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tiobjective Optimization Algorithm for Multidisciplinary Optimization. Yong Shi, Shouyang
Wang, Gang Kou, Jyrki Wallenius. New State of MCDM in the 21st Century Selected Pa-
pers of the 20th International Conference on Multiple Criteria Decision Making 2009, Springer
Berlin Heidelberg, pp.69-78, 2011, Lecture Notes in Economics and Mathematical Systems,
<10.1007/978-3-642-19695-9 6>. <hal-00663702>

HAL Id: hal-00663702

https://hal.archives-ouvertes.fr/hal-00663702

Submitted on 27 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Compromise based evolutionary multiobjective

optimization algorithm for multidisciplinary

optimization

Benôıt Guédas Xavier Gandibleux Philippe Dépincé

Abstract

Multidisciplinary Design Optimization deals with engineering prob-
lems composed of several sub-problems -called disciplines- that can have
antagonist goals and thus require to find compromise solutions. Moreover,
the sub-problems are often multiobjective optimization problems. In this
case, the compromise solutions between the disciplines are often consid-
ered as compromises between all objectives of the problem, which may
be not relevant in this context. We propose two alternative definitions
of the compromise between disciplines. Their implementations within the
well-known NSGA-II algorithm are studied and results are discussed.

1 Introduction

The design and optimization of complex engineering systems, such as aircrafts,
cars or boats, require the collaboration of many engineering teams from dif-
ferent disciplines. These problems are referred to as Multidisciplinary Design
Optimization (MDO). This work deals with a class of MDO problems, where
each discipline is a Multiobjective Optimization Problem (MOP – see [3] for
notations and definitions). For instance, the design of a wing of an airplane
involves two strongly coupled disciplines: aerodynamics and structure. Both
may have several objectives to achieve. For example, the minimization of the
drag and the maximization of the lift for aerodynamics and the minimization
of the weight and of the deflection for the structure. The goal of such a MDO
problem is to propose compromise solutions to the decision maker between the
disciplines. In other contexts, compromises solutions have to be found between
several possible scenarios (see for example [1] for an application to risk man-
agement). A compromise solution can be understood as a preferred solution for
the decision problem.

2 Context and goal

Classical MDO methods [9] do not consider problems where the disciplines have
multiple objectives each. Recently, Evolutionary Multiple Objective (EMO)
optimization methods such as EM-MOGA [10], COSMOS [11] and others (see
[7] for a description of these methods), were designed to solve optimization
problems where each discipline has multiple objectives. But these approaches
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consider the problem as a unique MOP composed with all the objectives of
the disciplines optimized simultaneously. Hence, the solutions found by those
methods are the efficient solutions of the following problem:

min
x∈X

(f1,1(x), . . . , f1,p1
(x), . . . , fq,1(x), . . . , fq,pq

(x)) (1)

where q is the number of disciplines and pi the number of objectives of the
ith discipline. The function fi,j represents the jth objective of the ith discipline.
We will assume that all the disciplines are defined on the same decision space.

We will note C0 the first compromise which consists in solving the MOP
described eq. 1. Unfortunately, C0 does not give relevant solutions in MDO
problems, as illustrated by the follwing didactic example composed by two dis-
ciplines. Each discipline has two objectives to minimize: f1,1 and f1,2 for the
first discipline and f2,1 and f2,2 for the second one. Let f1(x) = (f1,1(x), f1,2(x))
and f2(x) = (f2,1(x), f2,2(x)) be respectively the objective functions of the first
and the second discipline, and X = {xa, xb, xc} the feasible set of solutions in
the decision space. The performances of these solutions are reported in Table 1.

Table 1: The performances of the feasible solutions by f1 (resp. f2) defined for
Discipline 1 (resp. Discipline 2).

Discipline 1 Discipline 2
x f1,1(x) f1,2(x) f2,1(x) f2,2(x)

xa 1 3 2 1
xb 3 2 1 3
xc 2 1 3 2

f1,1(x)

f1,2(x)
f1(xa)

f1(xc)

f1(xb)

f2,1(x)

f2,2(x)
f2(xb)

f2(xa)

f2(xc)

Figure 1: The objective spaces of the two disciplines of the didactic minimization
problem: discipline 1 is on the left and discipline 2 on the right.

Considering independently the disciplines, we have two efficient solutions by
discipline (see Fig. 1): xa and xc in the first discipline, and xa and xb in the
second one. As xa is an efficient solution in both disciplines, xa is expected to be
the only efficient compromise solution of this problem and reported as the unique
output of the algorithm. But if we consider the four objectives problem (eq. 1),
all the feasible solutions are efficient because their 4-dimensions performance
vectors are mutually non-dominated: the C0 compromise solution set is thus
X. Indeed, solving the MOP can be interpreted as finding solutions between
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Table 2: Ranks of the points in each discipline: r1(x) (resp. r2(x)) is the rank of x
in the discipline 1 (resp. discipline 2).

x r1(x) r2(x)
xa 1 1
xb 2 1
xc 1 2

objectives without taking into account the grouping of the objectives within the
disciplines. For instance, xa would be preferred over xb in the first discipline and
over xc in the second one but this information is missing in the C0 compromise.
We propose two compromises which are more relevant in this context: C1 and
C2.

3 Computing a compromise

3.1 C1: Ordering the solutions in disciplines

The first idea we propose – also presented in [8] – is to transform each disci-
plinary MOP into a single objective using a measure of solutions quality inside
each discipline.

Ranking procedures are frequently used in multiobjective genetic algorithms
for evaluating the fitness of the solutions. Goldberg [6] first introduced the rank
to bias the selection operator based on the evaluations of the objective function.
This idea has then been used by Srinivas and Deb [12] in the NSGA algorithm
in order to sort the individuals for a multiobjective problem. Other ranking
procedures have been proposed for multiobjective genetic algorithms, such as
the one proposed by Fonseca and Fleming [5]. Definition 1 presents the rank as
it is defined in ordered sets theory. This definition is the same as the one used
by Srinivas and Deb.

Definition Let O = (E,≤) be an ordered set. For e ∈ E, the rank r(e) of e
is defined as follows:

• r(e) = 1, if e is a minimum.

• r(e) = n, if the elements of rank < n have been assigned and e is a
minimum in the ordered set P\{x ∈ P : r(x) < n}.

The compromise C1 consists in using the rank as the only objective of each
discipline. The corresponding multidisciplinary optimization problem can be
formulated as the following MOP:

min
x∈X

(r1(x), . . . , rq(x)) (2)

where ri(x) represents the rank of x in the ith discipline. The efficient
solutions of eq. 2 are the C1-compromise solutions.

For instance, in the didactic example introduced in the previous section
(Table 1, Fig. 1), each point is ranked in each discipline separately. The results
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are presented in Tab 2. Considering these ranks as performances of the solutions
in each discipline, we can define a compromise solution as a non-dominated
ranks vector. There is only one non-dominated rank vector (1, 1), so the only
C1-compromise solution to this problem is xa.

Unfortunately, a compromise based on ranks has an important drawback if
implemented within an EMO algorithm because of its stochastic behavior: the
order relation between two performance vectors depends on the spread of the
performance vectors of the other individuals in the population. Thus, as the
population evolves, the performance vectors move. The Fig. 2 shows that on the
first chart, fi(xa) is ranked 1 and fi(xc) is ranked 2, whereas fi(xa) is ranked
3 and fi(xc) is ranked 2 on the second chart. Between the first and the second
chart, only two points, fi(xd) and fi(xe) have been added, but it results in a
reverse of the order of fi(xa) and fi(xc): fi(xc) was greater than fi(xa) on the
first chart whereas it is less than fi(xa) on the second one.

fi,1(x)

fi,2(x)

fi(xa)

fi(xb)

fi(xc)

0

6

6
fi,1(x)

fi,2(x)

fi(xa)

fi(xb)

fi(xc)

fi(xd)

fi(xe)

0

6

6

Figure 2: Using the rank to define an order relation between elements of a discipline
i, the order relation depends on the other elements: the rank of fi(xa)
is less than the rank of fi(xc) in the left chart whereas this relation is
reversed in the right chart.

3.2 C2: Taking into account incomparability in the disci-
plines

Another approach is to take into account the incomparabilities in the dominance
relation: an element f(x) dominates f(x′) if f(x) dominates f(x′) in at least
one discipline, and f(x′) never dominates f(x) :

f(x) � f(x′)⇐⇒

{
∃i ∈ {1, . . . , n} fi(x) ≤i fi(x

′)

@j ∈ {1, . . . , n} fj(x
′) �j fj(x)

(3)

where ≤i is the componentwise order in the discipline i, and �j is the Pareto-
dominance relation in the discipline j. Let call C2 the compromise such that the
compromise solutions are such that their performance vectors in each disciplines
are non-dominated according to the transitive closure of the � relation.

In the didactic example presented Fig. 1, let f(x) = (f1(x), f2(x)). The
point f(xa) dominates f(xc) and f(xc) dominates f(xb) in one discipline each,
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and there are no other domination relations. So we have f(xa) � f(xc) � f(xb).
Thus, xa is the only solution to this problem. On this example, the solutions
of C2 are equivalent to C1. Moreover, this compromise is expected to be less
sensitive when implemented within an EMO algorithm, because it does not
introduce new order relations in the disciplines depending on the spread of the
population.

4 EMO-MDO algorithm

The proposed algorithm, called EMO-MDO (Algorithm 1), is a generalization of
the NSGA-II algorithm [2]. Its particularity lies in the ranking procedure which
can be computed on any preordered set1, and not only the performance vectors
of the individuals. It allows to modelize different kind of compromises such as
C0, C1 and C2. In particular, EMO-MDO used with C0 is identical to NSGA-II.
It also shares its genetic operators: real coded genes, SBX crossover (crossover
routine), polynomial mutation (mutation routine), crowded binary constrained
tournament selection (selection routine) and non-constrain-dominated sorting
procedure with crowding (generation routine) [2].

Algorithm 1 EMO-MDO

Require: compromise c
Ensure: solution population

population ← initialization()

preorder ← compromise(c,population)
ranks ← compute ranks(preorder)
for i = 1 to max iteration do

parents ← selection(population,ranks)
offspring ← mutation(crossover(parents))
population ← population ∪ offspring
preorder ← compromise(c,population)
ranks ← compute ranks(preorder)
population ← generation(population,ranks)

end for
return population

The initial population of size N is created from solutions randomly picked
from the feasible set. The preorder between the individuals is then computed by
the compromise function according to the population pop and the compromise
c ∈ {C0, C1, C2}. This preorder is used to compute the ranks of the individu-
als in the population. A parents population is selected from pop according to
their ranks. Crossovers and mutations are performed to create an offspring
population. The offspring is then added to the current population pop to cre-
ate a 2 × N population on which the compromise relation is computed. The
generation function selects the new individuals which will belong to the next
generation.

1Ordered sets which are not necessarily antisymmetric.
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5 Numerical experiments

A series of experiments were performed on the EMO-MDO in order to study its
behavior on C0, C1 and C2 compromises.

5.1 Test problem

This test problem comes from Engau and Wiecek [4]. It is composed of two bi-
objective disciplines defined on the feasible set X. Here, all the feasible solutions
are efficient for C0 compromise.

D1


min

(x1,x2)∈X
f1,1(x1, x2) = (x1 − 2)2 + (x2 − 1)2

min
(x1,x2)∈X

f1,2(x1, x2) = x21 + (x2 − 3)2
(4)

D2


min

(x1,x2)∈X
f2,1(x1, x2) = (x1 − 1)2 + (x2 + 1)2

min
(x1,x2)∈X

f2,2(x1, x2) = (x1 + 1)2 + (x2 − 1)2
(5)

with X = {(x1, x2) ∈ R2 : x21 − x2 ≤ 0, x1 + x2 − 2 ≤ 0,−x1 ≤ 0}

5.2 Test protocol

Two reference sets of solutions are computed by filtering the solutions satisfying
the compromises from a sampling of the feasible set of decision variables. The
first sampling corresponds to a uniform discretization of the feasible set, whereas
the second sampling is a simple random sampling. For each test, 300 solutions
are evaluated.

The three compromises have been compared with the filtering methods and
the EMO-MDO algorithm. The latter has been performed in two conditions:
with or without the phenotypic diversity procedure enabled (crowding) in the
selection and the generation functions.

The EMO-MDO algorithm as been run with the following combinations
of population sizes and iterations numbers: 10x50, 20x15, 20x20, 50x50 and
50x500. Three simulations of each combination have been done to verify the
stability of the algorithm.

From these experiments, we want to compare the solutions found by the
genetic algorithms to the reference solutions, and to compare C1 and C2 com-
promises to C0. As far as we know, there is no quality measure of the solutions
of such problems as they exist in the field of evolutionary multiobjective genetic
algorithms.

5.3 Results and discussion

The crossover and mutation probabilities are respectively 0.8 and 0.2. The η
and σ parameters for the SBX crossover and mutation are respectively 2 and 4.
Other set of parameters have been tested and they produce comparable results
:
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Figure 3: Results of the test problem using compromise C0, C1 and C2 with filtering
on uniform sampling (a), and simple random sampling (b) of 300 points.
Results with EMO-MDO with phenotypic distance enabled (c), and dis-
abled (d). Population size is 20, and 15 iterations were performed.
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• We observe that the compromise solutions found with C1 with the uniform
sampling (figure 3-a) are uniformly distributed in an area approximately
equal to the half of the image of the feasible set.

• A random sampling of the feasible set (figure 3-b) does not give the same
results: the compromise solutions still belong to the same area but are not
spread uniformly. This shows that the solutions of the compromise C1 are
dependent to the spread of the population as stated in section 3.

• The C2 solutions are more largely spread with the simple random sampling
than the uniform discretization (figure 3-a,b). Nevertheless, the solutions
are in the same area, and this spread decrease as the sampling size increase.

• The EMO-MDO algorithm did not converge to the expected area when
used with C1 (figure 3-c,d). This is more salient when phenotypic diversity
is disabled (figure 3-d).

• The EMO-MDO algorithm converged to the expected area when used with
C2 (figure 3-c,d).

• The phenotypic diversity of NSGA-II is not adapted to this kind of prob-
lem: many solutions have the same performances within a discipline (fig-
ure 3-c). Nevertheless, phenotypic diversity still improves the solutions:
they are less diversifyied when disabled (figure 3-d).

We also observed that the compromise C2 is less sensitive to the algorithm
parameters than the compromise C1.

6 Conclusions and on-going work

MDO problems are often composed of disciplines which have several objectives
each. The compromise solutions are then often defined as the efficient solu-
tions of the MOP (C0). This can be interpreted as a compromise between the
objectives instead of a compromise between the disciplines.

We propose a first compromise (C1) based on the preferences of the disci-
plines using the ranks of the solutions. Unfortunately, this does not suit to
an EMO algorithm because ranks will not change uniformly as the population
evolves. To overcome this problem, we propose another compromise (C2) allow-
ing a non total order of the preferences of the disciplines. C0 C1 and C2 have
been implemented into an EMO algorithm. C2 gives satisfying results and is
less sensitive to the algorithm parameters than C1.

The proposed compromises have been defined on a simplified class of MDO
problems without local variables and coupling functions between disciplines.
Our future research will extend the compromises to more complex problems.

Acknowledgments The authors would like to thank the regional council of
the Pays de la Loire (France), MILES project, for their support of this research.
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