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Up-scaling silicon nanowire (SiNW)-based functionalities requires a reliable strategy to precisely
position and integrate individual nanowires. We here propose an all-in-situ approach to fabricate

self-positioned/aligned SiNW, via an in-plane solid-liquid-solid growth mode. Prototype field

effect transistors, fabricated out of in-plane SiNWs using a simple bottom-gate configuration,

demonstrate a hole mobility of 228 cm2/V s and on/off ratio >103. Further insight into the intrinsic

doping and structural properties of these structures was obtained by laser-assisted 3 dimensional

atom probe tomography and high resolution transmission electron microscopy characterizations.

The results could provide a solid basis to deploy the SiNW functionalities in a cost-effective way.
VC 2011 American Institute of Physics. [doi:10.1063/1.3659895]

Silicon nanowires (SiNWs) are basic building blocks to

construct a new generation of transistors and sensor applica-

tions.1,2 Though SiNWs can be readily grown via several

cost-effective bottom-up approaches, most notably via the

well established vapor-liquid-solid (VLS) mechanism,2,3 the

challenge for large-area electronic applications remains to

arrange SiNWs into ordered 2 dimensional (2D) arrays as

active components or interconnections. The ability to grow

SiNWs at desired locations could lead to industrial scaling of

the promising SiNWs functionalities. For instance, it could

advantageously replace amorphous and microcrystalline Si

thin films used in flat panel displays. SiNWs grown by the

VLS process are usually perpendicular to the substrate sur-

face and need to be positioned selectively in a “pick-and-

place” manner4 or via solution-based techniques.3,5 Though

the VLS growth of SiNWs can be constrained by nanoscale

channels/pores,3,6 the template fabrication steps introduce

extra complexity and are mostly incompatible with planar Si

technology.

We have proposed recently an in-plane solid-liquid-

solid (IPSLS) SiNW growth mode7,8 to address this chal-

lenge by fabricating in-plane SiNWs all-in-situ in a plasma

chemical vapor deposition (PECVD) system. In contrast to

the VLS process9 that takes place in a gas precursor environ-

ment, a thin layer of hydrogenated amorphous Si (a-Si:H) is

absorbed by indium catalyst drops, moving on a substrate

surface, to produce crystalline in-plane SiNWs.7,8,10 The

driving force, as depicted in Fig. 1(a), arises from the differ-

ence in Gibbs energy between hydrogenated amorphous

Si (a-Si:H) and crystalline Si.11 A unique feature of the

in-plane growth lies in that the movement of catalyst drops

can be guided by simple surface features, like a single edge

step. This allows to determine the position and the growth

path of the SiNWs7,8,10,12 and offers an exciting opportunity

to position the in-plane SiNWs during their growth without

interrupting the vacuum. Here, we explore this feature to

deploy self-positioned SiNWs in a process compatible with

large area substrates and demonstrate prototype SiNWs-

FETs devices. Further insights of the structural properties, as

well as the catalyst doping effect in the SiNWs, were

obtained by using transmission electron microscopy (TEM)

and laser-assisted 3D atom probe tomography (APT)

characterizations.13

The SiNWs were fabricated on top of an nþ-Si wafer

coated with a thick SiO2 layer. First, as shown in Figs. 1(c)

and 1(d), indium-tin-oxide (ITO) stripes were deposited and

patterned on the substrate followed by a SiNx layer coverage

(�180 nm in thickness). Guiding channels were formed by

etching into the SiNx layer. Then, the substrates were loaded

into a PECVD system and treated with a H2 plasma at

300 �C to precipitate metal indium droplets at the surface of

the exposed ITO pads [Fig. 1(e)]. The substrate was then

cooled to 100 �C and covered with a thin layer of a-Si:H

[Fig. 1(f)]. The samples were annealed in-situ, under vac-

uum, at 300–450 �C, to activate the indium droplets which

moved around and produced well-defined in-plane SiNWs.

After the growth of SiNWs, the remnant a-Si:H matrix was

selectively removed by an in-situ H2 plasma etching at

100 �C. More details on the fabrication process are available

in the supplementary material.17

During the growth of in-plane SiNWs, the front a-Si:H/

catalyst interface, from which Si atoms are constantly

absorbed, always lead the in-plane motion of catalyst drop.

After the initial random growth on the ITO pad, seen in the

inset of Fig. 2(b), the catalyst drop eventually runs into the

step sidewall provided by the SiNx guiding edge, which is

also coated with a layer of a-Si:H. In doing so, it forms a

new absorption front as illustrated by the green line in Fig.

1(b). Depending on the growth balance condition,7 this extra
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sidewall absorption front can exert a lateral attraction force

which guides the motion of a catalyst drop to produce

aligned SiNW along the sidewall edge. In Figs. 2(a) and

2(b), we show the scanning electron microscopy (SEM) pic-

tures of a guiding edge matrix, with a spacing of 200 lm

and channel width of 2–20 lm. At each guiding edge, on

both sides of the channel, we found one and only one pre-

cisely aligned SiNW. It is important to note that precise

control over the number of in-plane SiNWs is also a critical

factor to building robust device applications. Meanwhile,

based on this in-plane guided growth strategy, the diameter

of the SiNWs can also be effectively controlled by the

size of the catalyst drops, which in our case is achieved by

tuning the initial H2 plasma treatment condition. To give

an example, SEM images of the thinner guided SiNWs

with diameters down to 40 nm, 28 nm, and 14 nm are pro-

vided in the supplementary material Figs. S1(a)–S1(c),

respectively.17

Based on the self-aligned SiNWs, shown in Fig. 2, we

continue to explore their structural properties by using high re-

solution TEM (HR-TEM), as well as the electronic transport

properties and device performance in a bottom-gate SiNWs

FETs configuration. The SiNWs in these arrays have an aver-

age diameter of �170 nm and span a channel length of

200lm. A typical HR-TEM image of a SiNW in Fig. 2(c)

shows that the growth direction of this specific SiNW is

h211i. The high crystallinity of the in-plane SiNWs is con-

firmed by an enlarged view of the lattice in the right inset of

Fig. 2(c). Twin planes, parallel or oblique to the growth direc-

tion, can be found in the in-plane SiNWs. A simple bottom-

gate SiNW FET structure was realized by connecting selected

SiNW channels with Al electrode contacts and using the nþ

c-Si wafer as bottom-gate. The transfer characteristics of a

typical single SiNW (of �170 nm in diameter and 200 lm in

length) are presented in Fig. 3(a). The channel current Ids can

be modulated by Vg and pinched off by applying a positive

gate voltage, indicating a p-type SiNW channel, with an on-

off current ratio >103 and a subthreshold slope S¼ 690 mV/

dec. The carrier mobility in the SiNW channel is estimated

according to a simple bottom-gate model as depicted by the

inset of Fig. 3(a), l ¼ S � Vsd � l2
w=C, where S � dIds=dVg and

C ¼ e0eSiO2
lwdw=tSiO2

are the transconductance and the capaci-

tance between the SiNW channel and the bottom-gate, respec-

tively, with lw, dw, and tSiO2
being the length and width of the

SiNW channel and the thickness of the bottom SiO2 dielectric

layer, eSiO2
and e0 the relative dielectric constant and the vac-

uum permittivity. The field effect hole mobility in this specific

guided SiNW channel is thus deduced to be 228 cm2/Vs.

Though no dopant sources were intentionally intro-

duced, indium incorporation in Si is known to introduce

acceptor states in the crystalline Si, with dopant levels at

0.16 eV above the valence band.14 Further insight on the in-

dium concentration was obtained by probing a single SiNW

FIG. 2. (Color online) (a) SEM images and

illustration of the self-positioned growth of

aligned SiNWs along the guiding edges, as

well as the configuration of the bottom-

gated SiNWs FET; (b) the matrix of ITO

rows and SiNx guiding columns. (c) HR-

TEM image of an in-plane SiNW grown in

h211i direction, with an enlarged view of

the Si lattice on the right inset.

FIG. 1. (Color online) (a) Schematic illustration of the in-plane growth of

SiNWs via IPSLS mode; (b) the formation of a new absorption front (green

line) on the step sidewall and the guided growth of in-plane SiNWs. (c)-(h)

the ITO stripes and guiding edge patterning processes, and the all-in-situ
plasma treatment/deposition steps in a PECVD system.
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with APT. A SiNW segment was chosen and mounted on a

tungsten tip by focus ion beam cutting and soldering manipu-

lations, as shown in Fig. 3(c). A 3D reconstruction of the dis-

tribution profile of indium atoms in the SiNW is shown in

Fig. 3(d), with analyzed volume of 40� 40� 875 nm.3 A

magnified view of an extracted slab in Fig. 3(e) reveals the

discrete distribution of indium atoms among the clearly

resolved Si-h111i planes. By taking an inter-plane distance

of 0.31 6 0.01 nm as a calculation parameter for the recon-

struction, the indium concentration in this SiNW segment is

determined to be �1019 cm�3.

Compared to boron doping in c-Si, which features a

shallow acceptor level with an activation energy of

Ea ¼ 0:045 eV above the valence band, indium dopants are

known to introduce a deeper level at Ea ¼ 0:160 eV. Accord-

ing to the neutrality condition in c-Si,14 the Fermi level posi-

tion can be determined as a function of the boron or indium

dopant concentrations, as depicted in Fig. 3(b). Since indium

atoms have an ionization energy that is four times larger

than boron, assuming that the concentration of active indium

dopants is the same as that of indium atoms �1019/cm3, the

hole carriers given off by the indium atoms are estimated to

be �3.7� 1017/cm3. As only ionized dopants provide the

kind of scattering centers that limit the carrier mobility,15 an

ionized dopants concentration of �3.7� 1017/cm3 leads to a

hole mobility in boron doped c-Si in the range of �220 cm2/

Vs.15 This is consistent with our best mobility of 228 cm2/Vs

that was measured in the in-plane SiNWs channels, indicat-

ing that the hole mobility is mainly limited by the ionized

indium dopants. Interestingly, the hole mobility in the

self-positioned SiNWs channels is comparable or even

higher than that achieved in the best p-channel polycrystal-

line Si transistors (�200 cm2/Vs),16 and much higher than

that in the amorphous silicon and metal oxide materials

adopted in active matrix flat panel displays.

In summary, we have demonstrated an all-in-situ
approach to deploy self-positioned SiNW channels in an up-

scalable and cost-effective process. Prototype field effect

transistors fabricated in a simple bottom-gate configuration

have been realized and demonstrate an on/off ratio >103 and

hole mobility of 228 cm2/Vs. These results lay an important

basis for direct integration of in-plane SiNW FETs for high

performance planar display and flexible electronics.
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FIG. 3. (Color online) (a) The transfer

properties of the SiNW FET, with an illus-

tration of the bottom-gate structure in the

inset; (b) the calculated Fermi level position

as a function of the dopants concentration

of indium (solid) or boron (dashed) dopants;

(c) SEM image of a single SiNW mounted

on a W tip. (d) 3D reconstruction of the dis-

tribution profile of silicon atoms (red) and

indium atoms (blue) in a selected volume of

40� 40� 875 nm3 and (e) an enlarged view

of the discrete distribution of indium and

silicon atoms in a 5 nm wide slab region.
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