords: multimetric fish-based indicator, Bayesian method, pressure-impact models, Water

Framework Directive, anthropogenic pressure, monitoring program, transitional waters.
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Introduction

Multimetric fish-based indicators are often used to assess the ecological quality of aquatic
ecosystems (Hughes and Oberdorft, 1999). Ideally, they are based on a set of non-redundant
core metrics measured on fish assemblages. The main interest of such a tool is to provide an
assessment that integrates several aspects of the fish assemblages through the different core
metrics (Karr and Chu, 1999). Moreover, multimetric indicators are often considered as more
sensitive and robust indicators of ecological quality than any of the individual metrics selected
for their construction (Deegan et al., 1997; Hughes ef al., 1998; Karr and Chu, 1999). A
specific class of multimetrics indicator, called stressor-specific multimetrics indicator by
Hering et al. (2006), is designed to detect the impact of a specific stressor on the ecosystem.
This approach has been widely used in the context of the Water Framework Directive
(European Water Framework Directive 2000/60/EC; WFD) to detect the impact of
anthropogenic pressures on riverine and estuarine fish assemblages (Borja ef al., 2004; Breine
et al., in Press; Breine et al., 2007; Coates et al., 2007; Delpech et al., 2010; Franco et al.,
2009; Martinho et al., 2008; Pont et al., 2009; Pont et al., 2006; Uriarte and Borja, 2009).
Hering et al. (2006) presented a “cook-book” to develop multimetric indicators that
distinguishes 6 main steps: (i) selection of the form of the multimetric indicator (general or
stressor specific), (i) metric selection, (ii1) metric calculation, (iv) multimetric indicator
generation by combining the different metrics, (v) setting class boundaries and (vi) results
interpretation. One of the main difficulties rests in step (iv): the indicator should objectively
combine the different metrics and, in the case of a stressor specific indicator, it should take into
account the sensitivity of the metric to the stressor. Additionally, a measure of uncertainty

should be calculated, since bioassessements have little value without any uncertainty measures
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(Kurtz et al., 2001; Clarke and Hering, 2006; Clarke et al., 2006; Carstensen, 2007; Beliaeff
and Pelletier, 2011). Uncertainty measure is explicitly required by the WFD (European
Communities, 2004). More specifically, it is of particular importance to be able to quantify the
probability to don’t be at least in “good” status class or not since the directive aims at
achieving “good” water status for all water bodies.

Several approaches have been proposed to combine the core metrics. Delpech et al. (2010), for
example, scored each metric independently; the final score being the average of the individual
scores. Breine ef al. (2007) proposed a statistical method to minimise type I and type II
classification error. Pont et al. (2006) used reference sites to build a theoretical distribution of
metrics in a reference state and developed a probabilistic framework to combine the metrics
measured on other sites by calculating probabilities to belong to the reference distribution.
The aim of this paper is to propose a new approach that provides an original Bayesian
framework to combine objectively the different metrics. The approach is based on two phases,
which corresponds respectively to steps (ii) to (iii) and to step (iv) in Hering ef al. (2006). In
the first phase, pressure-impact models similar to those developed by Courrat ef al. (2009) and
Delpech ef al. (2010) are developed. They enable objective selection and calculation of core
metrics (steps (i1) and (ii1) in Hering ef al. (2006)). Then in the second phase, outputs of the
models are used to compute probabilities of the ecosystem experiencing particular
anthropogenic pressures levels by applying the Bayesian framework (step (iv) in Hering et al.
(2006)). In this phase, the method used to combine metrics takes into account their sensitivity
to the stressor and their variability. By providing a measure of uncertainty as required in the
WEFED context (European Communities, 2004), this method represents a great improvement
with respect to existing methods, and is a great advance regarding the fourth step described by
Hering et al. (2006) for the construction of multimetric indicators. As an illustrative example,

the method is applied to French Mediterranean lagoons, classified as transitional waters for the
4
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WED.

1 Material and methods

1.1 Methods: description of the original approach
Hering et al. (2006) cook book describes six main steps when developing a multimetric
indicator. The method presented in this paper is partially based on Courrat et al. (2009) and
Delpech et al. (2009), consequently, only the original part of the method, aiming at improving

steps (ii) to (iv) from Hering et al. (2006), will be presented here.

1.1.1 First phase: selection of candidate metrics using pressure-impact

models (step (ii) to (iiij) in Herring et al. (2006))
The idea when building a multimetric stressor-specific indicator is to select metrics among a
list of candidate metrics and to combine them in an indicator to detect a gradient of stressor
(Hering et al., 2006). To build the indicator, a dataset with various candidate metrics (for
example fish densities, number of species...) in columns measured on several fishing
operations (in rows) is generally available. A measure or a proxy of the stressor is also required
to check the correlations between the indicator and the stressor (Hering et al., 2006).
Pressure-impact approach (Courrat et al., 2009; Delpech ef al., 2010) consists in developing
pressure-impact statistical models by fitting generalized linear models (GLMs) that describe
the impact of the stressor on the different candidate metrics, taking into account other
covariates such as the variability due to the sampling procedure or to environmental
characteristics. This approach is relevant to select candidate metrics since only metrics that are

significantly impacted by the stressor are selected. The GLMs can be written on the matrix
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form:
(1) g(J’)(EQw(J))): o). x + g9 . pp

with g(j)(E Q\/[ (j))) the link transformed (function g) expected value of the j-th metric, a the

regression parameters for covariables, X the model matrix for the covariables, 87 the

regression parameter for the stressor and Pr the vector of stressor values.

Candidate metrics for which A7 are significantly different from zero, i.e. significantly impacted

by the stressor, are potentially relevant metrics to include in the indicator.

1.1.2 Second phase: computing probabilities of pressure levels given
observed metrics (step (iv) in Herring et al. (2006))

The aim of a stressor specific multimetric fish-based indicator is to evaluate the level of a
specific stressor by observing metrics describing the fish assemblage given particular stressor-
metric relationships (Hering ef al., 2006). To fulfil this objective, the present method uses the
pressure-impact statistical models described above incorporating their results in a Bayesian
framework. Applying the Bayes theorem makes possible to calculate the probability that a
waterbody is in an ecological quality class given the fish data. GLMs likelihood functions are
used to convert fish observations into probability densities; so that metrics can be combined on
a common scale. Probability densities account for both the uncertainty of the model (through
variance functions of the GLMs) and the sensitivity of the metric to the stressor (through the

values of regression parameters).

The probability that the pressure level Pr is comprised within a given range /p,,p2/ given I new

fishing operations (denoted /,...,i,...,1), which corresponds to an a posteriori probability in a
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Bayesian framework, is:
@) plp, < Pr<p, | MO={H0,. .m0} MO =4O, .m)

with ml.(j ) observed values of the metric j (from 1 to J) during fishing operation i (from 1 to »).

The probability is equal to (cf. Annex):

3)

)

/] I{HHfM(j),P,(P’mi(’))fpr(P)-fA,B(Ot,B) p - da. - dp

p(p]SPr<p2|M=m)= S

jj pn.rx {HHJIM(J)W (P’mi(j)) S (p) Sas (OL, B )}dp -do - df

op Pmin g

with [pumin,Pmax] the domain of definition of the stressor. fM (p ml.(j ),a, S ) is the density of

Gpran
probability of an observation given the matrix model and the regression parameters. It
corresponds to the likelihood of an observation in the GLMs, so that it can be directly
calculated as an output of the pressure-impact models (McCullagh and Nelder, 1989).

Sis (a, ﬁ) corresponds to a prior on the distribution of the regression parameters. Regression
parameters' estimates follow a multinomial distribution when fitting a model by maximum
likelihood (such as GLMs), consequently a multinormal (or multistudent for small datasets)
prior using GLMs estimates and corresponding variance-covariance matrix 2 can be used:

{A,B}~N ({2 , [§ }2) fo (p) is the equivalent of a prior in a Bayesian framework and enables

to include expert knowledge.

In the absence of precise knowledge, uninformative uniform prior may be used and if standard
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error of regression parameters estimates are small compared to the GLMs dispersion

parameters, equation 3 can be approximated by:

T{HH F i, G.m9) f,, (P)}dp

i
@) plp, < Pr<p,|M=m)=-"

max

J {H Hf on (p.mP) 15, (p)}dp

Pmin

However any expert knowledge or meta-analysis results can be used to build more informative
priors on the stressor, and priors on the regression parameters can be easily incorporated if

estimation error are significant compared to observation errors.

By using this formula, the probability of being in any range of stressor can be easily calculated.

1.2 lllustrative example
In this illustrative example, the method is applied to generate a multimetric fish-based indicator

for detecting anthropogenic pressure in lagoons.

1.2.1 Fish data and anthropogenic pressure index
Fourteen lagoons along the French Mediterranean coast are considered in this study (Table 1,
Fig. 1). Lagoons were described by two physical factors (Table 1) that have proved to have a

decisive effect on fish assemblages in lagoons (Perez-Ruzafa et al. 2007):
Surf: total surface area (km?)

Sect: channels cross-sectional area 1, 2, 3... (m?)
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A dataset with 348 fishing operations (a fishing operation corresponds to a fyke-net fishing
during 24 hours) carried out in the context of the Water Framework Directive was available.
Fishing operations were conducted in spring and autumn using fyke nets in shallow water
(between 0.5m and 2.5m).

Each captured fish was identified at the species level, and then assigned to different functional

guilds according to Delpech et al. (2010).

An anthropogenic pressure index was estimated using an approach similar to Courrat ef al.
(2009) and Delpech et al. (2010). A principal component analysis (PCA) was carried out on
mean concentrations of four heavy metals (Cd, Zn, Cu, Pb) and one organic contaminant
(S16HAPs) provided by the RINBIO biointegrator network set up by IFREMER (Andral et al.,
2004) in twelve of the lagoons (data were not available for Biguglia and Grand Bagnas - Fig.
1). All contaminants showed a strong correlation with the first axis of the PCA which
represents 55% of the total variance. We thus used lagoons coordinates on this axis as a
measure of contamination (Fig. 2). As suggested in Courrat et al. (2009) and Delpech et al.
(2010) for French estuarine areas, we considered contamination as a proxy of global

anthropogenic pressure in each lagoon.

The RINBIO network also provides quality thresholds for each contaminant. Therefore it was
possible to determine the thresholds of five quality classes on our anthropogenic pressure index
by projecting the contaminant thresholds on the PCA factorial map (Fig. 2, Table 2).

Considering this method, the twelve lagoons were in the two best quality classes.

1.2.2 Candidate metrics and pressure-impact models

Several metrics were calculated for each fishing operation (Table 3): total abundance, total
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species richness, total number of fishes per guild, number of distinct species per guild. Total
number of fishes were log-transformed (log(x+1)) to limit the influence of outliers (fishing
events with high catches). Metrics were computed at the fishing operation level rather than at a
larger scale in order to take into account the metric variability due to sampling protocol

(Courrat et al., 2009; Delpech et al., 2010).

GLMs were built for each metric (Table 3). A stepwise backward procedure was used to select
the most relevant and parsimonious models based on the corrected Akaike Information
Criterion (AICc), which is for small datasets (Burnham and Anderson, 2002). Such pressure-

impact models were fitted on data from the twelve lagoons monitored by the RINBIO network.

1.2.3 Multimetric indicator generation and probabilities computation
Graphical analysis of the residuals was carried out to check that GLMs assumptions were
respected. In that case, standardised residuals of deviance were normally distributed
(McCullagh and Nelder, 1989) so Pearson's correlation coefficients are appropriate to analyse

residuals independence between core metrics.

After checking metric correlations, all 348 fishing operations from all the 14 lagoons
(including lagoons in which pressure index was not available) were used to compute the

probability that each lagoon belong to each stressor quality class using equation 4.

Results obtained with the above described dataset are presented here only as an illustrative

example of possible outputs of the method given a plausible use in a WFD context.

10
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2 Results

2.1 Selection of core metrics
In the illustrative example presented here, four metrics responded as expected to an increase of
the anthropogenic pressure index (Table 4). Values of estimated regression parameters for the
pressure index were low (Table 4) but significantly different from 0. Both abundance metrics
(TD and DM) and species richness metrics (SR and NM) were significantly "impacted" by the
pressure index. Moreover, both pressure-impact models at the functional group level (DM and

NM) and at the fish assemblage levels (7D and SR) were significant.

Graphical analysis of the residuals confirmed that GLMs assumptions were respected
(consistence with the assumed distribution, with the assumed mean-variance relationship and
independence). Correlation analysis tests theoretically rejected the independence assumptions.
However, Pearson's correlation coefficients for the three metrics 7D, DM and SR were very

low (inferior to 0.24) and independence can be reasonably assumed.

Since standard-errors were small compared to observation errors and no expert knowledge was
available, equation 4 rather than equation 3 was used to compute probabilities of being in a

given pressure range.

2.2 Ecological quality assessment
For each of the 14 surveyed lagoons, the posterior probability to be in each of the five quality
classes given the observed fish metrics were computed using equation 4 (Fig. 3). Moreover, the
fish indicator was very discriminant: for all lagoons, the most probable ecological quality class
was superior >60%, except for Berre where we could not distinguish between good and very

good classes.
11
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Results were also analysed metric by metric (Fig. 4). For example, observed 7D was relatively
low in Or but high in Vaccareés compared to what was expected given the anthropogenic
pressure index. Results at the core metrics level also illustrate that diagnostics based on a
single metric are much more variable than results of the multimetric indicator; some individual
metrics indicating medium or poor quality in some lagoons (for example, DM and RT in

Biguglia).

3 Discussion

3.1 Comments related specifically to the illustrative example
The ecological quality of 14 French Mediterranean lagoons was assessed as an illustrative
example, and further analysis should be carried out to improve the current application before
using this multimetric fish indicator for management. More specifically, the present pressure
index should be improved. Indeed, there was no available measure for oligohaline lagoons, and
values for other lagoons were not really discriminant: they were all in the two best quality
classes according to the pressure index leading to a dataset without much contrast. Moreover,
available data were still limited (though they will increase with the implementation of WFD
routine surveys) so it was necessary to use the same fishing observations for both GLMs
construction and probabilities calculations (except for Biguglia and Grand Bagnas) whereas
theoretically, the dataset used to build pressure-impact models should be distinct from the
dataset used in the Bayesian calculation. Consequently, this paper will focus on the method
used to build the indicator rather than on the illustrative example. So, specific results on
lagoons or classification will not be discussed. However, with few modifications, the method

will be relevant to assess the ecological status of those water bodies.

12
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3.2 Methodological aspects
The approach proposed by Delpech ef al. (2010) based on pressure-impact statistical models is
especially relevant to describe the impact of a specific stressor such as anthropogenic pressure,
on fish assemblages. However, the method to generate the multimetric indicator by combining
the core metrics was rather subjective and did not provide any uncertainty quantification
(Brind'Amour and Lobry, 2009). The aim of this paper was to propose a method to construct
multimetric indicators that provide an objective scheme for combining metrics based on a
Bayesian framework. The first phase is to develop pressure-impact GLMs (Courrat et al., 2009;
Delpech et al., 2010) or any other models (general additive models, mixed models...) that
provides a likelthood measure. GLMs outputs are then used to calculate probabilities that a
water body belongs to an ecological quality class from fish observations. The present method
presents some similarities with Bayesian discriminant analysis (Geisser, 1964; Keehn, 1965)
since both methods compute probabilities of being in one pre-defined. However, our approach
relies on the construction of pressure-impact models in a first phase, that allows a great
variability on the form of the distribution of the metric given the pressure and the regression
model, and to easily account for environmental covariates. Moreover, this first phase provides
valuable information at the metric level that can be analysed in the light of ecological concepts
(e.g. (Nicolas et al., 2010a; Nicolas et al., 2010b) for examples with fish data on estuaries),
rather than building discriminant functions that are only based on a statistical criterion and are

often less flexible.

One of the main advantages of the method is that it combines core metrics taking into account
both (i) the sensitivity of the metric to the stressor through the regression parameter in the
pressure-impact statistical model and (ii) the uncertainty of the statistical model through the

variance function of the GLMs included in the likelihood computation (equation 4).
13
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Furthermore, while Delpech ef al. (2010) couldn’t include any metric based on species richness
in their final multimetric indicator because they were not powerful discriminant metrics, the
present method can include them and incorporate their weak, though perhaps important,
discriminant ability in the collective. The method also provides a measure of uncertainty by
computing posterior probabilities that the water body is in each pre-defined quality class (Fig.
3). This uncertainty estimation is especially important for managers and is required by the
WEFD (European Communities, 2004). More specifically, the fact that it is possible to estimate
the for a water body to be “good or better” ecological status or not is especially important
given the importance of this threshold in the directive. This particular aspect is probably the
greatest advantage of this method.

Moreover, in this approach, the problem is considered in a different way to what is usually
done. Generally, pressure indices are used to predict expected fish assemblages metrics values
at various pressure levels in order to estimate metric thresholds (Courrat ef al., 2009; Delpech
et al., 2010). In the present approach, the method is similar in a first phase (development of
pressure-impact statistical models), but then the problem is reversed by trying to predict a level
of pressure from fish metrics so that it is possible to define a priori pressure thresholds. This
approach seems much more relevant in an operational monitoring context when stakeholders
have to take appropriate management decisions based upon the latest observations of
ecological state.

As mentioned by Hughes et al. (1998) and Karr & Chu (1999), multimetric indices are more
robust than single metrics because the metrics combination generally makes the indicators less
variable than each core metric considered individually. This is illustrated by the higher
variability of the results when providing a diagnostic for each metric (Fig. 4) compared to the
results when applying the global multimetric indicator (Fig. 3).

An other important aspect to consider when developing an indicator is the consequences of
14
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misclassification. For example, in the illustrative example, three lagoons were misclassified by
the fish-based indicator with respect to the pressure index. Three main reasons may explain this
result: (i) the natural variability of biological measures (however the sampling procedure is
designed to minimize this aspect), (i1) pressure index was not perfectly relevant since it is only
a proxy of global anthropogenic pressures or (ii1) lagoons are more or less resilient with respect
to anthropogenic pressure. The two last points are especially interesting. The fish indicator for
Or Lagoon is pessimistic compared to the pressure index because 7D is low compared to the
pressure-impact model prediction, i.e. it seems that Or is especially sensitive to an increase of
pressure or that pressure index was underestimated. On the other hand, the fish indicator
provides a more pessimistic diagnostic for Vaccares than the pressure index because 7D is high
compared to what is predicted by the pressure-impact model, possibly because Vaccares is less
sensitive or because the pressure index was overestimated for this lagoon. Consequently, the
indicator tends to penalize lagoons which are more sensitive to pressure and/or to consistently
deal with pressure index misspecification, which is consistent with the precautionary approach.
Another advantage of the Bayesian approach relies on the possibility to include prior
knowledge in the indicator. Expert knowledge or results of independent analysis can be used to
build informative prior. That knowledge is difficult to incorporate in traditional methods. Yet, it
1s interesting to include it by building a priori pressure density distribution which would
influence the results (equation 3).

Moreover, in the absence of previous expert knowledge and when standard-errors of the GLMs
are small compared to dispersion as it is in the illustrative example, equation 4 can be used
rather than equation 3. Since equation 4 consists in a single integral, it is possible to compute
the probabilities using usual numerical integration algorithm. However, in most situations, this
solution will not be possible, and Bayesian inference algorithm, such as Gibbs Samplings will

be appropriate. In that case, the use of traditional Bayesian diagnostic tools will of course be
15



352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

Author-produced version of the article published in Ecological Indicators, 2012, vol. 13 (1), 314-321
The original publication is available at http://www.sciencedirect.com/
doi:10.1016/j.ecolind.2011.06.029

necessary to check relevance of the results, and more specifically the convergence of the
algorithm.

Finally, the present method is completely generic and can be implemented in many situations,
as long as it is possible to build pressure-impact statistical models (enough data and, sufficient
knowledge on determinant abiotic factors). More specifically, any kind of metrics can be
included in the indicator: density, numbers, proportion (GLM with binomial family) or other
metrics as soon as likelihood of new observations given a pressure can be calculated (the
principle limitation will generally concern the number of available data to fit pressure impact-
models). Consequently, it may be applied for many other stressor-specific indicators, especially
indicators developed in the WFD context. However, a difference with traditional indicators is
that generally, a set of thresholds are defined for each metric in order to get a score by metric
which are then aggregated to get the assessment, whereas in our approach, only one set of
threshold is required and is directly defined on the pressure index. Consequently, ecological
quality ratio (EQR, the WFD defined EQR as a ratio between the actual level of an indicator
and the reference level of the indicator) does not have exactly the same meaning as in other
indicators. However, this approach is more consistent with the initial objective of a multimetric
indicator, i.e. assessing levels of pressure by analysing metrics, and more consistent with the
approach recommended in the annexes 111 and IV of the WFD guidance document (European

Communities, 2009).
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Annex: demonstration of the probability computation

The objective of a stressor specific multimetric index is to detect the effect of the stressor by
observing some metrics on the fish assemblage. Consequently, we are interesting in computing
the probability that the pressure is included in a certain range given / new fishing operations

(denoted 1,...,i,...,1):

AD plp, <Pr<p, I MO=H0. .m0} M=), .m")

with m; the value of metric j measured in the i-th fishing operation, # the number of fishing

operation, J the number of selected metrics.

We use the following notations

M? : random variable representing metric j (from 1 to J)
m;?: value metric j in fishing operation i (from 1 to n)
Pr: random variable of the pressure index

p1 and p;: thresholds of an ecological quality class corresponding to thresholds on the pressure

index
fx: density function of random variable X

A and B random variables corresponding to the GLM regression parameters

By definition of a density function, we have
P

(A2) p(p, < Pr<p,|M=m)= | fPrlM(])MM(J)(P,ml(l)’_,.,mrgJ))ip
Py
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with fP w0y the density function of the variable Pr|M O ..M ) Given that a

conditional density is equal to the ratio of the joint density function over the marginal density.

0 (J)(P,M,( (J))
P(p <Pr<p,|M= m): pr\) m

P
j /, pr,M(‘),,_,,M(J)(Prml(])’---’m»gj))ip
=N

L0 okle.m?)

(A3)

Because of the total conditional probability:

P
700 w0 (p.m,...m Yp
Py
pmwc

j (]) M(J)|Pr ](])""’mr(tj))fPr (p)jp

pmm

(A4) p(p, <Pr<p,|M=m)=

with pi» and ppay, the minimum and maximum value of the pressure index.

Given that a conditional density is equal to the ratio of the joint density function over the

marginal density.

J 70 o, @) £, (o)

(AS) p(p, < Pr<p,|M=m)=-"

pmwc

j (]) M(J)|Pr ](])""’mr(tj))fPr (p)jp

pmm

If the observations are independent:
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T{HH F i, G.m9) f,, (P)}dp

415 (A6) p(p] < Pr< P, |M — m): pP] i

max

] {HHJ’ 0, @mP) £, (p)}dp

Pmin

416

417 GLMs provides a measure of f v Dpras (p ml-(j ) a, B ), therefore we reformulate equation A6 as

418 (A7)

Py

.”. J'|:1?[HfM(j)|PrQ7:mi(j))fPr(p)'fA,B(a"B) p - do - df3

419 p(p15PV<p2|M=m): a P

jj pnj'ax {HHJIM(J’)UJ, (P:mi(j)) S (p) Sun (OL, B )}dp -dou - df

ap Pmin i

420
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Tables

Table 1. Main characteristics of the different lagoons, which are located along the French

Mediterranean coast (Fig. 1) and number of fishing operations per season (a fishing operation

corresponds to a fyke-net fishing during 24 hours).
Surf: lagoon surface (km?). Sect: cross-sectional area of the inlets (m?).
Grand Bagnas and Méjean does not have inlet directly connected to the sea

Number of fishing operations

Lagoon Surf Sect Spring Summer
Bages-Sigean 38 600 12 15
Berre 133 517 15 15
Biguglia 14 3 8 8
Diana 61 8 10
Grand Bagnas 2 0 15 16
La Palme 25 16 16
M¢jean 7 0 8 8
Or 33 15 7 8
Palo 1 10 8 8
Prévost 3 53 8 8
Salses-Leucate 54 367 23 29
Thau 69 237 30 15
Urbino 8 31 8 12
Vaccares 102 15 7 7
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Table 2. Value of p;, p2, pmin and ppq, for the 5 classes.

Pressure class p; D2 DPmin Pmax
Very good -6.00 0.65 -6.00 25.00
Good 0.65 6.72 -6.00 25.00
Medium 6.72 12.81 -6.00 25.00
Bad 12.81 18.90 -6.00 25.00
Very Bad 18.90 25.00 -6.00 25.00
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Table 3. List of selected candidate metrics and corresponding characteristics of the pressure-

impact GLMs.
Type of Metrics Definition GLMs: Family, link function
metrics
Fish SR Total species richness Poisson, log
assemblage
TD Log(Total number of captured fishes Gaussian, identity
+1)
Ecological NMIG Number of distinct migrant species  Poisson, log
guilds
DMIG Log(number of migrant fishes+1) Gaussian, identity
NFW  Number of distinct freshwater Poisson, log
species
DFW  Log(number of freshwater fishes+1) Gaussian, identity
NMJ  Number of distinct marine juveniles Poisson, log
species
DMJ  Log(number of marine juveniles
fishes+1)
NMS  Number of distinct marine seasonal  Poisson, log
migrants species
DMS  Log(number of marine seasonal Gaussian, identity
migrants fishes+1)
NM Number of distinct marine species Poisson, log
DM Log(number of marine fishes+1) Gaussian, identity
Trophic NIB Number of distinct benthic Poisson, log
invertebrate predators species
DIB Log(number of benthic invertebrate =~ Gaussian, identity
predators fishes+1)
NF Number of distinct fish feeders Poisson, log
species
DF Log(number of fish feeders fishes+1) Gaussian, identity
Vertical NB Number of distinct benthic species ~ Poisson, log
distribution
DB Log(number of benthic fishes+1) Gaussian, identity
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Table 4. Kept candidate metrics and corresponding pressure-impact models, pressure index
regression parameter and corresponding p-value

MetricDefinition Model Regression parameter P-value

SR Total species richness Sal Class+Season+Pr-0.04 0.01
Log(Total number of captured

TD  fishes +1) Sect+Pr -0.32 0.00

NM  Number of distinct marine species Sect+Surf+Pr -0.16 0

DM Log(number of marine fishes+1) Pr -0.12 0.05
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429  Fig. 1. Maps of the different lagoons considered in this study.
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431 Fig. 2. Calculated anthropogenic pressure index for each lagoon (a high PCA coordinate
432  implies a high level of pressure) and corresponding quality classes (“very good, “good”,

433 “medium”, “poor”,”very poor”) thresholds (dotted lines).
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435 Fig. 3. Posterior probability to be in a quality class given the observations (barplot) and

436 pressure index quality class (from RINBIO, vertical bold line).
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