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ABSTRACT

3D quality of experience (QoE) in nature is a mul-
tidimensional problem and involves many factors
that contribute to the global quality rating such as
image quality, depth perception and visual discom-
fort. One important aspect for the development
and evaluation of 3D processing techniques is the
selection of appropriate 3D content. To this aim
it is necessary to develop computational methods
that can automatically measure the 3D character-
istics of a scene, similar to the spatial and tempo-
ral information indices commonly used for assess-
ing 2D content. The presented work is one step in
the development of such a depth index (DI) which
will target the evaluation of the depth-related char-
acteristics of 3D video sequences. The paper fo-
cuses on the linear perspective as one of the ma-
jor monocular depth cues. It compares two distinct
approaches for measuring the strength of perspec-
tive depth cues and analyzes their limits on a 2D
image dataset with associated subjective ratings.

1. INTRODUCTION

Recently, the interest in 3DTV, as one of the emerg-
ing multimedia formats, has remarkably increased
due to the rapid technological development.As a
consequence efforts have been devoted to the cre-
ation of suitable 3D content to feed this growing
market. However, one of the most important fac-
tors for a sustainable success of 3DTV is that it pro-
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vides an increased quality of experience (QoE) when
compared to traditional 2D media formats. Achiev-
ing this is not straightforward due to the various
quality factors which are involved in a 3D expe-
rience. Three dimensions are usually considered
when studying 3D quality: image quality, depth
perception and visual discomfort.

In this paper we focus on the depth perception
since this directly reflects the added value of 3DTV.
There are various factors which contribute to the
human depth perception. These depth cues can be
divided into monocular (pictorial) and binocular
cues [1]. The monocular depth cues provide depth
information available in single views and include
shading, relative size, interposition, blur, texture
gradients, linear perspective, motion parallax and
dynamic occlusions. In addition to the monocu-
lar cues, the binocular vision (stereopsis) provides
binocular depth cues. Here, binocular disparity is
considered as one of the most important binocular
depth cues.

In this paper we focus on the contribution of
monocular depth cues to the overall depth percep-
tion. As one of the strongest monocular depth cues
the linear perspective has been used for many years
by artists to give a good understanding of the depth
layout of a scene. Another aspect which makes lin-
ear perspective particularly interesting is its abil-
ity to give quantitative depth information: using
linear perspective it is possible to estimate the dis-
tance in depth between objects. This is not neces-
sarily the case with other depth cues: if interposi-
tion is considered without additional information,
it is only possible to say that one object is in front
of another, but not at which distance. The linear
perspective has been studied in the past and typi-
cally in two different granularities: firstly as a local
depth measure [2, 3] where the linear perspective
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is used to estimate a dense depth map of a scene,
and secondly in a global way [4] where a single
depth indicator is computed to provide informa-
tion about the perceived depth. Both approaches
are valuable but target different objectives. The first
one could be used to understand more precisely
the structure of the scene and could then be applied
to improve the quality of depth maps or to evaluate
distances to objects in the context of autonomous
robots. The second approach directly targets the
description of a scene, which can be particularly
useful for the development of realiable 3D process-
ing techniques, where it is crucial to select repre-
sentative 3D content with different characteristics.
While for 2D content, the spatial (SI) and temporal
information (TI) indices are commonly used [5], an
additional depth index (DI) is required, to capture
the depth characteristics as well.

The general objective of our work is to develop
a depth index which describes the depth character-
istics of a scene by analyzing and fusing the most
prominent depth cues. In the context of this paper,
only the measurement of linear perspective is stud-
ied since it is considered as one of the most promi-
nent monocular depth cues.

The paper is structured as follows. Section 2
provides a concise review of depth perception in
general, and the most important depth cues. Sec-
tion 3 describes two approaches which have been
developed to objectively measure the influence of
the linear perspective on the perceived depth. In
section 4 both approaches are evaluated on a pub-
licly available 2D image dataset and their limita-
tions are analyzed. Finally, section, 5 summarizes
the work and discusses future research directions.

2. DEPTH PERCEPTION

There are many factors which contribute to the gen-
eral understanding of the organization in depth of
the different objects composing a scene (the depth
layout). These can be decomposed into two distinct
classes: the monocular depth cues and the binocu-
lar depth cues [1]. The monocular depth cues provide
information on the depth using only a single view.
They can be decomposed into two distinct classes:
the static and motion-based cues. An illustration of
different monocular depth cues is depicted in Fig-
ure 1. In addition to the monocular depth cues,
the binocular vision provides binocular depth cues.
The pupils of the two human eyes are shifted by

Light and shade Relative size Interposition

Texture gradient Areal perspective Linear perspective

Blur

Fig. 1. Different types of monocular depth cues.

X Y

Disparity = X-Y

Fix

Target

Fig. 2. Binocular disparity used for stereopsis.

approximatively 6.5 cm, which causes each retinal
image to provide a slightly different view of the
same scene. This difference between the two views
is called retinal disparity. The brain is able to com-
bine these two views into a single 3D image in a
process called stereopsis (see Figure 2). The gen-
eral perception of the depth layout results from a
combination of the different sources of depth in-
formation.

The question of how all these depth cues con-
tribute to the general depth perception has been
studied by Cutting & Vishton [6]. Their analysis
included 9 distinct depth cues including occlusion,
relative size, relative density, height in the visual
field, perspective, motion perspective, binocular dis-
parities, convergence and accomodation. Based on
a comparison of their ordinal depth-threshold func-
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Fig. 3. Depth contrast perception as a function of
the visualization distance [6].

tions they have shown that the influence of each
depth cue on the overall depth perception depends
largely on the distance (see figure 3). According
to these variations they have partitioned the space
around the observer into 3 concentric circles where
specific depth cues are dominant. In the personal
space (0–2 m) the most important depth cues are oc-
clusions, retinal disparity, relative size, convergence
and accommodation. In the action space (2-30 m) the
depth cues can be ranked according to their im-
portance in the following way: occlusion, height
in the visual field, binocular disparity, motion per-
spective, and relative size. In the vista space (be-
yond 30 m) the only effective sources of informa-
tion are the so-called pictorial cues including oc-
clusion, height in the visual space, relative size and
aerial perspective. While the derived rankings pro-
vide a way to understand the importance of the in-
dividial depth cues for certain depth ranges, a com-
putational model for their integration is still miss-
ing and requires further studies.

3. LINEAR PERSPECTIVE

Linear perspective refers to the expansion of a 3D
space [4] as it is illustrated in figure 4. The con-
vergence of parallel lines such as the borders of the
street in a visible vanishing point provides a strong
perspective depth cue. On the other hand, the lack
of vanishing lines for example in a row of trees or a
vanishing point perpendicular to the camera view
such as in a frontal view of a house provide very
weak perspective depth cues.

In order to automatically predict the strength
of linear perspective for a given image, local and

Fig. 4. From strong to weak linear perspective.

global image properties can be analyzed. One way
is to detect and group visible lines and analyze the
corresponding vanishing points. Another way is to
ignore these local properties and characterize the
scene layout globally by analyzing the statistical
regularities of features within the image. Both ap-
proaches have been considered here, and the spe-
cific methods are described below.

3.1. Global layout properties (GLP)

The global approach is based on the analysis of global
texture features and adopts the method proposed
by Ross & Oliva [4] for scene description. A 2D im-
age is divided into a 2 × 2 grid of non-overlapping
rectangular regions which are described through
a set of GIST features [7]. These features are ob-
tained by convolving each image region with a set
of Gabor-like filters and averaging the complex mag-
nitudes at 4 scales and 8 orientations as it is illus-
trated for several examples in figure 5. Principal
component analysis (PCA) is applied to reduce the
dimensionality of the features from 128 to 24. Given
a set of training images and the corresponding fea-
tures a cluster weighted model (CVM) is trained to
predict the strength of the perspective depth cues
x within a test image. A CVM is essentially a gen-
eralization of a Gaussian mixture model (GMM) to
linear regression problems. It consists of several
clusters and their associated linear regression func-
tions, which are combined to derive the predicted
perspective according to the mixture proportions
for a given sample.

3.2. Vanishing point model (VPM)

The geometric approach is based on the analysis of
vanishing lines and their corresponding vanishing
points, and adopts the unified model for geomet-
ric parsing by Barinova et al. [8]. It models the
scene as a composition of geometric primitives at
different levels (edges, lines, vanishing points) as
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Fig. 5. Illustration of the global layout properties
(GLP) with input image (left), global (middle) and
local Gabor responses (right).

it is illustrated in figure 6. Line segments are de-
tected by applying the line segment detector (LSD)
by von Gioi et al. [9] on an image pyramid of 3
different scales and grouped into lines using the
probabilistic Hough transform. The candidate van-
ishing point are derived using the J-linkage algo-
rithm. In order to compute the final set of vanish-
ing points along with the horizon and the zenith,
the relationships between the different levels are
explicitly recovered through a joint optimization
process that does not require the Manhattan world
assumption with 3 orthogonal directions to be ful-
filled. By analysing the position of the detected
vanishing points for a set of images a heuristic rule
has been derived to predict the strength of the per-
spective cues. It is based on the observation that
the perspective cues are strongest if one of the van-
ishing points is close to the image center and de-
creases if the vanishing points lie outside the im-
age. Therefore, the strength of the perspective depth
cues s is computed as x = 1

d+1 given the distance d
of the closest vanishing point to the image center.

4. EXPERIMENTAL RESULTS

4.1. Dataset

For the development and the evaluation of the two
methods, the 2D image database created by Ross &
Oliva [4] was used. It contains 7138 unique images
from urban and natural outdoor environments. A
few representative samples are shown in figure 7.

Fig. 6. Illustration of the vanishing point model
(VPM) with input image (left), line segments (mid-
dle) and vanishing lines (right).

Fig. 7. Samples from the used 2D image dataset
with urban (left) and natural environments (right).

For each of the images, 1 out of 14 observer has
been asked to rate the degree of perspective, open-
ness and depth on a scale from 1 to 6. A small
subset of 838 images has been rated by a second
observer, which can be used to consistency of the
ratings. For the experiments the subjective scores
of the perspective rating have been rescaled to the
interval [0, 1]. They serve as ground truth y for the
evaluation of the two methods.

4.2. Performance

The performance of the developed methods was
evaluated by comparing the predicted objective val-
ues x to the ground truth values y obtained from
the subjective test. Figures 8 and 9 provide scat-
ter plots (subjective vs. objective scores) compar-
ing the two methods for urban and natural envi-
ronments, respectively. While the correlation be-
tween subjective and objective scores seems to be
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Fig. 8. Scatter plot (subjective vs. objective) of GLP
(top) and VPM (bottom) for urban environments.

quite high for urban environments, it is very small
for natural environments. This is confirmed by
the computed Pearson correlation coeffcients after
fitting a logistic function (green curve) [10]. For ur-
ban scenes the results are quite promising with 0.64
for the global approach (GLP) and 0.59 for the geo-
metric approach (VPM). For natural scenes the per-
formance drops considerably with correlation coef-
ficients of 0.33 and 0.17, respectively.

4.3. Analysis

To better understand the limits of both approaches,
the upper (cyan curve) and lower (red curve) pre-
diction bounds, with a confidence level of 0.95, have
been computed for the logistic function. The cor-
responding upper (yellow points) and lower (ma-
genta points) outliers have been sorted according
to their distance between the objective and subjec-
tive scores and have been visually analyzed. The
figures 10 and 11 show a selection of the upper
(y > x) and lower (y < x) outliers, respectively.

Analysing the upper outliers in figure 10 shows
that the GLP method usually underestimates the
strength of the linear perspective for scenes which

Fig. 9. Scatter plot (subjective vs. objective) of GLP
(top) and VPM (bottom) for natural environments.

Fig. 10. Selected upper outliers of GLP (left) and
VPM (right) for the urban environment.

Fig. 11. Selected lower outliers of GLP (left) and
VPM (right) for the urban environment.
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contain strong textures throughout the whole im-
age. On the other hand, the VPM method typically
underestimates the strength of the linear perspec-
tive for scenes which contain only a few vanishing
lines or which contain both parallel and perpendic-
ular vanishing lines. For the lower outliers in fig-
ure 11 the GLP method seems to overestimate the
strength of the linear perspective for scenes which
contain both textured and homogeneous areas. The
majority of the overestimates by the VPM method
are caused by the non-parallel lines which are acci-
dently considered as vanishing lines. Furthermore,
both figures reveal an issue of the used dataset.
Some large differences between the subjective and
objective scores are actually caused by question-
able subjective scores. An analysis of the images
which have been rated twice shows that for 12% of
the images the subjective ratings are inconsistent
with a difference of 2 on a scale from 1 to 6. The
performance can be expected to be higher if these
ambiguous scores are excluded from the evalua-
tion.

5. CONCLUSION

After providing a concise review of the most im-
portant aspects of depth perception, this paper ex-
plores global and geometric approaches for mea-
suring linear perspective as one of the most impor-
tant monocular depth cues. The global approach
(GLP) uses texture features and a trained regres-
sion model to predict the strength of the perspec-
tive depth cues. The geometric approach (VPM)
relies on the detection of vanishing lines and their
corresponding vanishing points and uses a heuris-
tic rule to relate their position to the linear perspec-
tive. While both approaches perform comparably
well for urban environments, the performance drops
considerably for natural environments. Especially,
the geometric approach suffers from the lack of par-
allel lines in natural scenes. A detailed analysis of
the outliers has revealed the complementary weak-
nesses of both approaches and motivates their in-
tegration as one future research direction. Another
direction is the integration of additional monocular
depth cues, which are assumed to be especially im-
portant when it comes to natural scenes. During
the analysis questionable subjective scores in the
used database have been observed which affect the
measured performance. The lack of an alternative
dataset shows that more comprehensive datasets

with a large variety of monocular and binocular
depth cues and reliable subjective ratings are needed.
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