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Semilinear geometric optics with boundary amplification

Jean-Francois Coulombel∗, Olivier Guès†, Mark Williams‡

March 2, 2012

Abstract

We study weakly stable semilinear hyperbolic boundary value problems with highly oscil-
latory data. Here weak stability means that exponentially growing modes are absent, but the
so-called uniform Lopatinskii condition fails at some boundary frequency β in the hyperbolic
region. As a consequence of this degeneracy there is an amplification phenomenon: outgoing
waves of amplitude O(ε2) and wavelength ε give rise to reflected waves of amplitude O(ε), so the
overall solution has amplitude O(ε). Moreover, the reflecting waves emanate from a radiating
wave that propagates in the boundary along a characteristic of the Lopatinskii determinant.

An approximate solution that displays the qualitative behavior just described is constructed
by solving suitable profile equations that exhibit a loss of derivatives, so we solve the profile
equations by a Nash-Moser iteration. The exact solution is constructed by solving an associated

singular problem involving singular derivatives of the form ∂x′ + β
∂θ0

ε
, x′ being the tangential

variables with respect to the boundary. Tame estimates for the linearization of that problem
are proved using a first-order calculus of singular pseudodifferential operators constructed in
the companion article [CGW12]. These estimates exhibit a loss of one singular derivative and
force us to construct the exact solution by a separate Nash-Moser iteration. The same estimates
are used in the error analysis, which shows that the exact and approximate solutions are close
in L∞ on a fixed time interval independent of the (small) wavelength ε. The approach using
singular systems allows us to avoid constructing high order expansions and making small divisor
assumptions.
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1 Introduction and main results

In this paper we study weakly stable semilinear hyperbolic boundary value problems with oscil-
latory data. The problems are weakly stable in the sense that exponentially growing modes are
absent, but the uniform Lopatinskii condition fails at a boundary frequency β in the hyperbolic
region H1. As a consequence of this degeneracy in the boundary conditions, there is an amplifica-
tion phenomenon: boundary data of wavelength ε and amplitude O(ε2) in the problem (1.1) below
gives rise to a response of amplitude O(ε). In the meantime, resonance may occur between distinct
oscillations. In the situation studied below, a resonant quadratic interaction between two incoming
waves of amplitude O(ε) may produce an outgoing wave of amplitude O(ε2). When reflected and
amplified on the boundary, this oscillation gives rise to incoming waves of amplitude O(ε). Hence
the O(ε) amplitude regime appears as the natural weakly nonlinear regime.

Let us now introduce some notation. On R
d+1
+ = {x = (x′, xd) = (t, y, xd) = (t, x′′) : xd ≥ 0},

consider the N ×N semilinear hyperbolic boundary problem for v = vε(x), where ε > 02:

(a) L0(∂)v + f0(v) = 0,

(b) φ(v) = ε2G

(
x′,

x′ · β
ε

)
on xd = 0,

(c) v = 0 and G = 0 in t < 0,

(1.1)

1See Definition 1.3 and Assumption 1.5 below for precise statements.
2We usually suppress the subscript ε.
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where L0(∂) = ∂t +
∑d

j=1Bj ∂j, the matrix Bd is invertible, and both f0(v) and φ(v) vanish at

v = 0. The function G(x′, θ0) is assumed to be periodic in θ0, and the frequency β ∈ R
d \ {0} is

taken to be a boundary frequency at which the so-called uniform Lopatinskii condition fails. A
consequence of this failure is that the choice of the factor ε2 in (1.1)(b) corresponds to the weakly
nonlinear regime for this problem. The leading profile is nonlinearly coupled to the next order
profile in the nonlinear system (1.35),(1.36) derived below. We also refer to Appendix B for a
detailed specific example which illustrates the nonlinear feature of the leading profile equation.

Before proceeding we write the problem in an equivalent form that is better adapted to the
boundary. After multiplying (1.1)(a) by (Bd)

−1 we obtain

L(∂)v + f(v) = 0,

φ(v) = ε2G

(
x′,

x′ · β
ε

)
on xd = 0,

v = 0 and G = 0 in t < 0,

(1.2)

where we have set

L(∂) = ∂d +

d−1∑

j=0

Aj ∂j with Aj := B−1
d Bj for j = 0, . . . , d− 1.

Setting v = εu and writing f(v) = D(v)v, φ(v) = ψ(v)v, we get the problem for u = uε(x)

(a) L(∂)u+D(εu)u = 0,

(b) ψ(εu)u = εG

(
x′,

x′ · β
ε

)
on xd = 0,

(c) u = 0 in t < 0.

(1.3)

For the problem (1.3) we pose the two basic questions of rigorous nonlinear geometric optics:

(1) Does an exact solution uε of (1.3) exist for ε ∈ (0, 1] on a fixed time interval [0, T0]
independent of ε?

(2) Suppose the answer to the first question is yes. If we let uappε denote an approximate
solution on [0, T0] constructed by the methods of nonlinear geometric optics (that is, solving eikonal
equations for phases and suitable transport equations for profiles), how well does uappε approximate
uε for ε small? For example, is it true that3

(1.4) lim
ε→0

|uε − uappε |L∞ → 0 ?

The amplification phenomenon was studied in a formal way for several different quasilinear
problems in [AM87, MA88, MR83]. In [MR83] amplification was studied in connection with Mach
stem formation in reacting shock fronts, while [AM87] explored a connection to the formation
of instabilities in compressible vortex sheets. Both papers derived equations for profiles using
an ansatz that exhibited amplification; however, neither of the two questions posed above were

3Let us observe that by the amplification phenomenon, we expect the solution v to (1.1) to have amplitude O(ε),
so the solution u to (1.3) should have amplitude O(1). Hence the limit (1.4) deals with the difference between two
O(1) quantities.
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addressed. The first rigorous amplification results were proved in [CG10] for linear problems. That
article provided positive answers to the above questions (question (1) is trivial for linear problems)
by making use of approximate solutions of high order, and showed in particular that the limit (1.4)
holds.

In this paper we give positive answers to the above questions for the semilinear system (1.3).
As is typical in nonlinear geometric optics problems involving several phases, difficulties with small
divisors rule out the construction of high order approximate solutions4. Instead of constructing the
exact solution uε as a small perturbation of a high-order approximate solution, we construct uε in
the form

uε(x) = Uε(x, θ0)|θ0=β·x′

ε

,

where Uε(x, θ0) is an exact solution of the singular system (1.18). The singular system is solved
using symmetrization and diagonalization arguments from [Wil02], modified and supplemented with
methods from [Cou04] for deriving linear estimates for weakly stable hyperbolic boundary problems.
In deriving the basic estimate (2.4) for the singular linear problem, a loss of derivatives5 forces us
to use a new tool, namely, a substantial refinement, given in the companion paper [CGW12], of
the calculus of singular pseudodifferential operators constructed in [Wil02]. In the new version of
the calculus, residual operators have better smoothing properties than previously realized and can
therefore be considered as remainders in our problem. The loss of derivatives in the linear estimate
presents a serious difficulty in the application to our semilinear problem. Picard iteration appears
to be out of the question, so in section 5.2 we use a Nash-Moser iteration scheme adapted to the
scale of spaces (1.19) to construct the solution Uε(x, θ0) to the semilinear singular problem.

If the problem (1.3) satisfied the uniform Lopatinskii condition, then because of the factor ε
in the boundary data εG, the equations for the leading profile, V0 in (1.15), would be linear; and
in fact V0 would vanish. The weakly nonlinear regime would correspond to a source term G (and
not εG) in (1.3), see [Wil96, Wil00]. Under our weak stability assumption, it turns out that V0 is
nonlinearly coupled to the second-order profile V1 in the profile equations (1.35),(1.36). To solve
these equations we first isolate a “key subsystem” (1.42) that decouples from the full system. The
basic L2 estimate for the linearization of the key subsystem still exhibits a loss of one derivative,
and we are again forced to use Nash-Moser iteration in order to solve this subsystem. Once the key
subsystem is solved, the solution of the full profile system (1.35),(1.36) follows easily. It appears
in our analysis that the leading order amplitude equation shares the weak well-posedness of the
original nonlinear problem but we have not checked whether the loss of derivative for the amplitude
equation is optimal (we conjecture it is so).

The error analysis used to answer question (2) above is based on the estimate for the singular
system (1.18), see Proposition 2.2 below, and is discussed in more detail in section 1.5.

This paper can be read independently of [CGW12]; for the reader’s convenience, we have gath-
ered all the necessary material on the singular calculus in Appendix A. Before giving a fuller
discussion, we first provide some definitions, notation, and a precise statement of assumptions.

1.1 Assumptions

We make the following hyperbolicity assumption on the system (1.1):

4Such difficulties are sometimes avoided by assuming that small divisors do not occur, see e.g. [JMR93], but we
do not want to make this assumption.

5In fact, the basic L2 estimate for the singular system (1.18) exhibits loss of a single “singular derivative” ∂x′+
β∂θ0

ε
,

which is optimal according to the analysis in [CG10].

4



Assumption 1.1. There exist an integer q ≥ 1, some real functions λ1, . . . , λq that are analytic on
R
d \ {0} and homogeneous of degree 1, and there exist some positive integers ν1, . . . , νq such that:

∀ ξ = (ξ1, . . . , ξd) ∈ R
d \ {0} , det

[
τ I +

d∑

j=1

ξj Bj

]
=

q∏

k=1

(
τ + λk(ξ)

)νk .

Moreover the eigenvalues λ1(ξ), . . . , λq(ξ) are semi-simple (their algebraic multiplicity equals their
geometric multiplicity) and satisfy λ1(ξ) < · · · < λq(ξ) for all ξ ∈ R

d \ {0}.

For simplicity, we restrict our analysis to noncharacteristic boundaries and therefore make the
following:

Assumption 1.2. The matrix Bd is invertible and the matrix B := ψ(0) has maximal rank, its
rank p being equal to the number of positive eigenvalues of Bd (counted with their multiplicity).
Moreover, the integer p satisfies 1 ≤ p ≤ N − 1.

In the normal modes analysis for (1.3), one first performs a Laplace transform in the time
variable t and a Fourier transform in the tangential space variables y. We let τ − i γ ∈ C and
η ∈ R

d−1 denote the dual variables of t and y. We introduce the symbol

A(ζ) := −iB−1
d


(τ − iγ) I +

d−1∑

j=1

ηj Bj


 , ζ := (τ − iγ, η) ∈ C× R

d−1 .

For future use, we also define the following sets of frequencies:

Ξ :=
{
(τ − iγ, η) ∈ C× R

d−1 \ (0, 0) : γ ≥ 0
}
, Σ :=

{
ζ ∈ Ξ : τ2 + γ2 + |η|2 = 1

}
,

Ξ0 :=
{
(τ, η) ∈ R× R

d−1 \ (0, 0)
}
= Ξ ∩ {γ = 0} , Σ0 := Σ ∩ Ξ0 .

Two key objects in our analysis are the hyperbolic region and the glancing set that are defined
as follows:

Definition 1.3. • The hyperbolic region H is the set of all (τ, η) ∈ Ξ0 such that the matrix
A(τ, η) is diagonalizable with purely imaginary eigenvalues.

• Let G denote the set of all (τ, ξ) ∈ R × R
d such that ξ 6= 0 and there exists an integer

k ∈ {1, . . . , q} satisfying:

τ + λk(ξ) =
∂λk
∂ξd

(ξ) = 0 .

If π(G) denotes the projection of G on the d first coordinates (in other words π(τ, ξ) =
(τ, ξ1, . . . , ξd−1) for all (τ, ξ)), the glancing set G is G := π(G) ⊂ Ξ0.

We recall the following result that is due to Kreiss [Kre70] in the strictly hyperbolic case (when all
integers νj in Assumption 1.1 equal 1) and to Métivier [Mét00] in our more general framework:

Proposition 1.4 ([Kre70, Mét00]). Let Assumptions 1.1 and 1.2 be satisfied. Then for all ζ ∈
Ξ \ Ξ0, the matrix A(ζ) has no purely imaginary eigenvalue and its stable subspace E

s(ζ) has
dimension p. Furthermore, Es defines an analytic vector bundle over Ξ \ Ξ0 that can be extended
as a continuous vector bundle over Ξ.
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For all (τ, η) ∈ Ξ0, we let E
s(τ, η) denote the continuous extension of Es to the point (τ, η). The

analysis in [Mét00] shows that away from the glancing set G ⊂ Ξ0, E
s(ζ) depends analytically on

ζ, and the hyperbolic region H does not contain any glancing point.
To treat the case when the boundary operator in (1.3)(b) is independent of u, meaning ψ(εu) ≡

ψ(0) =: B, we make the following weak stability assumption on the problem (L(∂), B).

Assumption 1.5. • For all ζ ∈ Ξ \ Ξ0, KerB ∩ E
s(ζ) = {0}.

• The set Υ0 := {ζ ∈ Σ0 : KerB ∩ E
s(ζ) 6= {0}} is nonempty and included in the hyperbolic

region H.

• For all ζ ∈ Υ0, there exists a neighborhood V of ζ in Σ, a real valued C∞ function σ defined
on V, a basis E1(ζ), . . . , Ep(ζ) of E

s(ζ) that is of class C∞ with respect to ζ ∈ V, and a matrix
P (ζ) ∈ GLp(C) that is of class C∞ with respect to ζ ∈ V, such that

∀ ζ ∈ V , B
(
E1(ζ) . . . Ep(ζ)

)
= P (ζ) diag

(
γ + i σ(ζ), 1, . . . , 1

)
.

For comparison and later reference we recall the following definition.

Definition 1.6 ([Kre70]). As before let p be the number of positive eigenvalues of Bd. The problem
(L(∂), B) is said to be uniformly stable or to satisfy the uniform Lopatinskii condition if

B : Es(ζ) −→ C
p

is an isomorphism for all ζ ∈ Σ.

Remark 1.7. Observe that if (L(∂), B) satisfies the uniform Lopatinskii condition, continuity
implies that this condition still holds for (L(∂), B+ψ̇), where ψ̇ is any sufficiently small perturbation
of B. Hence the uniform Lopatinskii condition is a convenient framework for nonlinear perturbation.
The analogous statement may not be true when (L(∂), B) is only weakly stable. Remarkably,
weak stability persists under perturbation in the so-called WR class exhibited in [BGRSZ02], and
Assumption 1.5 above is a convenient equivalent definition of the WR class (see [CG10, Appendix
B]). In order to handle general nonlinear boundary conditions as in (1.3) we shall strengthen
Assumption 1.5 in Assumption 1.11 below.

Boundary and interior phases. We consider a planar real phase φ0 defined on the boundary:

(1.5) φ0(t, y) := τ t+ η · y , (τ , η) ∈ Ξ0 .

As follows from earlier works, see e.g. [MA88], oscillations on the boundary associated with the
phase φ0 give rise to oscillations in the interior associated with some planar phases φm. These phases
are characteristic for the hyperbolic operator L0(∂) and their trace on the boundary {xd = 0} equals
φ0. For now we make the following:

Assumption 1.8. The phase φ0 defined by (1.5) satisfies (τ , η) ∈ Υ0. In particular (τ , η) ∈ H.

Thanks to Assumption 1.8, we know that the matrix A(τ , η) is diagonalizable with purely imaginary
eigenvalues. These eigenvalues are denoted i ω1, . . . , i ωM , where the ωm’s are real and pairwise
distinct. The ωm’s are the roots (and all the roots are real) of the dispersion relation:

det
[
τ I +

d−1∑

j=1

η
j
Bj + ωBd

]
= 0 .
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To each root ωm there corresponds a unique integer km ∈ {1, . . . , q} such that τ + λkm(η, ωm) = 0.
We can then define the following real6 phases and their associated group velocities:

(1.6) ∀m = 1, . . . ,M , φm(x) := φ0(t, y) + ωm xd , vm := ∇λkm(η, ωm) .

Let us observe that each group velocity vm is either incoming or outgoing with respect to the space
domain R

d
+: the last coordinate of vm is nonzero. This property holds because (τ , η) does not

belong to the glancing set G. We can therefore adopt the following classification:

Definition 1.9. The phase φm is incoming if the group velocity vm is incoming (that is, when
∂ξdλkm(η, ωm) > 0), and it is outgoing if the group velocity vm is outgoing (∂ξdλkm(η, ωm) < 0).

In all that follows, we let I denote the set of indices m ∈ {1, . . . ,M} such that φm is an incoming
phase, and O denote the set of indices m ∈ {1, . . . ,M} such that φm is an outgoing phase. If p ≥ 1,
then I is nonempty, while if p ≤ N − 1, O is nonempty (see Lemma 1.10 below). We will use the
notation:

L0(τ, ξ) := τ I +

d∑

j=1

ξj Bj , L(β, ωm) := ωm I +

d−1∑

k=0

βk Ak,

β := (τ , η), x′ = (t, y), φ0(x
′) = β · x′.

For each phase φm, dφm denotes the differential of the function φm with respect to its argument
x = (t, y, xd). It follows from Assumption 1.1 that the eigenspace of A(β) associated with the
eigenvalue i ωm coincides with the kernel of L0(dφm) and has dimension νkm. The following well-
known lemma, whose proof is recalled in [CG10], gives a useful decomposition of Es in the hyperbolic
region.

Lemma 1.10. The stable subspace E
s(β) admits the decomposition:

(1.7) E
s(β) = ⊕m∈I kerL0(dφm) ,

and each vector space in the decomposition (1.7) admits a basis of real vectors.

To formulate our last assumption we observe first that for every point ζ ∈ H there is a neigh-
borhood V of ζ in Σ and a C∞ conjugator Q0(ζ) defined on V such that

Q0(ζ)A(ζ)Q−1
0 (ζ) =



iω1(ζ)In1 0

. . .

0 iωJ(ζ)InJ


 =: −D1(ζ),(1.8)

where the ωj are real when γ = 0 and there is a constant c > 0 such that either

Re (iωj) ≤ −c γ or Re (iωj) ≥ c γ for all ζ ∈ V.

In view of Lemma 1.10 we can choose the first p columns of Q−1
0 (ζ) to be a basis of Es(ζ), and we

write
Q−1

0 (ζ) = [Qin(ζ) Qout(ζ)].

6If (τ, η) does not belong to the hyperbolic region H, some of the phases ϕm may be complex, see e.g. [Wil96,
Wil00, Les07, Mar10]. Moreover, glancing phases introduce a new scale

√
ε as well as boundary layers.
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Choose J ′ so that the first J ′ blocks of −D1 lie in the first p columns, and the remaining blocks in
the remaining N − p columns. Thus, Re (iωj) ≤ −c γ for 1 ≤ j ≤ J ′.

Observing that the linearization of the boundary condition in (1.3) is

u̇ 7−→ ψ(εu)u̇ + [∂vψ(εu) u̇] εu ,

we define the operator

B(v1, v2) u̇ := ψ(v1)u̇+ [∂vψ(v1) u̇] v2 ,(1.9)

which appears in Assumption 1.11 below. For later use we also define

D(v1, v2) u̇ := D(v1)u̇+ [∂vD(v1) u̇] v2 ,(1.10)

as well as

B(v1) := B(v1, v1) , D(v1) := D(v1, v1) .(1.11)

We now state the weak stability assumption that we make when considering the general case
of nonlinear boundary conditions in (1.3).

Assumption 1.11. • There exists a neighborhood O of (0, 0) ∈ R
2N such that for all (v1, v2) ∈

O and all ζ ∈ Ξ \ Ξ0, ker B(v1, v2) ∩ E
s(ζ) = {0}. For each (v1, v2) ∈ O the set Υ(v1, v2) :=

{ζ ∈ Σ0 : ker B(v1, v2) ∩ E
s(ζ) 6= {0}} is nonempty and included in the hyperbolic region H.

Moreover, if we set Υ := ∪(v1,v2)∈OΥ(v1, v2), then Υ ⊂ H (closure in Σ0).

• For every ζ ∈ Υ there exists a neighborhood V of ζ in Σ and a C∞ function σ(v1, v2, ζ) on
O × V such that for all (v1, v2, ζ) ∈ O × V we have Ker B(v1, v2) ∩ E

s(ζ) 6= {0} if and only if
ζ ∈ Σ0 and σ(v1, v2, ζ) = 0.

Moreover, there exist matrices Pi(v1, v2, ζ) ∈ GLp(C), i = 1, 2, of class C∞ on O × V
such that ∀ (v1, v2, ζ) ∈ O × V

(1.12) P1(v1, v2, ζ)B(v1, v2)Qin(ζ)P2(v1, v2, ζ) = diag
(
γ + i σ(v1, v2, ζ), 1, . . . , 1

)
.

For nonlinear boundary conditions, the phase φ0 in (1.5) is assumed to satisfy (τ , η) ∈ Υ(0, 0),
or in other words the intersection kerB ∩E

s(τ , η) is not reduced to {0} (the set Υ0 in Assumption
1.5 is a short notation for Υ(0, 0)). The phases φm are still defined by (1.6) and thus only depend
on L(∂) and B and not on the nonlinear perturbations f0 and ψ(ε u) − ψ(0) added in (1.3).

Remark 1.12. 1) The properties stated in Assumption 1.11 are just a convenient description of the
requirements for belonging to the WR class of [BGRSZ02]. Like the uniform Lopatinskii condition,
Assumption 1.11 can in practice be verified by hand via a “constant-coefficient” computation. More
precisely, for (v1, v2) near (0, 0) ∈ R

2N and ζ ∈ Σ, one can define (see, e.g., [BGS07, chapter 4]) a
Lopatinskii determinant ∆(v1, v2, ζ) that is C

∞ in (v1, v2), analytic in ζ = (τ − iγ, η) on Σ \G, and
satisfies

∆(v1, v2, ζ) = 0 if and only if Ker B(v1, v2) ∩ E
s(ζ) 6= {0}.

In particular, ∆(v1, v2, ·) is real-analytic on H.
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Following [BGRSZ02], see also [BGS07, chapter 8], we claim that Assumption 1.11 holds pro-
vided

(1.13) ∅ 6= {ζ ∈ Σ : ∆(0, 0, ζ) = 0} ⊂ H and ∆(0, 0, ζ) = 0 ⇒ ∂τ∆(0, 0, ζ) 6= 0,

and it thus only involves a weak stability property for the linearized problem at (v1, v2) = (0, 0).
Indeed, the implicit function theorem then implies that for (v1, v2) near zero and (τ, η) near ζ, the
set {(τ, η) ∈ Σ0 : ∆(v1, v2, τ, η) = 0} is a real-analytic hypersurface in H. On the other hand, an
application of the implicit function theorem to ∆(v1, v2, z, η), for (z, η) ∈ Σ shows that the real
dimension of the manifold {(z, η) ∈ Σ : ∆(v1, v2, z, η) = 0} must be the same, that is, d−2. The two
zero sets must then coincide; there are no zeros in Σ\Σ0. The function σ and the neighborhoods O
and V arise in a factorization of ∆ given by the Weierstrass Preparation Theorem. The construction
of the conjugating matrices Pi, i = 1, 2 follows from a construction in [ST88, p. 268-270].

Instead of assuming (1.13), we have stated Assumption 1.11 in a form that is more directly
applicable to the proof of Proposition 2.2 and to the error analysis of Theorem 4.1.

2) To prove the basic estimate for the linearized singular system, Proposition 2.2, and to
construct the exact solution Uε to the singular system (1.18) below, it is enough to require that the
analogue of Assumption 1.11 holds when B(v1, v2) is replaced by B(v1) := B(v1, v1). However, for
the error analysis of section 4 in the case of nonlinear boundary conditions, we need Assumption
1.11 as stated.

The next Lemma, proved in [CG10], gives a useful decomposition of CN and introduces projec-
tors needed later for formulating and solving the profile equations.

Lemma 1.13. The space C
N admits the decomposition:

(1.14) C
N = ⊕M

m=1 kerL0(dφm)

and each vector space in (1.14) admits a basis of real vectors. If we let P1, . . . , PM denote the
projectors associated with the decomposition (1.14), then there holds Im B−1

d L0(dφm) = kerPm for
all m = 1, . . . ,M .

1.2 Main results

For each m ∈ {1, . . . ,M} we let
rm,k, k = 1, . . . , νkm

denote a basis of kerL0(dφm) consisting of real vectors. In section 4 we shall construct a “corrected”
approximate solution ucε of (1.3) of the form

(1.15) ucε(x) = V0

(
x,
φ

ε

)
+ εV1

(
x,
φ

ε

)
+ ε2 U2

p

(
x,
φ0
ε
,
xd
ε

)
,

where φ := (φ1, . . . , φM ) denotes the collection of all phases,

V0

(
x,
φ

ε

)
=
∑

m∈I

νkm∑

k=1

σm,k

(
x,
φm
ε

)
rm,k ,

V1

(
x,
φ

ε

)
= V1(x) +

M∑

m=1

νkm∑

k=1

τm,k

(
x,
φm
ε

)
rm,k +RV0 ,

(1.16)
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and the σm,k(x, θm) and τm,k(x, θm) are scalar C1 functions periodic in θm with mean 0 which
describe the propagation of oscillations with phase φm and group velocity vm. Here R denotes the
operator

RV0 = −R [L(∂x)V0 +D(0)V0]

for R defined as in (1.32). The last corrector ε2 U2
p (x, θ0, ξd) in (1.15) is a trigonometric polynomial

constructed in the error analysis of section 4.
The following theorem, our main result, is an immediate corollary of the more precise Theorem

4.1. Here we let ΩT := {(x, θ0) = (t, y, xd, θ0) ∈ R
d+1×T

1 : xd ≥ 0, t < T}, and bΩT := {(t, y, θ0) ∈
R
d × T

1 : t < T}. The spaces Es are defined in (1.19) below.

Theorem 1.14. We make Assumptions 1.1, 1.2, 1.5, and 1.8 when the boundary condition in
(1.3) is linear (ψ(εu) ≡ ψ(0)); in the general case we substitute Assumption 1.11 for Assumption
1.5. Fix T > 0, set M0 := 3 d+ 5, and let

a := [(d + 1)/2] +M0 + 3 and ã = 2a− [(d+ 1)/2].

Consider the semilinear boundary problem (1.3), where G(t, y, θ0) ∈ H ã(bΩT ). There exists ε0 > 0
such that if 〈G〉Ha+2(bΩT ) is small enough, there exists a unique function Uε(x, θ0) ∈ Ea−1(ΩT )
satisfying the singular system (1.18) on ΩT such that

uε(x) := Uε

(
x,
x′ · β
ε

)

is an exact solution of (1.3) on (−∞, T ] × R
d
+ for 0 < ε ≤ ε0. In addition there exists a profile

V0(x, θ) as in (1.16), whose components σm,k lie in Ha−1(ΩT ), such that the approximate solution
defined by

uappε := V0

(
x,
φ

ε

)

satisfies

lim
ε→0

|uε − uappε |L∞ = 0 on (−∞, T ]× R
d
+.

Observe that although the boundary data in the problem (1.3) is of size O(ε), the approximate
solution uappε is of size O(1), exhibiting an amplification due to the weak stability at frequency
β. The main information provided by Theorem 1.14 is that this amplification does not rule out
existence of a smooth solution on a fixed time interval, that is it does not trigger a violent instability,
at least in this weakly nonlinear regime. As far as we know, the derivation of the leading order
amplitude equation (1.42) is also new in the general framework that we consider. We hope that the
analysis developed in this article will be useful in justifying quasilinear amplification phenomena
such as the Mach stems or kink modes formation of [AM87, MA88].

Remark 1.15. a) In order to avoid some technicalities we have stated our main result for a problem
(1.3) where all data is 0 in t < 0. This result easily implies a similar result in which outgoing waves
defined in t < 0 of amplitude O(ε) and wavelength ε give rise to reflected waves of amplitude
O(1). In either formulation, analysis of the profile equations (see Remark 1.27) shows that the
waves of amplitude O(1) emanate from a radiating wave that propagates in the boundary along a
characteristic of the Lopatinskii determinant.
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b) We have decided to fix T > 0 at the start and choose data small enough so that a solution
to the nonlinear problem exists up to time T . One can also (as discussed in Remark 3.7) fix the
data in the problem (G in (1.3)) at the start, and then choose T small enough so that a solution
to the nonlinear problem exists up to time T .

In the remainder of this introduction, we discuss the construction of exact solutions, the con-
struction of the approximate solution V0, and the error analysis. Complete proofs are given in
Sections 2, 3, 4, and 5.

1.3 Exact solutions and singular systems

The theory of weakly stable hyperbolic initial boundary value problems fails to provide a solution
of the system (1.3) that exists on a fixed time interval independent of ε7. In order to obtain such an
exact solution to the system (1.3) we adopt the strategy of studying an associated singular problem
first used by [JMR95] for an initial value problem in free space. We look for a solution of the form

uε(x) = Uε(x, θ0)|θ0=φ0(x
′)

ε

,(1.17)

where Uε(x, θ0) is periodic in θ0 and satisfies the singular system derived by substituting (1.17)
into the problem (1.3). Recalling that L(∂) = ∂d +

∑d−1
j=0 Aj∂j we obtain:

∂dUε +
d−1∑

j=0

Aj

(
∂j +

βj∂θ0
ε

)
Uε +D(εUε)Uε =:

∂dUε + A

(
∂x′ +

β∂θ0
ε

)
Uε +D(εUε)Uε = 0

ψ(εUε)Uε|xd=0 = εG(x′, θ0),

Uε = 0 in t < 0.

(1.18)

The special difficulties presented by such singular problems when there is a boundary are described
in detail in the introductions to [Wil02] and [CGW11]. In particular we mention: (a) symmetry
assumptions on the matrices Bj appearing in the problem (1.1) equivalent to (1.3) are generally of
no help in obtaining an L2 estimate for (1.18) (boundary conditions satisfying Assumption 1.5 can
not be maximally dissipative, see [CG10]); (b) one cannot control L∞ norms just by estimating
tangential derivatives ∂α(x′,θ0)

Uε because (1.18) is not a hyperbolic problem in the xd direction8;
moreover, even if one has estimates of tangential derivatives uniform with respect to ε, because of
the factors 1/ε in (1.18) one cannot just use the equation to control ∂dUε and thereby control L∞

norms.
In [Wil02] a class of singular pseudodifferential operators, acting on functions U(x′, θ0) periodic

in θ0 and having the form

pDU(x′, θ0) =
1

(2π)d+1

∑

k∈Z

∫

Rd

eix
′·ξ′+iθ0k p

(
εV (x′, θ0), ξ

′ +
kβ

ε
, γ

)
Û(ξ′, k) dξ′, γ ≥ 1,

7This would be true even for problems (L(∂), B) that are uniformly stable in the sense of Definition 1.6.
8For initial value problems in free space, one can control L∞ norms just by estimating enough derivatives tangent

to time slices t = c.
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was introduced to deal with these difficulties. Observe that the differential operator A appear-
ing in (1.18) can be expressed in this form. Kreiss-type symmetrizers rs(Dx′,θ0) in the singular
calculus were constructed in [Wil02] for (quasilinear systems similar to) (1.18) under the assump-
tion that (L(∂), ψ(0)) is uniformly stable in the sense of Definition 1.6. With these one can prove
L2(xd,H

s(x′, θ0)) estimates uniform in ε for (1.18), even when εG is replaced by G in the boundary
condition. To progress further and control L∞ norms, the boundary frequency β is restricted to
lie the complement of the glancing set. With this extra assumption the singular calculus was used

in [Wil02] to block-diagonalize the operator A

(
εUε, ∂x′ +

β∂θ0
ε

)
microlocally near the β direction

and thereby prove estimates uniform with respect to ε in the spaces

Es := C(xd,H
s(x′, θ0)) ∩ L2(xd,H

s+1(x′, θ0)).(1.19)

These spaces are Banach algebras and are contained in L∞ for s > d+1
2 . For large enough s, as

determined by the requirements of the calculus, existence of solutions to (1.18) in Es on a time
interval [0, T ] independent of ε ∈ (0, ε0] follows by Picard iteration in the uniformly stable case.

The singular calculus of [Wil02] was used again in [CGW11] to rigorously justify leading order
geometric optics expansions for the quasilinear analogue of (1.3) in the uniformly stable case (with
β ∈ H and the forcing term G in place of εG in the boundary condition). Under the assumptions
made in the present paper, in particular assuming weak stability as in Assumption 1.5 or Assump-
tion 1.11, we face the additional difficulty that the basic L2 estimate for the problem (L(∂), B)
exhibits a loss of derivatives. A consequence of this is that the singular calculus of [Wil02] is no
longer adequate for estimating solutions of (1.18). The main reason is that remainders in the
calculus of [Wil02] are just bounded operators on L2, while for energy estimates with a loss of
derivative remainders should be smoothing operators. We therefore need to use an improved ver-
sion of the calculus constructed in [CGW12] in which residual operators are shown to have better
smoothing properties than previously thought. With the improved calculus we are able in section
2.3 to estimate solutions of (1.18) in Es spaces (1.19), but of course there is a loss of one singular
derivative in the estimates. This loss forces us in section 5.2 to use Nash-Moser iteration on the
scale of Es spaces to obtain an exact solution of the singular system (1.18) on a fixed time interval
independent of ε. Observe that one singular derivative costs a factor 1/ε and this is another reason
why the scaling εG in (1.18) is crucial.

Remark 1.16. The main idea for proving the estimate for the linearized singular problem, Propo-
sition 2.2, is to adapt the techniques of [Cou04] to the singular pseudodifferential framework. There
is however one major obstacle along the way. While the error term in the composition of two zero
order operators (or in the composition of an operator of order of order −1 (on the left) with an
operator of order 1, a (−1, 1) composition) is smoothing of order one in the sense of (A.3), the same
is unfortunately not true of the error term in (1,−1) compositions (there are counter-examples for
that). The properties of the (1,−1) error terms that arise in our proof are described in (2.32); see
also Proposition A.9. To deal with these errors we use further microlocal cutoffs χe in the extended
calculus9 and partition the solution as in (2.6). In particular we are led to estimate terms like those
involving norms of ∇x′Λ−1

D U̇γ
2,in in Proposition 2.6 and ∇x′Λ−1

D U̇γ
3 in Proposition 2.8.

9These are cutoffs in (ξ′,m)-space which depend on (ε, γ); they are described in section A.4.
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1.4 Derivation of the leading profile equations

We now derive the profile equations for the semilinear problem (1.3). We work with profiles
Vj(x, θ) periodic in θ = (θ1, . . . , θM ), where θj is a placeholder for φj/ε. Looking for an approximate
solution of (1.3) of the form ua = (V0 + εV1 + ε2V2)|θ=φ/ε, where φ = (φ1, . . . , φM ), we get interior
equations

(a) L(∂θ)V0 = 0,

(b) L(∂θ)V1 + L(∂)V0 +D(0)V0 = 0,

(c) L(∂θ)V2 + L(∂)V1 +D(0)V1 + (∂vD(0)V0)V0 = 0,

(1.20)

by plugging ua into (1.3)(a) and setting the coefficients of, respectively, ε−1, ε0, and ε equal to
zero. The operator L(∂θ) is defined by

(1.21) L(∂θ) :=
M∑

j=1

L(dφj)∂θj .

With B := ψ(0), the boundary equations, obtained by plugging ua into (1.3)(b) and setting the
coefficients of ε0 and ε equal to zero, are

BV0(x′, 0, θ0, . . . , θ0) = 0,

BV1 + (∂vψ(0)V0)V0 = G(x′, θ0),
(1.22)

where θ0 is a placeholder for φ0/ε. We will see that as a consequence of the weak stability at
frequency β, the problem for the leading profile V0 is nonlinear and nonlocal. (See Appendix B for
a concrete example.) Thus, the scaling in (1.2) is the weakly nonlinear scaling when the uniform
Lopatinskii condition fails at a hyperbolic frequency β. To analyze these equations we proceed to
define appropriate function spaces and a pair of auxiliary operators E and R.

Functions V(x, θ) ∈ L2(R
d+1
+ × T

M) have Fourier series

V(x, θ) =
∑

α∈ZM

Vα(x)e
iα·θ.(1.23)

Since only quadratic interactions appear in (1.20) and we anticipate that V0 will have the form in
(1.16), for k = 1, 2 we let

Z
M ;k = {α ∈ Z

M : at most k components of α are nonzero},

and we consider the subspace Hs;k(R
d+1
+ × T

M) ⊂ Hs(R
d+1
+ × T

M) defined by

Hs;k(R
d+1
+ × T

M ) =



V(x, θ) ∈ Hs(R

d+1
+ × T

M ) : V(x, θ) =
∑

α∈ZM;k

Vα(x)e
iα·θ



 .(1.24)

Thus, multiplication defines a continous map

Hs;1(R
d+1
+ × T

M)×Hs;1(R
d+1
+ × T

M ) → Hs;2(R
d+1
+ × T

M)(1.25)

for s > (d+ 1 + 2)/2.
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Definition 1.17. Setting φ := (φ1, . . . , φM ), we say α ∈ Z
M ;2 is a characteristic mode and write

α ∈ C if detL(d(α · φ)) = 0. Otherwise we call α a noncharacteristic mode. We decompose

C = ∪M
m=1Cm, where Cm := {α ∈ Z

M ;2 : α · φ = nαφm for some nα ∈ Z}.

Observe that for α ∈ Cm, the integer nα is necessarily equal to
∑M

k=1 αk. Since φi and φj are
linearly independent for i 6= j, any α ∈ Z

M ;2 \ 0 belongs to at most one of the sets Cm and nα 6= 0
if α 6= 0.

Elements α ∈ Cm with two nonzero components correspond to resonances. Resonances are
generated in products like σp,k(x,

φp

ε )σr,k′(x,
φr

ε ), which arise from the quadratic term in (1.20)(c),
whenever there exists a relation of the form

nmφm = npφp + nrφr, where m ∈ {1, . . . ,M} \ {p, r} and nm, np, nr ∈ Z.

We then refer to (φm, φp, φr) as a triple of resonant phases. This relation implies, for example,
that φp oscillations interact with φr oscillations to produce φm oscillations.

Definition 1.18. We define the continuous projector10 E : Hs;2(R
d+1
+ ×T

M) → Hs;1(R
d+1
+ ×T

M),
s ≥ 0, by

E = E0 +
M∑

m=1

Em, where E0V := V0 and EmV :=
∑

α∈Cm\0
PmVα(x)e

inαθm ,(1.26)

for Pm as in Lemma 1.13.

For L(∂θ) as in (1.21) we have that for V0 ∈ Hs;2(R
d+1
+ × T

M ),

EV0 = V0 if and only if V0 ∈ Hs;1(R
d+1
+ × T

M ) and L(∂θ)V0 = 0,(1.27)

and (1.27) in turn is equivalent to the property that V0 has an expansion of the form

V0 = v(x) +

M∑

m=1

νkm∑

k=1

σm,k (x, θm) rm,k ,(1.28)

for some real-valued functions σm,k. Moreover, since for any m,

L(dφm) = ωm I +
d−1∑

j=0

βj Aj =
∑

k 6=m

(ωm − ωk)Pk,(1.29)

we have for V ∈ Hs;2(R
d+1
+ × T

M ):

EL(∂θ)V = L(∂θ)EV = 0.(1.30)

We also need to introduce a partial inverse R for L(∂θ). We begin by defining

Rm =
∑

k 6=m

1

ωm − ωk

Pk,

10The continuity of E is shown in [CGW11], Remark 2.5.

14



which in view of (1.29) satisfies

L(dφm)Rm = RmL(dφm) = I − Pm.(1.31)

The operator R is defined formally at first on functions V(x, θ) =∑α∈ZM;2 Vα(x)e
iα·θ ofHs;2(R

d+1
+ ×

T
M ) by

RV :=
∑

α∈ZM;2

R(α)Vα(x)e
iα·θ(1.32)

where

R(α) :=





1
inα

Rm if α ∈ Cm \ {0},
0 if α = 0,

L(iα)−1 if α /∈ C,
and L(iα) := i

M∑

j=1

L(dφj)αj = iL(d(α · φ)).(1.33)

Remark 1.19. The operator R is well-defined on functions V ∈ Hs;2(R
d+1
+ ×T

M) whose spectrum
contains only finitely many noncharacteristic modes, and then RV lies in the same space. Oth-
erwise, there can be a problem with small divisors; the possibility of there being infinitely many
noncharacteristic modes α for which detL(d(α · φ)) is close to zero can prevent convergence of

(1.32) in Ht;2(R
d+1
+ × T

M ) for any t.

It follows readily from (1.31) that for F ∈ Hs;1(R
d+1
+ × T

M ), s > 0,

L(∂θ)RF = RL(∂θ)F = (I − E)F .(1.34)

Such F have no noncharacteristic modes. Along with (1.30) equation (1.34) implies

Proposition 1.20. Suppose F ∈ Hs;1(R
d+1
+ × T

M), s ≥ 0. Then the equation L(∂θ)V = F has a

solution V ∈ Hs;1(R
d+1
+ × T

M) if and only if EF = 0.

By applying the operators E and R to the equations (1.20) and using (1.27), (1.30), and (1.34),
we obtain:

(a) EV0 = V0,

(b) E(L(∂)V0 +D(0)V0) = 0,

(c) BV0 = 0 on xd = 0, θ = (θ0, . . . , θ0),

(d) V0 = 0 in t < 0.

(1.35)

and

(a) (I − E)V1 +R(L(∂)V0 +D(0)V0) = 0,

(b) E
(
L(∂)V1 +D(0)V1 + (∂vD(0)V0)V0

)
= 0,

(c) BV1 + (∂vψ(0)V0)V0 = G on xd = 0, θ = (θ0, . . . , θ0),

(d) V1 = 0 in t < 0.

(1.36)
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Remark 1.21. (a) Since EV0 = V0 the function L(∂)V0 +D(0)V0 in (1.36)(a) has no noncharac-
teristic modes so the action of R on this function is well-defined.

(b) It is easy to check that functions V0, V1 belonging to Hs;1(R
d+1
+ × T

M), s > d+3
2 , and sat-

isfying (1.35) and (1.36)(a) also satisfy (1.20)(a),(b) and (1.22). Equation 1.36(b) and Proposition
1.20 suggest that we might obtain a solution of (1.20)(c) by taking

(I − E)V2 = −R
(
L(∂)V1 +D(0)V1 + (∂vD(0)V0)V0

)
.

There are two problems with this. First, the quadratic term (∂vD(0)V0)V0 generally has infinitely
many noncharacteristic modes, so one should expect a problem with small divisors. Second, the

statement (1.34) and Proposition 1.20 are both not true when F ∈ Hs;2(R
d+1
+ × T

M ), even if F
has finitely many noncharacteristic modes11. These difficulties affect the error analysis and are
discussed further in section 1.5.

To determine the equations satisfied by the individual profiles v(x), σm,k(x, θm) in the ex-
pansion (1.28) of V0, we first refine the decomposition of the projector E in (1.26). For each
m ∈ {1, . . . ,M} we let

ℓm,k, k = 1, . . . , νkm

denote a basis of real vectors for the left eigenspace of the real matrix

iA(β) = τ A0 +
d−1∑

j=1

η
j
Aj(1.37)

associated to the eigenvalue −ωm, chosen to satisfy

ℓm,k · rm′,k′ =

{
1, if m = m′ and k = k′,

0, otherwise.

For v ∈ C
N set

Pm,kv := (ℓm,k · v)rm,k (no complex conjugation here).

We can now write

E = E0 +

M∑

m=1

νkm∑

k=1

Em,k,

where Em,k := Pm,kEm. When the multiplicity k = 1 we write Em instead of Em,1 and do similarly
for ℓm,k, rm,k and so on.

The following lemma, which is a slight variation on a well-known result [Lax57], is included for
the sake of completeness:

Lemma 1.22. Suppose EV0 = V0 and that V0 has the expansion (1.28). Then

Em,k(L(∂)V0) = (Xφmσm,k) rm,k

11This is because of the fact that for any k ∈ Z \ {0}, there can be many α ∈ (Cm \ 0) ∩ Z
M;2 such that nα = k.

See the proof of Proposition 1.28.
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where Xφm is the characteristic vector field associated to φm
12:

Xφm := ∂d +

d−1∑

j=0

−∂ξjωm(β) ∂j .

Proof. For ξ′ ∈ H near β, let −ωm(ξ′) be the eigenvalues iA(ξ′) (1.37) and Pm(ξ′) the correspond-
ing projectors (these objects depend smoothly on ξ′ near β thanks to the analysis of [Mét00]).
Differentiate the equation 

ωm(ξ′)I +
d−1∑

j=0

Ajξj


Pm(ξ′) = 0

with respect to ξj, evaluate at β, apply Pm on the left to obtain

PmAjPm = −∂ξjωm(β)Pm,

from which the lemma readily follows.

By Assumption 1.5 we know that the vector space kerB ∩ E
s(β) is one-dimensional; moreover,

it admits a real basis because B has real coefficients and E
s(β) has a real basis. This vector space

is therefore spanned by a vector e ∈ R
N \ {0} that we can decompose in a unique way by using

Lemma 1.10:

(1.38) kerB ∩ E
s(β) = Span {e} , e =

∑

m∈I
em , Pm em = em .

Each vector em in (1.38) has real components. We also know that the vector space B E
s(β) is

(p− 1)-dimensional. We can therefore write it as the kernel of a real linear form:

(1.39) B E
s(β) = {X ∈ C

p , b ·X = 0} ,

for a suitable vector b ∈ R
p \ {0}.

Any function V(x, θ) ∈ Hs;2(R
d+1
+ × T

M) can be decomposed

V = V + Vinc + Vout + Vnonch = V + V∗,

where the terms correspond respectively to the parts of the Fourier series (1.23) with α = 0, α
incoming, α outgoing, and α noncharacteristic13.

Proposition 1.23. Suppose V0 ∈ Hs;2(R
d+1
+ × T

M ), s ≥ 1, is a solution of (1.35). Then

V0 = 0, V0
out = 0, V0

nonch = 0, and so V0 = V0
inc = EV0

inc,

V0(x′, 0, θ0, . . . , θ0) = a(x′, θ0) e for some unknown periodic function a with mean 0.

12The vector field Xφm
is a constant multiple of the vector field ∂t + vm · ∇x′′ computed by Lax for the Cauchy

problem, where vm is the group velocity defined in Definition 1.9.
13Here we say α is incoming if α ∈ Cm \ 0 for an index m such that φm is an incoming phase.
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Proof. Since EV0 = V0, we have V0
nonch = 0. Applying E0 to the problem (1.35), we find that the

mean value V0 satisfies the weakly stable boundary problem

L(∂)V0 +D(0)V0 = 0

BV0 = 0 on xd = 0

V0 = 0 in t < 0.

By the well-posedness result of [Cou05] we have V0 = 0.
Lemma 1.22 implies that outgoing profiles σm,k, m ∈ O, in the expansion (1.28) of V0 satisfy

problems of the form

Xφmσm,k +

νkm∑

k′=1

(ℓm,k ·D(0)rm,k′)σm,k′ = 0,

σm,k = 0 in t < 0,

where Xφm is an outgoing vector field. Thus, σm,k = 0 for all k = 1, . . . , νkm .
Part (b) follows immediately from the boundary condition in (1.35) and (1.38).

Since V0 = V0
inc, we obtain from (1.36)(a)

(I − E)V1 = (I − E)V1
inc = −R(L(∂)V0 +D(0)V0),

so
V1 = V1 + V1

inc + V1
out ∈ Hs;1, where EV1

out = V1
out.

Next decompose the boundary condition (1.36)(c):

(1.40) BEV1
inc = G∗ − [(∂vψ(0)V0)V0)]∗ −BV1

out −B(I − E)V1
inc

= G∗ − [(∂vψ(0)V0)V0)]∗ −BV1
out +BR(L(∂)V0 +D(0)V0) .

Remark 1.24. (a) If V1
out|xd=0,θj=θ0 were known, one could write down a transport equation for

a(x′, θ0) which is determined by the solvability condition for (1.40) implied by (1.39):

b ·
(
G∗ − [(∂vψ(0)V0)V0)]∗ −BV1

out +BR(L(∂)V0 +D(0)V0)
)
= 0.(1.41)

However, the presence of the term E
(
(∂vD(0)V0)V0

)
in (1.36)(b) implies that two incoming modes

in V0
inc (which is still unknown) can resonate to produce an outgoing mode that will affect V1

out.
Thus, we do not know V1

out|xd=0,θj=θ0 , and we see that the nonlinear boundary equation (1.41) is
coupled to the nonlinear interior equation (1.36).

(b) If the phases are such that an outgoing mode can never be produced by a product of two
incoming modes, then V1

out can be determined from (1.36) to be 0, and one can proceed as in [CG10]
to solve for a without having to use Nash-Moser iteration.

The key subsystem to focus on now is (recalling V0 = EV0 = V0
inc and writing with obvious

notation E = E0 + Einc + Eout):

(a)Einc(L(∂)V0
inc +D(0)V0

inc) = 0,

(b)Eout

(
L(∂)V1

out +D(0)V1
out + (∂vD(0)V0

inc)V0
inc

)
= 0,

(c) b ·
(
G∗ − [(∂vψ(0)V0)V0)]∗ −BV1

out +BR(L(∂)V0
inc +D(0)V0

inc)
)
= 0,

(d)V0
inc(x

′, 0, θ0, . . . , θ0) = a(x′, θ0)e,

(1.42)
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where V0
inc and V1

out both vanish in t < 0.
A formula for V0

inc in terms of a(x′, θ0) can be determined by solving transport equations using
(1.42)(a), and that formula can be plugged into (1.42)(b) to get V1

out in terms of a. Thus, the
subsystem (1.42) can be expressed as a very complicated nonlinear, nonlocal equation for the
single unknown a. This is done in Appendix B for a strictly hyperbolic example with only one
resonance. However, that is not the way we solve (1.42); instead we solve the subsystem in its
given form by iteration. Picard iteration does not work; there is a loss of derivatives from one
iterate to the next (because of R), so we use a Nash-Moser scheme. An essential point is to
take advantage of the smoothing property of the interaction integrals that pick out resonances in
Eout((∂vD(0)V0

inc)V0
inc)

14; that property allows us to get tame estimates in section 3.
An important tool in solving the subsystem (1.42) is the following result from [CG10], which

will allow us to write the boundary equation (1.42)(c) as a transport equation for a(x′, θ0).

Proposition 1.25 ([CG10], Proposition 3.5). Let the vectors b and em be as in (1.39), (1.38), and
let σ(ζ) be the function appearing in Assumption 1.5. Then there exists a nonzero real number κ
such that

RmPm = 0 for all m ∈ {1, . . . ,M}
b · B

∑

m∈I
RmA0em = κ∂τσ(τ , η) and ∂τσ(τ , η) = 1 ,

b · B
∑

m∈I
RmAjem = κ∂ηjσ(τ , η), j = 1, . . . , d− 1.

and thus

b · B
∑

m∈I
RmL(∂)em = κ


∂τσ(τ , η)∂t +

d−1∑

j=1

∂ηjσ(τ , η)∂xj


 =: XLop.

Taking note of the factor 1
inα

in the definition (1.33) of R, we obtain the immediate corollary:

Corollary 1.26. The boundary term b ·BRL(∂)V0
inc in (1.42) may be written

b · BRL(∂)V0
inc = XLopA,

where A(x′, θ0) is the unique function with mean 0 in θ0 such that ∂θ0A = a.

Remark 1.27. Proposition 1.25 shows that propagation in the boundary, which is described by
a(x′, θ0), is governed by the (x-projection of the) Hamiltonian vector field associated to the Lopatin-
skii determinant. Since V0(x′, 0, θ0, . . . , θ0) = a(x′, θ0), this shows that waves of amplitude O(1)
emanate from the radiating boundary wave defined by a.

After (1.42) is solved V0 is known, so V1, V1
out, and (I − E)V1

inc can now be determined by
returning to the full system (1.36). The trace of EV1

inc is not yet determined; one should make
a choice of EV1

inc|xd=0,θj=θ0 such that (1.40) holds, and then solve for EV1
inc using (1.36)(b). A

precise description of the regularity of V0 and V1 is given in Theorem 5.11. The last piece of the
corrected approximate solution, ε2 U2

p in (1.15) is discussed next.

14Interaction integrals are similar to convolution integrals.
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1.5 Error analysis

Given a periodic function f(x, θ), where θ = (θ1, . . . , θM ), let us denote

f(x, θ)|θ→(θ0,ξd) := f(x, θ0 + ω1ξd, . . . , θ0 + ωMξd);

so we have

f(x, θ)|
θ→(

φ0
ε
,
xd
ε
)
= f

(
x,
φ

ε

)
.

Taking the profiles V0, V1 constructed in Theorem 5.11, if we define

U b
ε(x, θ0) :=

(
V0(x, θ) + εV1(x, θ)

)
|θ→(θ0,

xd
ε
),

we find that U b
ε satisfies the singular system

(a) Lε(U b
ε ) := ∂dU b

ε + A

(
∂x′ +

β∂θ0
ε

)
U b
ε +D(εU b

ε )U b
ε = O(ε),

(b) ψ(εU b
ε )U b

ε = εG(x′, θ0) +O(ε2) on xd = 0,

(c) U b
ε = 0 in t < 0,

(1.43)

where the error terms refer to norms in Es and Ht spaces whose orders are made precise in section
4. For example, (1.43) follows directly from the profile equations (1.20)(a),(b), together with the
identity

Lε

(
f(x, θ)|θ→(θ0,

xd
ε
)

)
=

1

ε
(L(∂θ)f(x, θ)) |θ→(θ0,

xd
ε
) + (L(∂)f(x, θ)) |θ→(θ0,

xd
ε
) + (D(εf)f)|θ→(θ0,

xd
ε
).

(1.44)

Since our basic estimate for the linearized singular system exhibits a loss of one singular deriva-
tive (basically, we lose a 1/ε factor), the accuracy in (1.43)(a) is not good enough to conclude that
|Uε − U b

ε |L∞(x,θ0) is small (the error terms are only O(ε)). To improve the accuracy we construct

an additional corrector U2
p (x, θ0, ξd) and replace U b

ε by

Uε(x, θ0) :=
(
V0(x, θ) + εV1(x, θ)

)
|θ→(θ0,

xd
ε
) + ε2 U2

p (x, θ0,
xd
ε
).(1.45)

In constructing U2
p we deal with the first (small divisor) problem described in Remark 1.21(b) by

approximating V0 and V1 by trigonometric polynomials V0
p and V1

p to within an accuracy δ > 0
in appropriate Sobolev norms, and seek U2

p in the form of a trigonometric polynomial15. To deal
with the second (solvability) problem, we use the following Proposition, which allows us to use the
profile equation (1.36)(b) as a solvability condition, in spite of the failure of Proposition 1.20 when

F ∈ Hs;2(R
d+1
+ × T

M). We define

L0(∂θ0 , ∂ξd) := L(dφ0)∂θ0 + ∂ξd .

15Trigonometric polynomial approximations were already used to deal with small divisor problems in the error
analysis of [JMR95].
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Proposition 1.28. Suppose F (x, θ) ∈ Hs;2(R
d+1
+ ×T

M) has a Fourier series which is a finite sum
and that EF = 0. Then there exists a solution of the equation

L0(∂θ0 , ∂ξd)U(x, θ0, ξd) = F (x, θ)|θ→(θ0,ξd)(1.46)

in the form of a trigonometric polynomial in (θ0, ξd) of the form

U(x, θ0, ξd) =
∑

(κ0,κd)∈J
Uκ0,κd

(x)eiκ0θ0+iκdξd ,(1.47)

where J is a finite subset of Z× R and the coefficients Uκ0,κd
lie in Hs(R

d+1
+ ).

The proof is given in section 4. Observe that U is periodic in θ0 but almost periodic in (θ0, ξd).
Proposition 1.28 is applied to solve the equation

L0(∂θ0 , ∂ξd)U2
p =

[
−(I − E)

(
L(∂)V1

p +D(0)V1
p + (∂vD(0)V0

p )V0
p

)]
|θ→(θ0,ξd)

With this choice of U2
p we show in section 4 that the new approximate solution Uε(x, θ0) in (1.45)

satisfies instead of (1.43) the singular system

(a) Lε(Uε) = O (ε(Kδ + C(δ)ε)) ,

(b) ψ(εUε)Uε − εG(x′, θ0) = O(ε2C(δ)) on xd = 0,

(c) Uε = 0 in t < 0,

(1.48)

where the errors in (1.48)(a),(b) are measured in appropriate norms. Now one can apply our basic
estimate (2.55) for the linearized singular problem to conclude that the difference between exact
and approximate solutions of the semilinear singular system (1.18) satisfies for some constants C(δ)
and K:

|Uε(x, θ0)− Uε(x, θ0)|Es ≤ K δ + C(δ) ε, for some s >
d+ 1

2
.

This estimate clearly implies the conclusion of Theorem 1.14 by choosing first δ > 0 small enough
and then letting ε tend to zero.

1.6 Remarks on quasilinear problems

In this article, we are able to rigorously justify a weakly nonlinear regime with amplification for
semilinear hyperbolic initial boundary value problems. Our assumptions only deal with the princi-
pal part of the operators, meaning that we only assume a weak stability property for the problem
(L(∂), B) obtained by linearizing at the origin and dropping the zero order term in the hyperbolic
system. The weak stability is of WR type in the terminology of [BGRSZ02]. Despite the weak
regime that we consider (O(ε2) source term at the boundary and O(ε) solution), the leading profile
equation displays some nonlinear features. We emphasize that the regime that we consider here is
exactly one power of ε weaker than the weakly nonlinear regime for the semilinear Cauchy prob-
lem or for semilinear uniformly stable boundary value problems. As in [CG10], this power of ε
corresponds exacty to the loss of one derivative in the energy estimates.

We believe that the techniques developed here can be extended to give a rigorous justification
of weakly nonlinear geometric optics with amplification for quasilinear hyperbolic initial boundary
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value problems of the form

∂tv +

d∑

j=1

Bj(v) ∂jv + f0(v) = 0,

φ(v) = ε3G

(
x′,

x′ · β
ε

)
on xd = 0,

v = 0 and G = 0 in t < 0.

The corresponding solution vε would be of amplitude O(ε2). In particular the arguments used in
Section 2 to obtain uniform estimates with a loss of one singular derivative for the singular initial
boundary value problem might be extended to the corresponding singular quasilinear problem.
There are however several new obstacles along the way, one of which is to extend the singular
pseudodifferential calculus of [CGW12] in order to obtain a two-terms expansion of (1, 0) and (0, 1)
compositions. The weaker scaling (ε2 in place of ε) should be sufficient to obtain the appropriate
results. Let us observe that for O(ε2) solutions, the principal part of the hyperbolic operator
has coefficients that are uniformly bounded in W 2,∞, which is precisely the regularity needed
in [Cou04, Cou05] to obtain a priori estimates and well-posedness. The leading profile equation
obtained in this quasilinear framework is very similar to the one we have derived here, and we thus
believe that a weak well-posedness result using Nash-Moser iteration should prove the existence
of the leading profile. For all the above reasons, we thus believe that the ε3 source term on the
boundary is the relevant ”weakly nonlinear regime with amplification” in the quasilinear case, and
we postpone the verification of the many technical details to a future work.
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2 Exact oscillatory solutions on a fixed time interval

2.1 The basic estimate for the linearized singular system

The goal of this section is to prove Proposition 2.2 below and its time-localized version, that is,
Proposition 2.9. These propositions provide the a priori estimates for the linearized singular system
that form the basis for the Nash-Moser iteration of section 5.2 and the error analysis of section 4.

We begin by gathering some of the notation for spaces and norms that is needed below.

Notations 2.1. Here we take s ∈ N = {0, 1, 2, . . . }.
(a) Let Ω := R

d+1
+ ×T

1, ΩT := Ω∩{−∞ < t < T}, bΩ := R
d×T

1, bΩT := bΩ∩{−∞ < t < T},
and set ωT := R

d+1
+ ∩ {−∞ < t < T}.

(b) Let Hs ≡ Hs(bΩ), the standard Sobolev space with norm 〈V (x′, θ0)〉s. For γ ≥ 1 we set
Hs

γ := eγtHs and 〈V 〉s,γ := 〈e−γt V 〉s.
(c) L2Hs ≡ L2(R+,H

s(bΩ)) with norm |U(x, θ0)|L2Hs ≡ |U |0,s given by

|U |20,s =
∫ ∞

0
|U(x′, xd, θ0)|2Hs(bΩ)dxd.

The corresponding norm on L2Hs
γ is denoted |V |0,s,γ.

(d) CHs ≡ C(R+,H
s(bΩ)) denotes the space of continuous bounded functions of xd with values

in Hs(bΩ), with norm |U(x, θ0)|CHs = |U |∞,s := supxd≥0 |U(., xd, .)|Hs(bΩT ) (note that CHs ⊂
L∞Hs). The corresponding norm on CHs

γ is denoted |V |∞,s,γ.

(e) Let M0 := 3d+ 5 and define C0,M0 := C(R+, C
M0(bΩ)) as the space of continuous bounded

functions of xd with values in CM0(bΩ), with norm |U(x, θ0)|C0,M0 := |U |L∞WM0,∞. Here L∞WM0,∞

denotes the space L∞(R+;W
M0,∞(bΩ)).16

(f)The corresponding spaces on ΩT are denoted L2Hs
T , L

2Hs
γ,T , CH

s
T , CH

s
γ,T and C0,M0

T with
norms |U |0,s,T , |U |0,s,γ,T , |U |∞,s,T , |U |∞,s,γ,T , and |U |

C
0,M0
T

respectively. On bΩT we use the spaces

Hs
T and Hs

γ,T with norms 〈U〉s,T and 〈U〉s,γ,T .
(g) All constants appearing in the estimates below are independent of ε, γ, and T unless such

dependence is explicitly noted.

The linearization of the singular problem (1.18) at U(x, θ0) has the form

(a) ∂dU̇ε + A

(
∂x′ +

β∂θ0
ε

)
U̇ε +D(εU) U̇ε = f(x, θ0) on Ω ,

(b)B(εU) U̇ε|xd=0 = g(x′, θ0) ,

(c) U̇ε = 0 in t < 0,

(2.1)

where the matrices B(εU), D(εU) are defined in (1.11)17. Instead of (2.1), consider the equivalent
problem satisfied by U̇γ := e−γtU̇ :

∂dU̇
γ +A

(
(∂t + γ, ∂x′′) +

β ∂θ0
ε

)
U̇γ +D(εU) U̇γ = fγ(x, θ0) ,

B(εU) U̇γ |xd=0 = gγ(x′, θ0) ,

U̇γ = 0 in t < 0 .

(2.2)

16The size of M0 is determined by the requirements of the singular calculus described in Appendix A.
17Here and below we often suppress the subscript ε on U̇ .
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Below we let ΛD denote the singular Fourier multiplier (see (A.2)) associated to the symbol

(2.3) Λ(X, γ) :=

(
γ2 +

∣∣∣∣ξ
′ +

k β

ε

∣∣∣∣
2
)1/2

, X := ξ′ +
k β

ε
.

The basic estimate for the linearized singular problem (2.2) is given in the next Proposition. Observe
that the estimate (2.4) exhibits a loss of one “singular derivative” ΛD. This is quite a high price to
pay, which counts as a factor 1/ε. In view of [CG10, Theorem 4.1], there is strong evidence that
the loss below is optimal.

Proposition 2.2 (Main L2 linear estimate). We make the structural assumptions of Theorem 1.14
and recall M0 = 3d+5. Fix K > 0 and suppose |ε ∂dU |C0,M0−1 + |U |C0,M0 ≤ K for ε ∈ (0, 1]. There
exist positive constants ε0(K) > 0, C(K) > 0 and γ0(K) ≥ 1 such that sufficiently smooth solutions
U̇ of the linearized singular problem (2.1) satisfy:18

|U̇γ |0,0 +
〈U̇γ〉0√

γ
≤ C(K)

( |ΛDf
γ |0,0 + |∇x′fγ |0,0

γ2
+

〈ΛDg
γ〉0 + 〈∇x′gγ〉0
γ3/2

)
(2.4)

for γ ≥ γ0(K), 0 < ε ≤ ε0(K).
The same estimate holds if B(εU) in (2.1) is replaced by B(εU, εU) and D(εU) is replaced by

D(εU, εU) as long as |ε∂d(U,U)|C0,M0−1 + |U,U|C0,M0 ≤ K for ε ∈ (0, 1].

Corollary 2.3 (Main H1
tan linear estimate). Under the same assumptions as in Proposition 2.2,

smooth enough solutions U̇ of the linearized singular problem (2.1) satisfy:

|U̇γ |∞,0 + |U̇γ |0,1 +
〈U̇γ〉1√

γ
≤ C(K)

( |ΛDf
γ|0,1 + |∇x′fγ |0,1

γ2
+

〈ΛDg
γ〉1 + 〈∇x′gγ〉1
γ3/2

)
(2.5)

for γ ≥ γ0(K), 0 < ε ≤ ε0(K).

Short guide to the proof. The proof of Proposition 2.2 is completed using the next three
propositions, each of which has the same hypotheses as Proposition 2.2. In the first step of the
proof of Proposition 2.2, we choose a partition of unity defined by frequency cutoffs χi(ζ), i =
1, . . . , N1 +N2, such that for i = 1, . . . , N1 the function χi is supported near a point of the “bad”
set Υ, while for i > N1 the function χi is supported away from Υ. The estimates of χi,D U̇

γ for
i > N1 are done in Proposition 2.8. For such indices, Kreiss symmetrizers in the singular calculus
are used to estimate χi,DU̇

γ without loss.
To handle the piece χi,DU̇

γ , i ≤ N1, where the loss occurs, we also choose an auxiliary cutoff
χe in the extended calculus with the properties (A.6) and use the decomposition

χi,DU̇
γ = χe

D χi,DU̇
γ + (1− χe

D)χi,DU̇
γ .(2.6)

The first term on the right in (2.6) is estimated in the Proposition 2.4 while the second term in
Proposition 2.6. Proposition 2.6 is the most difficult part in the analysis because in this frequency
domain, some of the commutators are poorly controlled.

18Note that the norms |u|0,1 and |ΛDu|0,0 are not equivalent.
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Proof of Proposition 2.2. I) Partition of unity. The compactness of Υ (see Assumption 1.11)
and Σ allows us to choose a finite open covering of Σ, C = {Vi}i=1,...,N1+N2 such that {Vi}i=1,...,N1

covers Υ and such that ∪N1+N2
N1+1 Vi is disjoint from a neighborhood of Υ. Since Υ ⊂ H we can

arrange so that for each i ∈ {1, . . . , N1} there is a conjugator Q0,i(ζ)
19 and diagonal matrix D1,i(ζ)

satisfying (1.8) in Vi. Moreover, we can choose a neighborhood O of (0, 0) ∈ R
2N such that for each

i ≤ N1 there are functions σi, Pi,1, and Pi,2 on O×Vi with the properties described in Assumption
1.11. For these symbols, we shall use the substitution (v1, v2) → εU(x, θ0) to prescribe the space
dependence.

We let χi(ζ), i = 1, . . . , N1 + N2 be a smooth partition of unity subordinate to C, and extend
the χi to all ζ as functions homogeneous of degree zero. We smoothly extend each Q0,i (as a matrix
with bounded inverse) first to Σ, and then to all ζ as a function homogenous of degree zero. We
take similar extensions in ζ of Pi,1, Pi,2, D1,i and σi, but with homogeneity of degree 1 in the cases
of D1,i and σi. As with Q0,i, the extensions of Pi,1 and Pi,2 are taken to have bounded inverses.20

Of course, for a given i ≤ N1 the property (1.12) is satisfied only for ζ/|ζ| ∈ Vi.
II) First estimate near the bad set. The first estimate deals with a piece of U̇γ that is

microlocalized near the bad set Υ and in the frequency domain |(ξ′, γ)| ≪ |k β|/ε.
Proposition 2.4. Fix i such that 1 ≤ i ≤ N1 and let U̇γ

1 := χe
D χi,DU̇

γ where χi is defined in step
I) above and χe

D is a cut-off in the extended calculus satisfying (A.6). Then we have the a priori
estimate

|U̇γ
1 |0,0 +

|U̇γ
1 |∞,0√
γ

≤ C(K)

(
|ΛDf

γ |0,0
γ2

+
〈ΛDg

γ〉0
γ3/2

+
|U̇γ |0,0
γ2

+
〈U̇γ〉0
γ3/2

)
,(2.7)

for γ ≥ γ0(K).

Proof of Proposition 2.4. The loss of derivatives in the estimate prevents us from treating the zero
order term D(εU) U̇γ as a forcing term, as we would in a uniformly stable problem. Thus, we need
to use an argument that simultaneously diagonalizes A and the lower order term D(εU).

We now set χeχi = χ, v := χDU̇
γ and look for an estimate v. We let A(X, γ) = −A(X, γ)

denote the singular symbol such that

AD = A

(
(∂t + γ, ∂x′′) +

β∂θ0
ε

)
.

Dropping superscripts γ, we see from (2.2) that v satisfies

∂dv + ADv +D(εU) v = χDf + [D(εU),χD]U̇ = χDf + r−1,DU̇ ,

B(εU) v|xd=0 = χDg + [B(εU),χD]U̇ |xd=0 = χDg + r−1,DU̇ |xd=0.
(2.8)

Here and below r−1,D denotes a singular operator of order −1 (which can change from one occur-
rence to the next) computed using the singular calculus. Similarly, r0,D will denote an operator of
order 0. In spite of the loss of the factor ΛD in the estimate (2.4), we are able to treat r−1,DU̇ as
a forcing term (see, for example, (2.17) below). A term like r0,DU̇/γ would be too large to absorb.

19Recall the notation ζ = (τ − iγ, η). Sometimes we will also write ζ = (ξ′, γ) to match the notation of [CGW12].
20Taking such extensions will reduce the number of cutoff functions we need later.
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1. Simultaneous diagonalization. This diagonalization argument is similar to the one
in [Cou04]. Let Q0(ζ) := Q0,i(ζ) and D1(ζ) := D1,i(ζ) be the matrices as in (1.8) such that
Q0(ζ)A(ζ)Q

−1
0 (ζ) = D1(ζ) in the conical extension of Vi. We define

w := QDv ,(2.9)

where Q = Q0(X, γ) +Q−1(εU,X, γ). Here the matrix Q−1(εU, ζ) is a symbol of order −1 defined
for all ζ, but chosen so that on the conical extension of Vi, the matrix

D0(εU, ζ) := [Q−1Q
−1
0 ,D1] +Q0D(εU)Q−1

0(2.10)

is block diagonal, necessarily of order 0, with blocks of the same dimensions n1, . . . , nJ as those of
D1. Since the eigenvalues associated to the blocks of D1 are mutually distinct, a direct computation
shows that Q−1Q

−1
0 , and thus Q−1, can be chosen so that the commutator cancels the off-diagonal

blocks of Q0D(εU)Q−1
0 . (The diagonal blocks of the commutator are all zero blocks and can

therefore not cancel those of Q0D(εU)Q−1
0 .) Since Q0A = D1Q0 on Vi, (2.10) implies the relation

QA+Q0D = D1Q+ [Q−1Q
−1
0 ,D1]Q0 +Q0 D = D1Q+ D0Q0.(2.11)

Remark 2.5. [Entries of the symbol Q−1] Observe that the scalar entries of the matrix Q−1,D can
be chosen to have the form

(Q−1,D)i,j = c(εU) a−1,D,(2.12)

where a−1(ζ) is of order −1 and independent of (x, θ), thus giving rise to a Fourier multiplier.

Noting that x-dependence is absent in A and Q0 and using the commutation property (2.11),
we have

∂dw = QD ∂dv + (∂dQ−1)Dv = −QD (A+D(εU))Dv +QD χDf + r−1,DU̇

= −(QA+Q0 D(εU))Dv +QD χDf + r−1,DU̇

= −(D1Q+ D0Q0)Dv +QD χDf + r−1,DU̇

= −(D1 + D0)Dw +QD χDf + r−1,DU̇ .

(2.13)

Here we have used the support property of χe to conclude (see Proposition A.9(a) and (b), as well
as Remark A.10)

(a) (∂dQ−1)Dv = r−1,DU̇ and

(b) (D1Q−1)Dv = D1,D (Q−1)Dv + r−1,DU̇ .
(2.14)

The fact that the statements in (2.14) are no longer true when χe is replaced by (1 − χe) in the
definition of v is the main reason for the difference between Propositions 2.4 and 2.6 (the latter
being much more technical). Here we are able to treat all commutators as forcing terms since they
are order −1 operators.

2. Outgoing modes. Recall that −D1 and −D0 are block diagonal:

−D1(ζ) =



iω1(ζ)In1 0

. . .

0 iωJ(ζ)InJ


 , −D0(εU, ζ) =



C1 0

. . .

0 CJ


 ,
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so the system (2.13) satisfied by w = (w1, . . . , wJ ) can be written as a collection of J decoupled
transport equations

∂dwj = (iωj)Dwj + Cj,Dwj + r0,Df + r−1,DU̇(2.15)

with Re (iωj) ≤ −c γ for 1 ≤ j ≤ J ′, and Re (iωj) ≥ c γ for J ′ + 1 ≤ j ≤ J (c > 0 denotes a
constant).

Following the strategy of [Cou04], we now give two preliminary estimates of the outgoing modes
wj , j ≥ J ′ + 1. Taking the real part of the L2(Ω) inner product of (2.15) with Λ2

Dwj, we obtain

−〈ΛDwj(0)〉20
2

= Re (ΛD (iωj)Dwj,ΛDwj)L2(Ω) +Re (ΛD Cj,Dwj,ΛDwj)L2(Ω)

+Re (ΛDQD χDf,ΛDwj)L2(Ω) +Re (ΛD r−1,DU̇ ,ΛDwj)L2(Ω) .

Since Re (iωj) ≥ c γ, we get after absorbing some terms on the left

γ |ΛDwj|20,0 + 〈ΛDwj(0)〉20 ≤ C

γ

(
|ΛDf |20,0 + |U̇ |20,0

)
.(2.16)

Here, for example, we have used Young’s inequality and estimated

|Re (ΛD r−1,DU̇ ,ΛDwj)L2(Ω)| ≤
Cδ

γ
|U̇ |20,0 + δ γ |ΛDwj |20,0 ,(2.17)

with δ > 0 small enough so as to absorb the term |ΛDwj |20,0 from right to left. Similarly, taking

the real part of the L2 inner product of (2.15) with wj on [xd,∞)× bΩ instead of Ω, we obtain for
all xd ≥ 0:

γ |wj |20,0 + 〈wj(xd)〉20 ≤
C

γ

(
|f |20,0 +

1

γ2
|U̇ |20,0

)
.(2.18)

3. Incoming modes. Estimating wj for j ≤ J ′ in a similar way, but now using Re (iωj) ≤ −c γ
and pairing the corresponding transport equation with wj, we obtain

γ |wj |20,0 ≤ C 〈wj(0)〉20 +
C

γ

(
|f |20,0 + |r−1,DU̇ |20,0

)
≤ C 〈wj(0)〉20 +

C

γ

(
|f |20,0 +

1

γ2
|U̇ |20,0

)
.

Taking the real part of the L2 inner product of (2.15) with wj on [0, xd]× bΩ rather than on all Ω,
we also obtain

γ |wj|20,0 + 〈wj(xd)〉20 ≤ C 〈wj(0)〉20 +
C

γ

(
|f |20,0 +

1

γ2
|U̇ |20,0

)
.(2.19)

4. Boundary estimate. We observe that v can be expressed in terms of w as

v = (Q−1
0 )Dw + r−1,DU̇ .(2.20)

Recalling the boundary condition in (2.8) and using the decomposition Q−1
0 (ζ) = [Qin(ζ) Qout(ζ)],

we let accordingly w = (win, wout) and rewrite the boundary condition in (2.8) as

B(εU)Qin,Dwin|xd=0 = −B(εU)Qout,Dwout|xd=0 + χDg + r−1,DU̇ |xd=0 .(2.21)
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By (1.12) we have on Vi

B(εU)Qin = P−1
1 (P1 B(εU)Qin P2) P

−1
2 = P−1

1

(
Λ−1 (γ + iσ)

I

)
P−1
2 ,

so using the rules of singular calculus, we get

ΛD B(εU)Qin,Dwin|xd=0 = (P−1
1 )D

(
γ + iσD

ΛD I

)
(P−1

2 )Dwin|xd=0 + r0,Dwin|xd=0.

With (2.21), this implies

〈(P−1
1 )D

(
γ + iσD

ΛD I

)
(P−1

2 )Dwin|xd=0〉0 ≤ C
(
〈ΛDwout|xd=0〉0 + 〈ΛDg〉0 + 〈U̇ |xd=0〉0

)
.

(2.22)

We have P1,D(P
−1
1 )D = I + r−1,D so up to choosing γ large (and absorbing the r−1,D term), the

estimate (2.22) implies

〈
(
γ + iσD

ΛD I

)
(P−1

2 )Dwin|xd=0〉0 ≤ C
(
〈ΛDwout|xd=0〉0 + 〈ΛDg〉0 + 〈U̇ |xd=0〉0

)
.(2.23)

Letting

(
w1

w′

)
:= (P−1

2 )Dwin|xd=0 we find, using the fact that σ is real and choosing again γ large

enough,

〈
(
γ + iσD

ΛD I

)(
w1

w′

)
〉20 ≥

1

C

(
γ2 〈w1〉20 + 〈ΛDw

′〉20
)
≥ γ2

C
〈w1, w

′〉20.

Thus, from (2.23) we may conclude

γ 〈win|xd=0〉0 ≤ C
(
〈ΛDwout|xd=0〉0 + 〈ΛDg〉0 + 〈U̇ |xd=0〉0

)
.(2.24)

5. Conclusion. Combining the estimates (2.16), (2.18), (2.19), and (2.24) we obtain

γ3 |win|20,0 + γ2 |win|2∞,0 + γ |ΛDwout|20,0 + 〈ΛDwout|xd=0〉20 + γ2 |wout|2∞,0

≤ C

(
|ΛDf |20,0

γ
+ 〈ΛDg〉20 +

|U̇ |20,0
γ

+ 〈U̇ |xd=0〉20

)
.

Recalling the relation (2.20) between v and w = QDv, we obtain the estimate (2.7) for γ large
enough. Though we have not emphasized the regularity of the symbols, we claim that the regularity
assumption on U is sufficient to apply the rules of singular symbolic calculus at each step of the
above calculations, see Appendix A. We feel free to skip some of the details.

III) Second estimate near the bad set. Next we estimate the second term on the right in
(2.6). In the statement below QD = Q0,D +Q−1,D is the same operator as that constructed above
in the proof of Proposition 2.4. Since (Q0,D)

−1Q−1,D has norm less than one as an operator on L2

for γ large, we can define (QD)
−1 as an operator on L2 using a Neumann series.
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Proposition 2.6. Fix i such that 1 ≤ i ≤ N1, let U̇
γ
2 := (1− χe

D)χi,DU̇
γ and write

U̇γ
2 = U̇γ

2,in + U̇γ
2,out,(2.25)

where21

U̇γ
2,in := (QD)

−1(win, 0) and U̇γ
2,out := (QD)

−1(0, wout).(2.26)

Then we have

(2.27) |U̇γ
2,in|0,0 +

|U̇γ
2,in|∞,0√
γ

+
|(∇x′ , γ) U̇γ

2,out|0,0
γ

+
|(∇x′ , γ) U̇γ

2,out|∞,0

γ3/2

+ |∇x′ Λ−1
D U̇γ

2,in|0,0 +
〈∇x′ Λ−1

D U̇γ
2,in|xd=0〉0√
γ

≤ C

( |(∇x′ , γ) fγ |0,0
γ2

+
〈(∇x′ , γ) gγ〉0

γ3/2

+
|U̇γ |0,0 + |∇x′ Λ−1

D U̇γ |0,0
γ2

+
〈U̇γ |xd=0〉0 + 〈∇x′ Λ−1

D U̇γ |xd=0〉0
γ3/2

)
.

Proof of Proposition 2.6. 1. Simultaneous diagonalization with a new remainder. We now
set (1− χe)χi = χ, v := χDU̇

γ = U̇γ
2 , w := QDv = (win, wout) and repeat the proof of Proposition

2.4 down to line (2.13) with only one change. Suppressing superscripts γ, we now have instead of
(2.13)

∂dw = −(D1 + D0)Dw + r0,Df + r−1,DU̇ +Ra
Dv,(2.28)

where Ra
D = Rb

D − Rc
D with operators Rb

D, R
c
D defined in (2.30) below. As can be checked by

looking at each line in (2.13), we also observe that the remainder term r−1,DU̇ reads

(2.29) QD [D(εU),χD]U̇ − (Q0,D D0,D− (Q0 D0)D)χDU̇ −Q−1,D D(εU)χDU̇ +D0,DQ−1,D χDU̇ .

The equalities of (2.14) should be replaced by

(a) (∂dQ−1)Dv = Rb
Dv , and

(b) (D1Q−1)Dv = D1,D (Q−1)Dv +Rc
Dv ,

(2.30)

where in view of Remark 2.5 the scalar entries of Rb
D and Rc

D have the forms

(∂dc(εU)) a−1,D and [α1,D, c(εU)] a−1,D ,(2.31)

respectively. In (2.31), α1(ζ) denotes one of the diagonal entries of D1(ζ). Here and below a−1,D

denotes a singular operator of order −1 associated to a symbol a−1(ζ) which may change from term
to term. We claim

(2.32) |Ra
Dv|0,0 ≤ C

γ
|v|0,0 and |∇x′Ra

Dv|0,0 ≤ C |∇x′Λ−1
D v|0,0 +

C

γ
|v|0,0.

Indeed, the first estimate is clear from the definition (2.31) since ∂dc(εU) is a bounded function
and [α1,D, c(εU)] is bounded on L2 by the rules of singular calculus. The L2 estimate of ∇x′Rb

Dv

21Here win ∈ C
p and wout ∈ C

N−p are defined by the same diagonalization procedure as in the previous proof.
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is readily obtained by differentiating the product (∂dc(εU)) a−1,Dv with respect to x′ so we now
focus on the estimate of ∇x′Rc

Dv. Setting r0,D := [α1,D, c(εU)], which is a bounded operator on L2

by the rules of singular calculus, we have

|∇x′ Rc
Dv|0,0 ≤ |r0,D ∇x′ a−1,Dv|0,0 + |[∇x′ , r0,D] a−1,Dv|0,0 ≤ C

(
|∇x′Λ−1

D v|0,0 +
|v|0,0
γ

)
,

where we have used Proposition A.9(c) to estimate the double commutator term [∇x′ , r0,D].
The estimates (2.32) will be used below to handle the source term Ra

Dv appearing on the right
of (2.28). Unlike what happened in the proof of Proposition 2.4, (2.32) seems to be the best we
can hope for the bad (1,−1) product.

2. Incoming modes I. In place of (2.15) we now have

∂dwj = (iωj)Dwj + Cj,Dwj + r0,Df + r−1,DU̇ +Ra
Dv, j = 1, . . . , J(2.33)

and for the incoming part win we obtain as in (2.19):

γ3 |win|20,0 + γ2 |win|2∞,0 ≤ γ2 〈win|xd=0〉20 +
C

γ

(
|γ f |20,0 + |U̇ |20,0

)
.(2.34)

This L2 estimate does not cause any problem because we have the good L2 control (2.32) of the
additional term Ra

Dv appearing on the right of (2.33).
We can also repeat the same argument as in step 4 of the previous proof for the boundary terms

because these estimates did not rely on the support properties of χe (the support properties of χe

were only used to control some error terms in the interior equation). We thus derive again

γ 〈win|xd=0〉0 ≤ C
(
〈ΛDwout|xd=0〉0 + 〈ΛD χDg〉0 + 〈U̇ |xd=0〉0

)
.

Using the fact that on the support of 1− χe(ξ′, kβε , γ), we have

|X, γ| ≤ C |ξ′, γ| ,

we obtain the estimate

〈ΛDwout|xd=0〉0 + 〈ΛD χDg〉0 ≤ C 〈(∇x′ , γ)wout|xd=0〉0 + C 〈(∇x′ , γ) g〉0 .

At this stage, we have thus derived the bound

(2.35) γ3 |win|20,0 + γ2 |win|2∞,0 ≤
C

γ

(
|γ f |20,0 + |U̇ |20,0

)
+ C

(
〈(∇x′ , γ) g〉20 + 〈U̇ |xd=0〉20

)

+ C 〈(∇x′ , γ)wout|xd=0〉20 .

3. Outgoing modes. Let j ∈ {J ′+1, . . . , J}. Taking the real part of the L2(Ω) inner product
of (2.33) with −∂2xk

wj for k = 0, . . . , d− 1, and with γ2wj , we obtain in place of (2.18)

γ |(∇x′ , γ)wout|20,0 + |(∇x′ , γ)wout|2∞,0 ≤
C

γ

(
|(∇x′ , γ) f |20,0 + |U̇ |20,0 + |∂xk

Λ−1
D U̇ |20,0

)
.(2.36)

Here in place of (2.17) we have used the estimate

|(∂xk
r−1,DU̇ , ∂xk

wj)L2(Ω)| ≤
Cδ

γ
|∂xk

Λ−1
D U̇ |20,0 +

Cδ

γ
|U̇ |20,0 + δ γ |∂xk

wj|20,0,
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along with a similar estimate for |(∂xk
Ra

Dv, ∂xk
wj)L2(Ω)|. Such estimates follow either from the

precise expression of the remainder ∂xk
r−1,DU̇ (differentiating each of the four terms in (2.29) with

respect to xk) or from (2.32). As usual, we then choose δ small enough so as to absorb terms from
right to left.

Adding (2.35) for the incoming modes and (2.36) for the outgoing modes, we have already
shown how to control the first line in (2.27) by the quantity on the right of the inequality (2.27).
At this stage, it thus only remains to control the term ∇x′ Λ−1

D U̇γ
2,in.

Remark 2.7. At this point we can see the need to estimate the remaining terms on the left in the
estimate (2.27) as well as the similar terms on the left in the Kreiss estimate (2.43) below. We must
estimate those terms in order to be able to absorb the terms involving ∇x′ Λ−1

D U̇γ on the right side
of (2.27). We recall that these terms come from the ”bad” composition term D1,DQ−1,D and from
∂dQ−1,D. Observe that there is no need for a separate estimate of ∇x′ Λ−1

D U̇γ
1 since, for example,

|∇x′ Λ−1
D U̇γ

1 |0,0 ≤ C |U̇γ
1 |0,0

because |X, γ| ≥ C |ξ′, γ| on the support of χe.

4. Incoming modes II. Here we begin to estimate the terms in the second line of (2.27).
The problem satisfied by v = U̇γ

2 has the form (2.8) with the new cut-off function χ = (1− χe)χi.
We now introduce the functions ṽ := Λ−1

D v and ṽ′ := ∂x′ ṽ, where ∂x′ denotes any of the tangential
derivatives ∂x0 , . . . , ∂xd−1

, and see that the function ṽ′ satisfies

∂dṽ
′ + ADṽ

′ +D(εU)ṽ′ = ∂x′ Λ−1
D χDf + ∂x′ Λ−1

D [D(εU),χD]U̇

+ ∂x′

(
(D(εU)− Λ−1

D D(εU)ΛD)ṽ
)
− dD(εU) · ε∂x′U ṽ ,

B(εU) ṽ′|xd=0 = ∂x′ Λ−1
D χDg + ∂x′ Λ−1

D [B(εU),χD]U̇ |xd=0 + ∂x′ [B(εU),Λ−1
D ]v|xd=0.

(2.37)

We can thus diagonalize the problem for ṽ′ with the same operator QD as before. Introducing the
function w̃′ := QDṽ

′, we find that w̃′ satisfies

(a) ∂dw̃
′ = −(D1 + D0)Dw̃

′ +QD ∂x′ Λ−1
D χDf +

1

γ
r0,Dṽ

′ +
1

γ
r0,DU̇ +QD ∂x′ Λ−1

D [D(εU),χD]U̇ ,

(b)B(εU)Qin,Dw̃
′
in = −B(εU)Qout,Dw̃

′
out + ∂x′ Λ−1

D χDg + ∂x′ Λ−1
D [B(εU),χD]U̇

+ ∂x′ Λ−1
D [ΛD,B(εU)]ṽ + r−1,Dṽ

′ .

(2.38)

where we have collected many terms (for instance the Ra
D operator as in (2.28)) into remainders of

the form γ−1 r0,D. For instance, we have used

QD ∂x′

(
(D(εU) − Λ−1

D D(εU)ΛD)ṽ
)

= QD (D(εU) − Λ−1
D D(εU)ΛD)ṽ

′ +QD (∂x′D(εU)− Λ−1
D ∂x′D(εU)ΛD)ṽ

=
1

γ
r0,Dṽ

′ +
1

γ
r0,Dṽ =

1

γ
r0,Dṽ

′ +
1

γ
r0,DU̇ .

Next we fix an index j ∈ {1, . . . , J ′}. Taking the real part of the L2(Ω) inner product of
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(2.38)(a) with w̃′
j , we obtain the standard L2 estimate for incoming modes:

γ |w̃′
in|20,0 ≤ C 〈w̃′

in|xd=0〉20 +
C

γ

(
|∂x′ Λ−1

D f |20,0 +
1

γ2
|∂x′ Λ−1

D U̇ |20,0 +
1

γ2
|U̇ |20,0

)

+
C

γ
|∂x′ Λ−1

D [D(εU),χD]U̇ |20,0 .

The last term on the right of the inequality is estimated by similar techniques as above, namely we
write

∂x′ Λ−1
D [D(εU),χD] = [D(εU),χD] ∂x′ Λ−1

D + [∂x′ Λ−1
D ,D(εU)]χD − χD [∂x′ Λ−1

D ,D(εU)] ,

and then decompose the commutator [∂x′ Λ−1
D ,D(εU)] as follows:

[∂x′ Λ−1
D ,D(εU)] = ∂x′

(
Λ−1
D D(εU)ΛD −D(εU)

)
Λ−1
D + (∂x′D(εU))Λ−1

D .

In the end we obtain the estimate

(2.39) γ |w̃′
in|20,0 ≤ C 〈w̃′

in|xd=0〉20 +
C

γ3

(
|∂x′f |20,0 + |∂x′ Λ−1

D U̇ |20,0 + |U̇ |20,0
)
,

and we thus wish to control the trace of w̃′
in.

5. Control of the trace of w̃′
in. Using (2.38)(b), and arguing as in step 4 of the proof of

Proposition 2.4, we obtain the boundary estimate

(2.40) γ 〈w̃′
in|xd=0〉0 ≤ C

(
〈ΛDw̃

′
out|xd=0〉0 + 〈∂x′g〉0 + 〈∂x′ [B(εU),χD]U̇ |xd=0〉0

)

+ C
(
〈∂x′ [ΛD,B(εU)]ṽ|xd=0〉0 + 〈ṽ′|xd=0〉0

)
.

The two commutators appearing on the right of (2.40) are dealt with as in the previous step and
we get

γ 〈w̃′
in|xd=0〉0 ≤ C

(
〈ΛDw̃

′
out|xd=0〉0 + 〈∂x′g〉0 + 〈U̇ |xd=0〉0 + 〈∂x′ Λ−1

D U̇ |xd=0〉0
)
.

Combining with (2.39), we have derived

(2.41) γ |w̃′
in|20,0 + 〈w̃′

in|xd=0〉20 ≤
C

γ2
〈ΛDw̃

′
out|xd=0〉20 +

C

γ3

(
|∂x′f |20,0 + |∂x′ Λ−1

D U̇ |20,0 + |U̇ |20,0
)

+
C

γ2

(
〈∂x′g〉20 + 〈U̇ |xd=0〉20 + 〈∂x′ Λ−1

D U̇ |xd=0〉20
)
.

We expect ΛDw̃
′
out to be comparable to ∂x′wout and thus use (2.36); this is checked and made

precise in the next step.
6. Relation between ΛDw̃

′ and ∂x′w, and conclusion. Using the definitions

w̃′ = QD ṽ
′ = QD ∂x′ Λ−1

D v and w = QDv ,

and the fact that ΛD commutes with Q0,D, we compute

ΛDw̃
′ = QD ∂x′v + r0,Dṽ

′ = ∂x′w + r0,Dv + r0,Dṽ
′ .
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We have thus derived the bound from above

1

γ2
〈ΛDw̃

′
out|xd=0〉20 ≤

C

γ2

(
〈∂x′wout|xd=0〉20 + 〈U̇ |xd=0〉20 + 〈∂x′ Λ−1

D U̇ |xd=0〉20
)
,

which we combine with (2.41) and (2.36) to obtain

(2.42) γ |w̃′
in|20,0 + 〈w̃′

in|xd=0〉20 ≤
C

γ3

(
|(∂x′ , γ) f |20,0 + |∂x′ Λ−1

D U̇ |20,0 + |U̇ |20,0
)

+
C

γ2

(
〈∂x′g〉20 + 〈U̇ |xd=0〉20 + 〈∂x′ Λ−1

D U̇ |xd=0〉20
)
.

It only remains to derive a bound from below to go from w̃′
in to ∂x′Λ−1

D U̇γ
2,in. We first observe

that estimating ∂x′Λ−1
D U̇γ

2,in as claimed in (2.27) amounts to estimating QD ∂x′Λ−1
D U̇γ

2,in. We use
the relation

QD ∂x′Λ−1
D U̇γ

2,in = ∂x′Λ−1
D win − [∂x′Λ−1

D , QD] U̇
γ
2,in = ∂x′Λ−1

D win − [∂x′Λ−1
D , Q−1,D] U̇

γ
2,in ,

and we use the special ”decoupled” form of the coefficients of Q−1 to show that the commutator
[∂x′Λ−1

D , Q−1,D] reads

[∂x′Λ−1
D , Q−1,D] =

1

γ2
r0,D +

1

γ2
r0,D (∂x′ Λ−1

D ) .

Similary, we can write

w̃′
in = ∂x′Λ−1

D win +
1

γ2
r0,Dv +

1

γ2
r0,D (∂x′ Λ−1

D )v ,

so we obtain

QD ∂x′Λ−1
D U̇γ

2,in = w̃′
in +

1

γ2
r0,DU̇ +

1

γ2
r0,D (∂x′ Λ−1

D )U̇ .

We have therefore proved that (2.42) implies that the second line in (2.27) is controlled by the
terms on the right of (2.27). This completes the proof of Proposition 2.6.

IV) Estimate away from the bad set. The next proposition provides a Kreiss-type estimate
for the terms χi,DU̇

γ , where i > N1.

Proposition 2.8. Fix i such that N1 + 1 ≤ i ≤ N2 and let U̇γ
3 := χi,DU̇

γ . We have

(2.43) |U̇γ
3 |0,0 +

〈U̇γ
3 |xd=0〉0√

γ
+ |∇x′ Λ−1

D U̇γ
3 |0,0 +

〈∇x′ Λ−1
D U̇γ

3 |xd=0〉0√
γ

≤ C

(
|fγ |0,0 + |∇x′ Λ−1

D fγ |0,0
γ

+
〈gγ〉0 + 〈∇x′ Λ−1

D gγ〉0√
γ

+
|U̇γ |0,0 + |∇x′ Λ−1

D U̇γ |0,0
γ2

+
〈U̇γ |xd=0〉0 + 〈∇x′ Λ−1

D U̇γ |xd=0〉0
γ

)
.
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Proof. 1. L2 estimate. The first step is to prove the Kreiss-type estimate

|U̇γ
3 |0,0 +

〈U̇γ
3 |xd=0〉0√

γ
≤ C

(
|fγ |0,0
γ

+
〈gγ〉0√
γ

+
|U̇γ |0,0
γ2

+
〈U̇γ |xd=0〉0

γ

)
.(2.44)

For this we define the good set G ⊂ Σ to be a neighborhood of the closure of ∪N2
i=N1+1Vi such that

G is disjoint from Υ; here the uniform Lopatinskii condition is satisfied. The classical construction
of Kreiss symmetrizers [Kre70, CP82] provides us with an N × N symbol R(ζ), homogeneous of
degree 0, such that for some positive constants C, c and ζ/|ζ| ∈ G we have

(a) R(ζ) = R(ζ)∗

(b) − Re (R(ζ)A(ζ)) ≥ c γ IN

(c) R(ζ) + C B(0)∗ B(0) ≥ c IN .

(2.45)

We take a smooth extension of R to all ζ as a symbol of order 0 such that (2.45)(a) holds. Observe
that by continuity (2.45)(c) implies

(2.46) R(ζ) + C B(εU)∗ B(εU) ≥ c IN for ε small enough.

As observed in [Wil02] we may now use RD, the singular Fourier multiplier associated to the
symbol R(X, γ) as a Kreiss symmetrizer for the singular problem. Let χi = χ, v := χDU̇

γ , and
denote by 〈·, ·〉 the L2 inner product on bΩ. Using the equation (2.8) to expand ∂d〈v,RDv〉 and
integrating in xd over [0,∞) we obtain

− 〈v|xd=0, RDv|xd=0〉 = −2Re (RD ADv, v)

− 2Re (RD D(εU)v, v) + 2Re (RD χDf
γ , v) +O(|U̇γ |20,0/γ3).

From (2.45)(b), (2.46) and the localized G̊arding inequality (Proposition A.11),

Re 〈(R + C B(εU)∗ B(εU))Dv|xd=0, v|xd=0〉 ≥ c 〈v|xd=0〉20 −C
〈U̇γ |xd=0〉20

γ
,(2.47)

we easily derive the estimate (2.44).
2. Estimate of ∇x′Λ−1

D U̇γ
3 . Set ṽ := Λ−1

D v and for now let ṽ′ denote one of the tangential
derivatives ∂j ṽ, j = 0, . . . , d− 1. Then ṽ′ satisfies the system (2.37), where the truncation function
χ has changed but the forcing terms have exactly the same expression. An argument just like the
one that gave the estimate (2.44) yields

|∇x′ Λ−1
D U̇γ

3 |0,0 +
〈∇x′ Λ−1

D U̇γ
3 |xd=0〉0√
γ

≤ C

(
|∇x′ Λ−1

D fγ |0,0
γ

+
〈∇x′ Λ−1

D gγ〉0√
γ

+
|U̇γ |0,0 + |∇x′Λ−1

D U̇γ |0,0
γ2

+
〈U̇γ |xd=0〉0 + 〈∇x′ Λ−1

D U̇γ |xd=0〉0
γ

)
.

Here instead of (2.47) we have used

Re 〈(R + C B(εU)∗ B(εU))D ṽ
′|xd=0, ṽ

′|xd=0〉 ≥ c 〈ṽ′|xd=0〉20 − C
〈∂x′ Λ−1

D U̇γ |xd=0〉20
γ

,
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to recover the estimate of the trace of ṽ′. The L2 estimates of the forcing terms in the interior
and on the boundary are exactly the same as in steps 4 and 5 of the previous proof. Since these
estimates are actually simpler or similar to those we dealt with in Proposition 2.6, we feel free to
skip the details that should become more or less familiar to the reader at this stage.

V) Conclusion. We use the previous propositions to complete the proof of Proposition 2.2.
It remains to estimate |U̇γ |0,1 and |U̇γ |∞,0. Summing the estimates (2.7), (2.27), and (2.43)

over i ∈ {1, . . . , N2} and absorbing error terms from the right by taking γ large, we derive

|U̇γ |0,0 +
〈U̇γ |xd=0〉0√

γ
+

|U̇γ
1 + U̇γ

2 |∞,0√
γ

≤ C(K)

( |ΛDf
γ |0,0 + |∇x′fγ|0,0

γ2
+

〈ΛDg
γ〉0 + 〈∇x′gγ〉0
γ3/2

)
,

(2.48)

where we have ”forgotten” on the left of the inequality the additional control of ∇x′ Λ−1
D U̇γ (this

term has played its role, meaning that it was used to absorb some bad terms appearing on the
right). This gives exactly (2.4) with the additional control of U̇γ

1 + U̇γ
2 in L∞(L2). This additional

property will be used in the proof of Corollary 2.3 below.

Proof of Corollary 2.3. We first estimate the first order tangential derivatives. We can apply the
a priori estimate (2.4) to the problem satisfied by ∂(x′,θ0)U̇

γ , which is obtained by differentiating
(2.2). This yields

|U̇γ |0,1 +
〈U̇γ |xd=0〉1√

γ
≤ C(K)

( |ΛDf
γ |0,1 + |∇x′fγ |0,1

γ2
+

〈ΛDg
γ〉1 + 〈∇x′gγ〉1
γ3/2

)
(2.49)

which is the same as (2.5), except for the absence of |U̇γ |∞,0 on the left. Here we were able to treat
commutators as forcing terms because, for example,

[D(εU), ∂(x′,θ0)] U̇
γ = −(dD(εU) · ε∂(x′,θ0)U) U̇γ ,

and the factor of ε coming out from the commutation allows us to estimate

|ΛD [D(εU), ∂(x′ ,θ0)] U̇
γ |0,0 ≤ C |U̇γ |0,1.

It thus only remains to estimate the norm |U̇γ |∞,0. For δ2 > 0 to be chosen, we take 0 < δ1 < δ2
and consider a symbol of order zero in the extended calculus, χe(ξ′, kβε , γ), such that

0 ≤ χe ≤ 1 ,

χe

(
ξ′,
kβ

ε
, γ

)
= 1 on

{
|ξ′, γ| ≤ δ1

|k β|
ε

}
,

suppχe ⊂
{
|ξ′, γ| ≤ δ2

|k β|
ε

}
.

We then write U̇γ = χe
DU̇

γ + (1 − χe
D)U̇

γ and begin by estimating |(1 − χe
D)U̇

γ |0,∞ by using the
Sobolev-type estimate

|(1− χe
D)U̇

γ |∞,0 ≤ C |(1 − χe
D) ∂dU̇

γ |0,0 + C |(1 − χe
D)U̇

γ |0,0 ≤ C |(1− χe
D) ∂dU̇

γ |0,0 + C |U̇γ |0,0.
(2.50)
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Using the equation (2.2) and the fact that

|X, γ|
(
1− χe

(
ξ′,
k β

ε
, γ

))
≤ C |ξ′, γ| ,

we obtain

|(1− χe
D) ∂dU̇

γ |0,0 ≤ |AD (1− χe
D)U̇

γ |0,0 + |(1− χe
D)DU̇γ |0,0 + |(1− χe

D)f
γ |0,0

≤ C
(
|U̇γ |0,1 + |fγ |0,0

)
≤ C

(
|U̇γ |0,1 +

|ΛDf
γ |0,1

γ2

)
,

where the last inequality follows from |fγ |0,0 ≤ C|fγ|0,1/γ. With (2.50) this gives

|(1− χe
D)U̇

γ |∞,0 ≤ C

(
|U̇γ |0,1 +

|ΛD(f
γ)|0,1

γ2

)
.(2.51)

To estimate |χe
DU̇

γ |∞,0 we observe that since β ∈ Υ, we have for δ2 > 0 chosen small enough

χe

(
ξ′,
k β

ε
, γ

)
= χe

(
ξ′,
k β

ε
, γ

) N1∑

i=1

χi(X, γ) ,

for the χi chosen in step I) of the proof of Proposition 2.2. Thus,

|χe
DU̇

γ |∞,0 ≤ |χe
D (U̇γ

1 + U̇γ
2 )|∞,0 ≤ |U̇γ

1 + U̇γ
2 |∞,0 ,

with U̇γ
1 and U̇γ

2 defined in Propositions 2.4 and 2.6. We can then apply the a priori estimate (2.48)
and obtain

|χe
DU̇

γ |∞,0 ≤ C

( |ΛDf
γ |0,0 + |∇x′fγ |0,0

γ3/2
+

〈ΛDg
γ〉0 + 〈∇x′gγ〉0

γ

)
.

With (2.51) and (2.49), this completes the proof of Corollary 2.3.

Let us quickly observe that the genuine G̊arding’s inequality was used only once, in the proof of
Proposition 2.2, namely in (2.47). In all other cases, we only used Plancherel’s Theorem for Fourier
multipliers. This explains the slight difference between (2.43) and (2.7), (2.27) for the powers of γ.

Next we “localize the estimate” to ΩT . Since
22

|ΛDf
γ |0,1 ∼

∣∣∣∣
(
γ, ∂x′ +

β ∂θ0
ε

)
fγ
∣∣∣∣
0,1

∼
∣∣∣∣
(
γ, ∂x′ +

β ∂θ0
ε

)
f

∣∣∣∣
0,1,γ

,

we can rewrite the a priori estimate (2.5) for solutions to the linearized system (2.1) as

(2.52) |U̇ |∞,0,γ + |U̇ |0,1,γ +
〈U̇ |xd=0〉1,γ√

γ

≤ C(K)

(
|(γ, ∂x′ +

β∂θ0
ε )f |0,1,γ + |∇x′f |0,1,γ

γ2
+

〈(γ, ∂x′ +
β∂θ0
ε )g〉1,γ + 〈∇x′g〉1,γ
γ3/2

)
.

22Here “∼” denotes equivalence of norms with constants independent of ε and γ.
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Suppose now that the singular problem (2.1) is posed on ΩT instead of Ω. Given f ∈ L2H1
T ,

one can define a Seeley extension f̃ ∈ L2H1 such that
∣∣∣∣
(
γ, ∂x′ +

β ∂θ0
ε

)
f̃

∣∣∣∣
0,1

+ |∇x′ f̃ |0,1 ≤ C

(∣∣∣∣
(
γ, ∂x′ +

β ∂θ0
ε

)
f

∣∣∣∣
0,1,T

+ |∇x′f |0,1,T
)
,

where C is independent of γ, ε, and T . It is readily checked that the same extension satisfies
∣∣∣∣
(
γ, ∂x′ +

β ∂θ0
ε

)
f̃

∣∣∣∣
0,1,γ

+ |∇x′ f̃ |0,1,γ ≤ C

(∣∣∣∣
(
γ, ∂x′ +

β ∂θ0
ε

)
f

∣∣∣∣
0,1,γ,T

+ |∇x′f |0,1,γ,T
)
,(2.53)

where again C is independent of γ, ε, and T . We claim that changing f , g, and U in {t > T}
does not affect the solution of (2.1) in {t < T}. (This causality principle is discussed further below
together with the existence of solutions to the linearized system (2.1).) Hence the estimates (2.52)
and (2.53) imply the following estimate for the singular problem on ΩT :

|U̇ |∞,0,γ,T + |U̇ |0,1,γ,T +
〈U̇ |xd=0〉1,γ,T√

γ

≤ C(K)

(
|(γ, ∂x′ +

β∂θ0
ε )f |0,1,γ,T + |∇x′f |0,1,γ,T

γ2
+

〈(γ, ∂x′ +
β∂θ0
ε )g〉1,γ,T + 〈∇x′g〉1,γ,T

γ3/2

)
.

Let us now consider the linearized singular problem (2.1) on ΩT with data of the form εf , εg
instead of f and g. We note that

∣∣∣∣
(
γ, ∂x′ +

β ∂θ0
ε

)
εf

∣∣∣∣
0,1,γ,T

≤ C |f |0,2,γ,T and 〈
(
γ, ∂x′ +

β ∂θ0
ε

)
εg〉1,γ,T ≤ C 〈g〉2,γ,T .

Let us write the linearized operators on the left sides of (2.1)(a) and (b) as L′(εU)U̇ and B
′(εU)U̇

respectively, and define

L′
ε(U)U̇ :=

1

ε
L
′(εU)U̇ , B′

ε(U)U̇ :=
1

ε
B
′(εU)U̇ .

We have proved:

Proposition 2.9. Fix K > 0 and suppose |ε∂dU |
C

0,M0−1
T

+ |U |
C

0,M0
T

≤ K for ε ∈ (0, 1]. There exist

positive constants ε0(K), γ0(K) such that solutions of the singular problem

L′
ε(U)U̇ = f on ΩT ,

B′
ε(U)U̇ = g on bΩT ,

U̇ = 0 in t < 0,

(2.54)

satisfy

|U̇ |∞,0,γ,T + |U̇ |0,1,γ,T +
〈U̇ |xd=0〉1,γ,T√

γ
≤ C(K)

( |f |0,2,γ,T
γ2

+
〈g〉2,γ,T
γ3/2

)
(2.55)

for 0 < ε ≤ ε0(K), γ ≥ γ0(K), and the constant C(K) only depends on K.
The same estimate holds if B(εU) in (2.1) is replaced by B(εU, εU) given in (1.9), and D(εU)

is replaced by D(εU, εU) given in (1.10), as long as there holds |ε∂d(U,U)|C0,M0−1
T

+ |U,U|
C

0,M0
T

≤ K

for ε ∈ (0, 1].
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2.2 Well-posedness of the linearized singular equations

In this short section, we explain why the analysis in [Cou05] gives existence and uniqueness of a
solution to the linearized singular problem (2.54) for which the estimate (2.55) holds. First of all,
we can define a dual problem for (2.1) that reads

∂dU̇ + A
∗
(
∂x′ +

β ∂θ0
ε

)
U̇ + D̃(εU) U̇ = f(x, θ0) on Ω ,

M(εU) U̇ |xd=0 = g(x′, θ0) ,

(2.56)

where A
∗ is obtained from A by first multiplying the system by the constant matrix Bd, then by

integrating by parts on Ω and eventually by multiplying by (BT
d )

−1. The zero order term is also
changed accordingly. Following the standard procedure described for instance in [BGS07, Chapter
4.4], the matrix M giving the adjoint boundary conditions is chosen such that for all v sufficiently
close to the origin, there holds

BD = B(v)T1 B(v) +M(v)T M1(v) ,

where B1(v) and M1(v) are additional matrices depending smoothly on v.
The expression of A∗ shows that this singular operator coincides with the operator obtained by

applying the substitution ∂x′ → ∂x′ + β∂θ0/ε to the dual operator

∂t +
d∑

j=1

BT
j ∂j = −L0(∂)

∗ .

It is known from the analysis in [BGS07, Chapter 8.3] that the latter constant multiplicity hyper-
bolic operator with boundary conditions given by M(v) gives rise to a boundary value problem
in the ”backward” WR class (one just has to replace γ by −γ for this dual problem). When we
apply the singular transformation ∂x′ → ∂x′ + β∂θ0/ε to the boundary value problem defined by
(L0(∂)

∗,M(εU)), we can reproduce the analysis of the former section and show that the same type
of a priori estimate as in Proposition 2.2 holds for (2.56).

For all fixed ε > 0 small enough, we have thus proved that both the forward problem (2.1) and
its dual problem (2.56) satisfy an a priori estimate with a loss of one tangential derivative. The
estimates depend very badly on ε because singular derivative ∂x′ +β∂θ0/ε is estimated by 1/ε times
the tangential H1 norm with respect to (x′, θ0). Nevertheless, we can at this stage reproduce the
arguments of [Cou05] to show the existence and uniqueness of L2 solutions to (2.1) when the source
terms f and g satisfy f, ∂θ0f, ∂x′f ∈ L2(ΩT ), g ∈ H1(bΩT ). The analysis is actually much simpler
than in [Cou05] because most of the technical difficulties in [Cou05] arise from commutations with
the hyperbolic operator. Here the hyperbolic operator has constant coefficients so commutation
with any scalar Fourier multiplier is exact. The analysis in [Cou05] also shows that weak solutions
are limit of strong solutions when the hyperbolic operator has constant coefficients23 so we can
show that weak solutions satisfy the energy estimate (2.4) with constants that are uniform with
respect to the small parameter ε. Such global in time estimates imply the causality principle that
”future does not affect the past” and can be localized to ΩT by the extension procedure previously
described.

23Weak solutions are only ”semi-strong” solutions when the hyperbolic operator has variable coefficients.
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2.3 Tame estimates

In this section we prove higher derivative estimates for the linearized singular problem (2.1),
first in the “pre-tame” form of Proposition 2.11, and then in the final ”tame” form of Proposition
2.16, which is suitable for Nash-Moser iteration. Propositions 2.12 and 2.15 give pre-tame and tame
estimates for second derivatives.

Notations 2.10. (a) Let L∞W 1,∞ ≡ L∞(R+,W
1,∞(bΩ)) with norm |U |L∞W 1,∞ := |U |∗. We also

write |U |L∞(Ω) = |U |∗, 〈V 〉L∞(bΩ) = 〈V 〉∗, 〈V 〉W 1,∞(bΩ) = 〈V 〉∗, |U |L∞(ΩT ) = |U |∗,T , etc..
(b) For k ∈ N, let ∂k denote the collection of tangential operators ∂α(x′,θ0)

with |α| = k (α is a

multi-index). Sometimes ∂k is used to denote a particular member of this collection. Set ∂0φ = φ.
(c) For k ∈ {1, 2, 3, . . . }, denote by ∂〈k〉φ the set of products of the form (∂α1φi1) · · · (∂αrφir)

where 1 ≤ r ≤ k, α1 + · · ·αr = k, αi ≥ 1. Set ∂〈0〉φ = 1.
(d) For r ≥ 0, let [r] denote the smallest integer greater than r.

Our first goal is to prove the following “pre-tame” estimate for solutions to (2.54).

Proposition 2.11. Fix K > 0 and suppose |ε∂dU |C0,M0−1 + |U |C0,M0 ≤ K for ε ∈ (0, 1]. For s ≥ 0
in any fixed finite interval there exist positive constants ε0(K), γ0(K) such that the solution to the
linearized singular problem (2.54) satisfies

(2.57) |U̇ |∞,s,γ,T + |U̇ |0,s+1,γ,T +
〈U̇ |xd=0〉s+1,γ,T√

γ

≤ C(K)

(
|f |0,s+2,γ,T

γ2
+

〈g〉s+2,γ,T

γ3/2
+

|U |0,s+2,γ,T |U̇ |∗,T
γ2

+
〈U |xd=0〉s+2,γ,T 〈U̇ |xd=0〉∗,T

γ3/2

)
,

for 0 < ε ≤ ε0(K) and γ ≥ γ0(K).

Proof. The problem satisfied by ∂sU̇ is

L′
ε(U)∂sU̇ = ∂sf +

1

ε
[D(εU), ∂s]U̇ ,

B′
ε(U)∂sU̇ = ∂sg +

1

ε
[B(εU), ∂s]U̇ .

In applying the estimate (2.57) to this problem we must, for example, compute ∂2([D(εU), ∂s]U̇),
which is a sum of terms of the form24

D̃(εU) ∂〈j〉(εU) ∂kU̇ , where j + k = s+ 2, j ≥ 1,

and D̃ is some smooth function of its argument. Since j ≥ 1, we can rewrite this as

D̃(εU) ∂〈j−1〉(εU) ∂(εU) ∂kU̇ .

Using Moser estimates we obtain
∣∣∣∣
1

ε
D̃(εU) ∂〈j−1〉(εU) ∂(εU) ∂kU̇

∣∣∣∣
0,γ,T

≤ C(K) |U̇ |∗,T |U |0,s+2,γ,T + C(K) |U̇ |0,s+1,γ,T .

The contribution from the final term on the right can be absorbed by taking γ large enough; thus
this explains the third term on the right in (2.57). The final term on the right in (2.57) arises by
the same argument applied to the boundary commutator.

24More precisely, each component is a sum of such terms.
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Next we prove estimates for the second derivatives

L′′
ε(U)(U̇a, U̇ b) = ∂vD(εU) (U̇a, U̇ b) ,

B′′
ε (U)(U̇a, U̇ b) = ∂vB(εU) (U̇a, U̇ b) ,

where we use the notation

∂vD(εU) (U̇a, U̇ b) :=
N∑

i=1

(
∂viD(εU) U̇a

i

)
U̇ b.

Proposition 2.12. We have

(a) |L′′
ε(U)(U̇a, U̇ b)|∞,s,γ,T ≤
C(|U |∗,T )

(
|U̇a|∞,s,γ,T |U̇ b|∗,T + |U̇ b|∞,s,γ,T |U̇a|∗,T + ε|U |∞,s,γ,T |U̇a|∗,T |U̇ b|∗,T

)
,

(b) |L′′
ε(U)(U̇a, U̇ b)|0,s+1,γ,T ≤
C(|U |∗,T )

(
|U̇a|0,s+1,γ,T |U̇ b|∗,T + |U̇ b|0,s+1,γ,T |U̇a|∗,T + ε|U |0,s+1,γ,T |U̇a|∗,T |U̇ b|∗,T

)
,

(c) 〈B′′
ε (U)(U̇a, U̇ b)〉s,γ,T ≤
C(〈U〉∗,T )

(
〈U̇a〉s,γ,T 〈U̇ b〉∗,T + 〈U̇ b〉s,γ,T 〈U̇a〉∗,T + ε〈U〉s,γ,T 〈U̇a〉∗,T 〈U̇ b〉∗,T

)
.

Proof. For t ≤ s one computes ∂t(L′′
ε(U)(U̇a, U̇ b)), which is a sum of terms of the form

D̃(εU) ∂〈k〉(εU) ∂lU̇a ∂mU̇ b, where k + l +m = t.

Thus, the first estimate follows directly from Moser estimates. The remaining estimates are proved
the same way.

In the iteration scheme of section 5.2 we will use Hs
T spaces on the boundary, while in the

interior we use the following spaces.

Definition 2.13. For s ∈ {0, 1, 2, . . . } let

Es
T = CHs

T ∩ L2Hs+1
T , with the norm |U(x, θ0)|Es

T
:= |U |∞,s,T + |U |0,s+1,T

Es
γ,T = CHs

γ,T ∩ L2Hs+1
γ,T , with the norm |U(x, θ0)|Es

γ,T
:= |U |∞,s,γ,T + |U |0,s+1,γ,T .

Remark 2.14. By Sobolev embedding we have

s ≥ [(d+ 1)/2] ⇒ Es
T ⊂ CHs

T ⊂ L∞(ΩT )

s ≥ [(d+ 1)/2] + 1 ⇒ Es
T ⊂ CHs

T ⊂ L∞(R+,W
1,∞(bΩT ))

s ≥ [(d+ 1)/2] +M0 ⇒ Es
T ⊂ CHs

T ⊂ C0,M0

T .

Note that Es
T is a Banach algebra for s ≥ [(d+ 1)/2].

By Proposition 2.12 and Remark 2.14 we immediately obtain:
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Proposition 2.15 (Tame estimates for second derivatives). Let b0 = [(d+1)/2] and suppose s ≥ 0
lies in some finite interval. Then

(a) |L′′
ε(U)(U̇a, U̇ b)|Es

γ,T
≤

C(|U |
E

b0
T

)
(
|U̇a|Es

γ,T
|U̇ b|

E
b0
T

+ |U̇ b|Es
γ,T

|U̇a|
E

b0
T

+ ε|U |Es
γ,T

|U̇a|
E

b0
T

|U̇ b|
E

b0
T

)

(b)〈B′′
ε (U)(U̇a, U̇ b)〉s,γ,T ≤
C(〈U〉b0,T )

(
〈U̇a〉s,γ,T 〈U̇ b〉b0,T + 〈U̇ b〉s,γ,T 〈U̇a〉b0,T + ε〈U〉s,γ,T 〈U̇a〉b0,T 〈U̇ b〉b0,T

)
.

In order to obtain a tame estimate for the linearized system suitable for Nash-Moser iteration,
we must recast estimate (2.57) without the L∞ norms of U̇a and U̇ b on the right. First of all, we fix
the paramater K > 0. For instance, one may take K = 1. This choice is arbitrary because we are
interested in a small data result25. We then choose constants ε0(K), γ0(K) as in Proposition 2.11
so that the the estimate (2.57) holds for s ∈ [0, α̃], where α̃ is defined in (5.60). For the remainder
of Section 2.3 and in Section 5.2, the parameter K is fixed, and γ is also fixed as γ = γ0(K).

Let
κ := |U |0,µ0,γ,T + 〈U |xd=0〉µ0,γ,T where µ0 := [(d+ 1)/2] + 2.

Applying (2.57) with s = µ0 − 2 we obtain for 0 < ε ≤ ε0:

(2.58) |U̇ |∞,µ0−2,γ,T + |U̇ |0,µ0−1,γ,T + 〈U̇ |xd=0〉µ0−1,γ,T

≤ C(K, γ)
(
|f |0,µ0,γ,T + 〈g〉µ0,γ,T + (|U̇ |∗ + 〈U̇ 〉∗)κ

)
.

By Remark 2.14 if κ is chosen small enough, we can absorb the last term on the right in (2.58) and
obtain with a new constant C:

|U̇ |∗ + 〈U̇ |xd=0〉∗ ≤ C
(
|f |0,µ0,γ,T + 〈g〉µ0,γ,T

)
.(2.59)

Substituting (2.59) in (2.57), we have proved

Proposition 2.16 (Tame estimate for the linearized system). Let K and γ = γ(K) be as fixed in
Proposition 2.11 and suppose |ε∂dU |C0,M0−1 + |U |C0,M0 ≤ K for ε ∈ (0, 1]. Let µ0 = [d+1

2 ] + 2 and
s ∈ [0, α̃], where α̃ is defined in (5.60). There exist positive constants κ0(γ, T ), ε0, and C such that
if

|U |0,µ0,γ,T + 〈U |xd=0〉µ0,γ,T ≤ κ0,

then solutions U̇ of the linearized system (2.54) satisfy for 0 < ε ≤ ε0:

|U̇ |Es
γ,T

+ 〈U̇ |xd=0〉s+1,γ,T

≤ C [|f |0,s+2,γ,T + 〈g〉s+2,γ,T + (|f |0,µ0γ,T + 〈g〉µ0,γ,T ) (|U |0,s+2,γ,T + 〈U |xd=0〉s+2,γ,T )] .

25If we were interested in a small time result for a given source term G, one would need to fix the constant K in
terms of G and the parameters γ, T would be chosen accordingly.
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3 Profile equations

3.1 The key subsystem in the 3× 3 strictly hyperbolic case

To simplify the exposition we first treat the case of a 3 × 3 strictly hyperbolic system and a
boundary frequency β for which there is one single resonance in which two incoming modes interact
to produce an outgoing mode. This case already contains the main difficulties and is exactly the
one we emphasize in the example of Appendix B. We shall explain later on the relatively small
changes needed to treat the general case of systems satisfying the assumptions of Section 1.1.

The leading profile is decomposed as

V0(x, θ1, θ2, θ3) = σ1(x, θ1) r1 + σ3(x, θ3) r3(3.1)

where φ2 is the outgoing phase and the resonant triple (n1, n2, n3) ∈ Z
3 \ {0} satisfies

n1φ1 = n2φ2 + n3φ3.(3.2)

We can thus write

V0
inc = σ1(x, θ1) r1 + σ3(x, θ3) r3 , V1

out = τ2(x, θ2) r2.(3.3)

Furthermore we have

V0
inc|xd=0,θ1=θ3=θ0 = a(x′, θ0) e = a(x′, θ0) (e1 + e3) ,(3.4)

so (recall that e = e1 + e3, where ei ∈ span{ri}, spans kerB ∩ E
s(β))

σi(x
′, 0, θ0) ri = a(x′, θ0) ei, i = 1, 3,(3.5)

which determines the trace of σi in terms of a.
Applying the operators Ei for i = 1, 3 to (1.42)(a) and for i = 2 to (1.42)(b) and using Corollary

1.26 for (1.42)(c), we obtain the following system for the unknowns (σ1, τ2, σ3, a), where A(x′, θ0)
denotes the unique function with mean zero such that ∂θ0A = a:

Xφ1σ1 + c1 σ1 = 0

Xφ3σ3 + c3 σ3 = 0

Xφ2τ2 + c0 τ2 + c2

∫ 2π

0
σ1,n1

(
x,
n2
n1

θ2 +
n3
n1

θ3

)
σ3(x, θ3) dθ3 = 0

XLopA+ c4 A+ c5 τ2|xd=0 + c6 (a
2)∗ = −b ·G∗ on bΩT ,

(3.6)

where the first three equations hold on ΩT , and the constants ci are readily computed real constants.
Here σ1,n1(x, θ1) is the image of the function σ1 under the preparation map

σ1(x, θ1) =
∑

k∈Z
fk(x)e

ikθ1 −→
∑

k∈Z
fkn1(x)e

ikn1θ1 ,(3.7)

a map designed so that the integral in (3.6) picks out resonances in the product of σ1 and σ3.
26

26Interaction integrals like the one in (3.6) are discussed further in [CGW11], Proposition 2.13.
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Differentiating with respect to θ0, we rewrite the last equation of (3.6) as

XLopa+ c4 a+ c5 ∂θ0τ2|xd=0 + c6 ∂θ0(a
2) = −b · ∂θ0G∗ =: g on bΩT .(3.8)

We now set V := (σ1(x, θ1), σ3(x, θ3), τ2(x, θ2), a(x
′, θ0)) and define the interior and boundary

operators for the leading profile system:

L(V ) :=




Xφ1σ1 + c1 σ1
Xφ3σ3 + c3 σ3

Xφ2τ2 + c0 τ2 + c2
∫ 2π
0 σ1,n1

(
x,
n2
n1

θ2 +
n3
n1

θ3

)
σ3(x, θ3) dθ3




B(V ) := XLopa+ c4 a+ c5 ∂θ0τ2|xd=0 + c6 ∂θ0(a
2).

(3.9)

In this notation the profile subsystem becomes

L(V ) = 0 in ΩT ,

B(V ) = g in bΩT ,

V = 0 in t ≤ 0,

(3.10)

where the additional relations (3.5) hold giving the traces of σ1, σ3 in terms of a. The following
existence result for the key subsystem is proved in section 5.1 using the tame estimates derived
below in section 3.2.

Proposition 3.1. Fix T > 0, let α0 :=
[
d+1
2

]
+ 1, α := 2α0 + 4, α̃ := 2α − α0, and suppose

g ∈ H α̃−2(bΩT ). Rewrite V as V = (V ′, a). If 〈g〉α is small enough, then there exists a solution V
of the profile subsystem (3.10) with V ′ ∈ Hα−1(ΩT ), (V

′|xd=0, a) ∈ Hα−1(bΩT ).

Remark 3.2. 1) Although the original problem is semilinear with a nonlinear zero-order boundary
condition, the profile system (3.9) has a quasilinear first-order boundary operator and an interior
operator that includes a nonlinear, nonlocal, integro-pseudodifferential operator given by the inter-
action integral. The nonlocality arises both from the dθ3-integration and from the pseudodifferential
operator σ1 → σ1,n1 .

2) Attempts to solve the system (3.10) by a standard Picard iteration lead to a (fatal) loss
of a derivative from one iterate to the next. The reason is that σ1 and σ3 have the regularity
of a (incoming transport equation), and therefore τ2 has the same regularity as a. However, the
equation for a involves the derivative ∂θ0τ2|xd=0 and this term induces the loss. Thus, we shall use
Nash-Moser iteration to prove Proposition 3.1.

3.2 Tame estimates

With V = (σ1, σ3, τ2, a) and V̇ = (σ̇1, σ̇3, τ̇2, ȧ), we compute the first derivatives of L and B:

(a) L′(V )V̇ =




Xφ1 σ̇1 + c1 σ̇1
Xφ3 σ̇3 + c3 σ̇3

Xφ2 τ̇2 + c0 τ̇2 + c2
∫ 2π
0 σ1,n1

(
x,
n2
n1
θ2 +

n3
n1
θ3

)
σ̇3(x, θ3) dθ3

+c2
∫ 2π
0 σ3,n3

(
x,−n2

n3
θ2 +

n3
n1
θ1

)
σ̇1(x, θ1) dθ1




(b) B′(V )V̇ = XLopȧ+ c4 ȧ+ c5 ∂θ0 τ̇2|xd=0 + 2c6 (a∂θ0 ȧ+ ȧ∂θ0a).

(3.11)
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Here we have used the property

∫ 2π

0
σ3,n3

(
x,−n2

n3
θ2 +

n3
n1
θ1

)
σ̇1(x, θ1) dθ1 =

∫ 2π

0
σ̇1,n1

(
x,
n2
n1
θ2 +

n3
n1
θ3

)
σ3(x, θ3) dθ3,(3.12)

which follows readily by looking at the Fourier series of the factors of the integrand. For the second
derivatives we obtain

L′′(V )(V̇ a, V̇ b) = c2




0
0

∫ 2π
0 σ̇a1,n1

(
x,
n2
n1
θ2 +

n3
n1
θ3

)
σ̇b3(x, θ3) dθ3

+
∫ 2π
0 σ̇b1,n1

(
x,
n2
n1
θ2 +

n3
n1
θ3

)
σ̇a3(x, θ3) dθ3




B′′(V )(V̇ a, V̇ b) = 2c6 (ȧ
a ∂θ0 ȧ

b + ȧb ∂θ0 ȧ
a).

(3.13)

Proposition 3.3 (Tame estimates for second derivatives). a) Let b0 be the smallest integer greater
than d+2

2 and let s ≥ 0. We have

|L′′(V )(V̇ a, V̇ b)|s,γ ≤ C
(
|V̇ a|s,γ |V̇ b|b0 + |V̇ b|s,γ |V̇ a|b0

)
,(3.14)

where C is independent of V , γ, and T .
b) Let c0 be the smallest integer greater than d+1

2 + 1 and let s ≥ 0. We have

〈B′′(V )(V̇ a, V̇ b)〉s,γ ≤ C
(
〈V̇ a〉s+1,γ 〈V̇ b〉c0 + 〈V̇ b〉s+1,γ 〈V̇ a〉c0

)
,(3.15)

where C is independent of V , γ, and T .
In both estimates (3.14), (3.15), the constant C can be chosen independent of s in any fixed

finite interval.

Proof. a. Moser estimates imply

|σ̇a1,n1
(x,

n2
n1
θ2 +

n3
n1
θ3) σ̇

b
3(x, θ3)|Hs

γ(x,θ2)
≤ C (|σ̇a1,n1

|s,γ |σ̇b3|L∞ + |σ̇a1,n1
|L∞ |σ̇b3|Hs

γ(x)
),(3.16)

since σ̇b3 is independent of θ2. We have

∫ 2π

0
|σ̇b3(x, θ3)|Hs

γ (x)
dθ3 ≤ C |σ̇b3|L2(θ3,Hs

γ(x))
≤ C |σ̇b3|s,γ .(3.17)

The estimate (3.14) now follows by Sobolev embedding and the fact that

|σ̇a1,n1
|s,γ ≤ |σ̇a1 |s,γ .(3.18)

b. Again Moser estimates imply

〈ȧa∂θ0 ȧb〉s,γ ≤ C
(
〈ȧa〉s,γ 〈∂θ0 ȧb〉L∞ + 〈ȧa〉L∞ 〈∂θ0 ȧb〉s,γ

)
,(3.19)

so the estimate (3.15) follows by Sobolev embedding.
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Next we derive tame energy estimates for the linearized problem

L′(V )V̇ = f in ΩT

B′(V )V̇ = g in bΩT

V = 0 in t < 0,

(3.20)

where f and g vanish in t < 0. We begin with a simple proposition:

Proposition 3.4. 1. If the phase φp is incoming, solutions of

Xφpσp + cpσp = h in ΩT , σp = 0 in t < 0(3.21)

satisfy for γ large (depending on cp):

√
γ|σp|s,γ ≤ C

(
〈σp〉s,γ +

|h|s,γ√
γ

)
.(3.22)

2. If the phase φp is outgoing, solutions of (3.21) satisfy for γ large (depending on cp):

√
γ|σp|s,γ + 〈σp〉s,γ ≤ C

|h|s,γ√
γ
.(3.23)

3. Solutions in ωT of

XLopȧ+ c4ȧ+ 2c6(a∂θ0 ȧ+ ȧ∂θ0a) = g, ȧ = 0 in t < 0(3.24)

satisfy for CK , γ ≥ γK (where K = 〈a〉W 1,∞):

√
γ〈ȧ〉s,γ ≤ CK√

γ
(〈g〉s,γ + 〈a〉s+1,γ〈ȧ〉W 1,∞) .(3.25)

The second term on the right in (3.25) does not appear in the s = 0 estimate.

Proof. 1. To prove (3.23) with s = 0, one considers the problem satisfied by e−γtσp, multiplies the
equation by e−γtσp, integrates dxdθp on ΩT , and performs obvious integrations by parts. One then

applies the L2 estimate to the problem satisfied by tangential derivatives γs−|β|∂βx′,θp
σp, |β| ≤ s.

Normal derivatives are estimated using the equation and the tangential estimates. The proof of
(3.23) is similar.

2. The proof of (3.25) is similar, but in the higher derivative estimates one now has forcing
terms that are commutators involving a. The commutators are linear combinations of terms of the
form

γs−|β|(∂β1

x′,θ0
a)(∂β2

x′,θ0
∂θ0 ȧ) where |β1|+ |β2| = |β|, |β1| ≥ 1,(3.26)

or linear combinations of terms of the form

γs−|β|(∂β1

x′,θ0
ȧ)(∂β2

x′,θ0
∂θ0a) where |β1|+ |β2| = |β|, |β2| ≥ 1,(3.27)

Applying Moser estimates to (3.26) after writing ∂β1a = ∂β
′
1∂a, we obtain

〈γs−|β|(∂β1

x′,θ0
a)(∂β2

x′,θ0
∂θ0 ȧ)〉0,γ ≤ C (〈∂a〉L∞〈∂θ0 ȧ〉m−1,γ + 〈∂a〉m−1,γ〈∂θ0 ȧ〉L∞)

≤ C (〈a〉W 1,∞〈ȧ〉s,γ + 〈a〉s,γ〈ȧ〉W 1,∞) .
(3.28)
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The factor CK/
√
γ on the forcing term in the L2 estimate allows the first term on the right to be

absorbed by taking γ large.
The estimate of (3.27) is similar, but we do not split the ∂β2 derivative, and after absorbing a

term we are left with CK√
γ 〈ȧ〉L∞〈a〉s+1,γ on the right.

We now use Proposition 3.4 to estimate solutions of the linearized problem (3.20) by treating
the interaction integrals in (3.11)(a) and the term c5∂θ0τ2 in (3.11)(b) as additional forcing terms.
Setting

Vinc,n := (σ1,n1 , σ3,n3), Vinc = (σ1, σ3), Vout = τ2,(3.29)

estimating interaction integrals as in (3.16),(3.17), and using (3.18), we obtain immediately

√
γ|V̇out|s,γ + 〈V̇out〉s,γ ≤ C√

γ

(
|f |s,γ + |Vinc,n|L∞ |V̇inc|s,γ + |Vinc|s,γ |V̇inc|L∞

)

√
γ|∂θV̇out|s,γ + 〈∂θ0 V̇out〉s,γ ≤ C√

γ

(
|∂θf |s,γ + |∂θVinc,n|L∞ |V̇inc|s,γ + |∂θVinc|m,γ |V̇inc|L∞

)(3.30)

and

√
γ|V̇inc|s,γ ≤ C

(
〈V̇inc〉s,γ +

|f |s,γ√
γ

)

√
γ〈V̇inc〉s,γ ≤ CK√

γ

(
〈g〉s,γ + 〈∂θ0 V̇out〉s,γ + 〈Vinc〉s+1,γ〈V̇inc〉W 1,∞

)
.

(3.31)

This leads to the following “pre-tame” estimate.

Proposition 3.5. Let µ0 = [d+1
2 ] + 2, fix K1 > 0, and suppose |Vinc|µ0 ≤ K1.

27 For s ≥ 0 in any
fixed finite interval, there exist constants C(K1), γ(K1) such that for γ ≥ γ(K1), solutions of the
linearized problem (3.20) satisfy

√
γ|V̇out, ∂θV̇out, V̇inc|s,γ + 〈V̇out, ∂θ0 V̇out〉s,γ +

√
γ〈V̇inc〉s,γ ≤

C(K1)√
γ

(
|f |s+1,γ + 〈g〉s,γ + |Vinc|s+1,γ |V̇inc|L∞ + 〈Vinc〉s+1,γ〈V̇inc〉W 1,∞

)
.

(3.32)

Proof. We add the estimates (3.30), (3.31) and absorb the terms

CK√
γ

(
〈V̇inc〉s,γ + 〈∂θ0 V̇out〉s,γ + |Vinc,n, ∂θVinc,n|L∞ |V̇inc|s,γ

)
(3.33)

by taking γ large, after observing that

|Vinc,n, ∂θVinc,n|L∞ ≤ C|Vinc,n|µ0 ≤ C|Vinc|µ0 and K = 〈Vinc〉W 1,∞ ≤ C|Vinc|µ0 .(3.34)

27In this Proposition µ0 = [ d
2
]+ 2 would work, but we make the above choice so as not to have to redefine µ0 later.
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We now set α̃ := 2α − α0 as in Proposition 3.1 and choose constants C(K1), γ(K1) as in
Proposition 3.5 corresponding to the interval s ∈ [0, α̃]28. In the remainder of section 3.2 and also
in section 5.1, γ is fixed as γ = γ(K1).

To obtain a tame estimate we need to remove the terms depending on V̇inc on the right side of
(3.32). Let

K2 = |Vinc|µ0,γ + 〈Vinc〉µ0,γ .(3.35)

Applying (3.32) with s = µ0 − 1 we obtain

√
γ|V̇inc|µ0−1,γ +

√
γ〈V̇inc〉µ0−1,γ ≤ C(K1)√

γ

[
|f |µ0,γ + 〈g〉µ0−1,γ +

(
|V̇inc|L∞ + 〈V̇inc〉W 1,∞

)
K2

]
.

(3.36)

By Sobolev embedding if K2 = K2(γ, T ) is chosen small enough, we can absorb the last term on
the right in (3.36) and obtain with a new C

|V̇inc|L∞ + 〈V̇inc〉W 1,∞ ≤ C (|f |µ0,γ + 〈g〉µ0−1,γ)(3.37)

For γ fixed as above, setting |U |s,γ = |U |s now and substituting (3.37) in (3.32), we obtain the
estimate in the following Proposition.

Proposition 3.6 (Tame estimate for the linearized system). Let µ0 = [d+1
2 ] + 2 and s ∈ [0, α̃].

There exists κ = κ(γ, T ) > 0 and a constant C depending on κ such that if

|Vinc|µ0 + 〈Vinc〉µ0 < κ,(3.38)

then solutions of the linearized system (3.20) satisfy

|V̇ |s + 〈V̇ 〉s ≤ C [|f |s+1 + 〈g〉s + (|f |µ0 + 〈g〉µ0−1) (|V |s+1 + 〈V 〉s+1)] .(3.39)

Proof. We have proved the a priori estimate (3.39) for sufficiently smooth solutions of the linearized
system. The existence of such solutions now follows by standard arguments, which we summarize
here for completeness.

The unknown in the linearized system (3.20) is (σ̇1, σ̇3, τ̇2, ȧ). We can solve the linearized system
by putting the terms that involve ∂θ0 τ̇2 or ∂θ0 ȧ on the right and replacing the operator ∂θ0 , when
it acts on those terms, by a finite difference operator ∂hθ0 :

Xφ1 σ̇
h
1 + c1σ̇

h
1 = f1

Xφ3 σ̇
h
3 + c3σ̇

h
3 = f2

Xφ2 τ̇
h
2 + c0τ̇

h
2 = f3 − c2

∫ 2π

0
σ1,n1(x,

n2
n1
θ2 +

n3
n1
θ3)σ̇

h
3 (x, θ3)dθ3−

c2

∫ 2π

0
σ3,n3(x,−

n2
n3
θ2 +

n3
n1
θ1)σ̇

h
1 (x, θ1)dθ1

XLopȧ
h + c4ȧ

h + 2c6ȧ
h∂θ0a = g − c5∂

h
θ0 τ̇

h
2 − 2c6a∂

h
θ0 ȧ

h.

(3.40)

28The choice of α̃ is explained in section 5.1.
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For fixed h ∈ (0, 1] we can solve this system by Picard iteration, where n-th iterates appear on the
right and (n + 1)-st iterates appear on the left. All iterates are 0 in t < 0 and the iterates with
index zero are all 0.

We then need an estimate that is uniform in h. This can be done by repeating the existing
proof of tame estimates, using the operator ∂hθ0 in place of ∂θ0 . This gives an estimate like (3.39):

|V̇ h|s + 〈V̇ h〉s ≤ C [|f |s+1 + 〈g〉s + (|f |µ0 + 〈g〉µ0−1) (|V |s+1 + 〈V 〉s+1)] ,(3.41)

where V̇ h := (σ̇h1 , σ̇
h
3 , τ̇

h
2 , ȧ

h) and C is uniform for h ∈ (0, 1]. Passing to a subsequence, we obtain
the desired solution of the linearized system.

Remark 3.7 (Short time, given data). For a given T > 0 letK1 and γ = γ(K1) be as in Proposition
3.5. As we saw above to obtain a tame estimate we need to take |Vinc|µ0 + 〈Vinc〉µ0 small. In our
formulation of Theorem 1.14 T is fixed ahead of time and we achieve (3.38) by taking G small in
an appropriate norm on ΩT . For a given G as in (1.2) vanishing in t < 0, another way to proceed
is to shrink T ; that is, to work on ΩT1 where 0 < T1 < T is chosen so that γ1 := 1/T1 ≥ γ(K1) and
so that

|Vinc|Hµ0
γ1

(ΩT1
) + 〈Vinc〉Hµ0

γ1
(ωT1

)(3.42)

is small enough to absorb the terms involving V̇inc on the right in (3.36). One again obtains an
estimate of the form (3.39), where now

|U |s := |U |Hs
γ1

(ΩT1
).(3.43)

The iteration scheme described in section 5.1 applies with no essential change to this situation as
well.

3.3 The key subsystem in the general case

Recall that {1, . . . ,M} = O∪I, where O and I contain the indices corresponding to outgoing and
incoming phases. We further decompose O = O1 ∪ O2, where O1 consists of indices m such that
φm is part of at least one triple of resonant phases with the property that the other two phases in
that triple are incoming. For a given m ∈ O1 the phase φm might belong to more than one such
triple.

Now instead of (3.3) we have

V0
inc =

∑

m∈I

νkm∑

k=1

σm,k(x, θm)rm,k and V1
out =

∑

m∈O1

νkm∑

k=1

τm,k(x, θm)rm,k,(3.44)

since terms τm,k in the expansion of V1
out vanish if m ∈ O2 as a consequence of (1.36) and V0 = V0

inc.
Recalling that

e =
∑

m∈I

νkm∑

k=1

em,k, where em,k ∈ span{rm,k},(3.45)
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we see that in place of (3.4) we now have

V0
inc|xd=0; θm=θ0,m∈I = a(x′, θ0)e =

∑

m∈I

νkm∑

k=1

aem,k =
∑

m∈I

νkm∑

k=1

σm,k(x
′, 0, θ0)rm,k,(3.46)

and thus

σm,k(x
′, 0, θ0)rm,k = a(x′, θ0)em,k for m ∈ I, k = 1, . . . , νkm .(3.47)

Next we derive the formulas for L(V ) and B(V ) in the general case. The unknown is now

V = (σm,k,m ∈ I, k = 1, . . . , νkm ; τm,k,m ∈ O1, k = 1, . . . , νkm ; a)(3.48)

Suppose q ∈ O1 and that (φp, φq, φs) is a resonant triple such that

npφp = nqφq + nsφs where p, s ∈ I and gcd(np, nq, ns) = 1.(3.49)

Applying the projectors Em,k, m ∈ I, k = 1, . . . , νkm to (1.42)(a) and the projectors Eq,l, q ∈ O1,
l = 1, . . . , νkq to (1.42)(b) we obtain

L(V ) =



Xφmσm,k + cm,kσm,k; m ∈ I, k = 1, . . . , νkm
Xφqτq,l + cq,lτq,l +

∑νkp
k=1

∑νks
k′=1 d

k,k′

q,l

∫ 2π
0 (σp,k)np(x,

nq

np
θq +

ns

np
θs)σs,k′(x, θs)dθs+

(similar); q ∈ O1, l = 1, . . . , νkq


 .

(3.50)

Here “(similar)” denotes a finite sum of families of integrals similar to the family given explicitly
in (3.50). Here “family” refers to the sum

∑
k,k′. One such family corresponds to each distinct

resonant triple involving the outgoing phase φq and two incoming phases.29 The values of the real

constants cm,k, d
k,k′

q,l are not important for our analysis, but for example the dk,k
′

q,l are given by30

dk,k
′

q,l =
1

2π
ℓq,l · [∂vD(0)(rp,k, rs,k′) + ∂vD(0)(rs,k′ , rp,k)].(3.51)

By a computation similar to the one that produced (3.8) we obtain from (1.42)(c)

B(V ) = XLopa+ f1a+
∑

q∈O1

νkq∑

l=1

fq,l∂θ0τq,l + f2∂θ0(a
2).(3.52)

for some real constants f1, f2, fq,l. For example, we have f2 = −b · [ψ′(0)(e, e)]. Thus, the system
(1.42) may be rewritten

L(V ) = 0 in ΩT

B(V ) = −b · ∂θ0G∗ := g on bΩT

V = 0 in t < 0,

(3.53)

29We do not distinguish between (φp, φq, φs) and (φp, φs, φq). We do distinguish between (φp, φq, φs) and
(φp, φq, φt).

30We have suppressed indices r, s on the d
k,k′

q,l .
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where the relations (3.47) hold.
It is now a simple matter to write out the expressions for the first and second derivatives of

L and B. For example, just as the interaction integral in (3.9) gave rise to two integrals in the
expression (3.11) for L′(V ) in the 3 × 3 case, it is clear that each integral in (3.50) will give rise
to two integrals in the new expression for L′(V ). The tame estimates for second derivatives are
proved exactly as before, and Proposition 3.3 holds verbatim in the general case. Proposition 3.4 is
used exactly as before to prove estimates for the linearized system. With the unknown V as given
in (3.48) and after defining Vinc, Vout, V̇inc, V̇out in the obvious way, we see that the “pre-tame”
estimate of Proposition 3.5 and the tame estimate of Proposition 3.6 hold verbatim in the general
case. The iteration scheme of section 5.1 depends only on the tame estimates. Thus, it applies here
without change and Proposition 3.1 holds verbatim in the general case.

Once the key subsystem is solved, we can easily complete the solution of the full profile system
(1.35), (1.36). The precise result for the full system is proved below in Theorem 5.11.
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4 Error analysis

Here we carry out the error analysis sketched in section 1.5, beginning with the proof of Propo-
sition 1.28.

Proof of Proposition 1.28. 1. Noncharacteristic modes. We write

F (x, θ) = F0(x) +
∑

α/∈C
Fα(x) e

iα·θ +
M∑

m=1

∑

α∈Cm\{0}
Fα(x) e

iα·θ ,

and recall that the sums are finite. Set

nα =

M∑

j=1

αj and ω = (ω1, . . . , ωM ).

Since EF = 0, we first note that F0 vanishes. For any α, there holds
(
Fα(x)e

iα·θ
)
|θ→(θ0,ξd) = Fα(x) e

inαθ0+i(α·ω)ξd ,

and when α /∈ C we look for Uα(x) such that

L0(∂θ0 , ∂ξd)Uα(x)e
inαθ0+i(α·ω)ξd = Fα(x)e

inαθ0+i(α·ω)ξd .(4.1)

This holds if and only if
iL(nαβ, α · ω)Uα = Fα.

The matrix on the left is invertible so we obtain a solution of (4.1) for α /∈ C.
2. Characteristic modes. When α ∈ Cm \ {0} we have α · ω = nα ωm, so

(
Fα(x) e

iα·θ
)
|θ→(θ0,ξd) = Fα(x) e

inα(θ0+ωmξd).

We can write ∑

α∈Cm\{0}
Fα(x) e

inα(θ0+ωmξd) =
∑

k∈Z\{0}
Fm,k(x) e

ik(θ0+ωmξd) ,

where
Fm,k(x) :=

∑

{α∈Cm\0,nα=k}
Fα(x).

Since EmF = 0, we have for each k ∈ Z \ {0} that PmFm,k(x) = 0, so now we look for Um,k(x)
such that

L0(∂θ0 , ∂ξd)Um,k(x) e
ik(θ0+ωmξd) = (I − Pm)Fm,k e

ik(θ0+ωmξd).

The latter relation holds if and only if

iL(kβ, kωm)Um,k(x) = ikL(dφm)Um,k(x) = (I − Pm)Fm,k(x),

which is solvable even though L(dφm) is singular. Finally, we take

U(x, θ0, ξd) =
∑

α/∈C
Uα(x) e

inαθ0+i(α·ω)ξd +
M∑

m=1

∑

k∈Z\{0}
Um,k(x) e

ik(θ0+ωmξd) ,

which solves (1.46) as claimed.
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The existence theorems for profiles and for the exact solution to the singular system, Theorems
5.11 and 5.13 respectively, are stated and proved in section 5; we shall only use the statement of
these theorems here. In order to formulate the main result of this section we must make some
preliminary choices.

Choice of α and α̃. The conditions on the boundary datum G(x′, θ0) are slightly different
in Theorems 5.11 and 5.13. We need to choose α, α̃, and G(x′, θ0) so that both Theorems apply
simultaneously. We also need α large enough so that we can apply Proposition 2.9 in the step
(4.24) of the error analysis below. These conditions are met if we take

α = max (d+ 9, [(d + 1)/2] +M0 + 3) and α̃ = 2α− [(d+ 1)/2](4.2)

and choose G ∈ H α̃(bΩT ) such that 〈G〉Hα+2(bΩT ) is small enough. As in Theorem 1.14, we now
rename the numbers in (4.2) as a and ã. Applying Theorems 5.11 and 5.13, we now have for
0 < ε ≤ ε0 an exact solution Uε(x, θ0) ∈ Ea−1(ΩT ) to the singular system (1.18) and profiles
V0(x, θ) ∈ Ha−1(ΩT ), V1(x, θ) ∈ Ha−2(ΩT ) satisfying the equations (1.35) and (1.36).

Approximation. Fix δ > 0. Using the Fourier series of V0 and V1, we choose trigonometric
polynomials V0

p(x, θ) and V1
p(x, θ) such that

|V0 − V0
p |Ha−1(ΩT ) < δ, |V1 − V1

p |Ha−2(ΩT ) < δ.(4.3)

We can smooth the coefficients so that V0
p and V1

p lie in H∞(ΩT ) and so that (4.3) still holds.
Having made these choices, we can now state the main result of this section, which yields the final
convergence result of Theorem 1.14 as an immediate corollary.

Theorem 4.1. We make the same Assumptions as in Theorem 1.14 and let a and ã be as just
chosen. Consider the leading order approximate solution to the singular semilinear system (1.18)
given by

U0
ε (x, θ0) := V0(x, θ)|θ→(θ0,

xd
ε
),(4.4)

and let Uε(x, θ0) ∈ Ea−1(ΩT ) be the exact solution to (1.18) just obtained. Then

lim
ε→0

|Uε(x, θ0)− U0
ε (x, θ0)|Ea−3(ΩT ) = 0.(4.5)

The following lemma, which is proved in [CGW11], Lemmas 2.7 and 2.25, by a simple argument
based on Fourier series, is an important tool in the proof.

Lemma 4.2 (Relation between norms). For m ∈ N suppose f(x, θj) ∈ Hm+1(ΩT ), and set
fε(x, θ0) = f(x, θ0 + ωj

xd

ε ). Then

|fε|Em
T

≤ C|f |Hm+1(ΩT ).(4.6)

Proof of Theorem 4.1. We shall fill in the sketch provided in section 1.5.
1. First we use Proposition 1.28 to construct U2

p (x, θ0, ξd) satisfying

L0(∂θ0 , ∂ξd)U2
p =

[
−(I − E)

(
L(∂)V1

p +D(0)V1
p + ∂vD(0)(V0

p ,V0
p )
)]

|θ→(θ0,ξd).(4.7)
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The function U2
p is a trigonometric polynomial of the form (1.47) with H∞ coefficients. We then

define the corrected approximate solution

Uε(x, θ0) :=
(
V0(x, θ) + εV1(x, θ)

)
|θ→(θ0,

xd
ε
) + ε2 U2

p (x, θ0,
xd
ε
).(4.8)

Since V1 ∈ Ha−2(ΩT ), Lemma 4.2 implies Uε ∈ Ea−3(ΩT ).
2. Next we explain (1.48) and make precise the norms used on the right there. Using the

identity (1.44) we compute

(4.9) Lε(Uε) = ε
[
(L0(∂θ0 , ∂ξd)U2

p )|ξd=xd
ε
+
(
L(∂)V1 +D(0)V1 + ∂vD(0)V0V0

)
|θ→(θ0,

xd
ε
)

]
+O(ε2).

Here the profile equations (1.20)(a),(b) imply that the terms of order ε−1 and ε0 vanish. Using
(4.7) we can rewrite the coefficient of ε in (4.9) as

(4.10)
[
L(∂)(V1 − V1

p ) +D(0)(V1 − V1
p ) + ∂vD(0)(V0V0 − V0

pV0
p )
]
|θ→(θ0,

xd
ε
)

+
[
E
(
L(∂)V1

p +D(0)V1
p + ∂vD(0)V0

pV0
p

)]
|θ→(θ0,

xd
ε
) := A+B .

Using (4.3), Lemma 4.2, and the fact that Es(ΩT ) is a Banach algebra for s ≥ [(d + 1)/2], we see
that

|A|Ea−4(ΩT ) < Kδ.(4.11)

To estimate B let

F = L(∂)V1 +D(0)V1 + ∂vD(0)V0V0 and Fp = L(∂)V1
p +D(0)V1

p + ∂vD(0)V0
pV0

p .(4.12)

The profile equation (1.36)(b) implies EF = 0. Using continuity of the multiplication map (1.25),
we see that (4.3) implies31

|F − Fp|Ha−3;2
T

< Kδ.(4.13)

From the continuity of E : Hs;2
T → Hs;1

T and Lemma 4.2 we then obtain

|B|Ea−4(ΩT ) =
∣∣∣(EFp)|θ→(θ0,

xd
ε
)

∣∣∣
Ea−4(ΩT )

=
∣∣∣(E(F − Fp))|θ→(θ0,

xd
ε
)

∣∣∣
Ea−4(ΩT )

< Kδ.(4.14)

3. The O(ε2) terms in (4.9) consist of

∣∣∣ε2
(
L(∂)U2

p (x, θ0, ξd)
)
|θ→(θ0,

xd
ε
)

∣∣∣
Ea−4(ΩT )

≤ ε2C(δ),(4.15)

as well as terms coming from the Taylor expansion of D(εUε)Uε) like (ε2∂vD(0)V0V1)|θ→(θ0,
xd
ε
), all

of which satisfy an estimate like (4.15). Setting Rε(x, θ0) := Lε(Uε), we have shown

|Rε|Ea−4(ΩT ) ≤ ε(Kδ + C(δ)ε).(4.16)

31Here H
a−3;2
T denotes the space defined in (1.24), but with the obvious restriction on the domain of t.
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4. The boundary profile equations (1.22) and the fact that the traces of V0 and V1 lie in
Ha−1(bΩT ) and H

a−2(bΩT ), respectively, imply
〈
rε(x

′, θ0)
〉
Ha−2(bΩT )

≤ C(δ) ε2, where rε := ψ(εUε)Uε − εG(x′, θ0).(4.17)

Indeed, these O(ε2) terms include
〈
ε2B U2

p (x
′, 0, θ0, 0)

〉
Ha−2(bΩT )

≤ C(δ)ε2 ,(4.18)

and other terms satisfying the same estimate coming from the Taylor expansion of ψ(εUε)Uε.
5. Next we consider the singular problem satisfied by the difference Wε := Uε − Uε:

∂dWε + A

(
∂x′ +

β∂θ0
ε

)
Wε +D2(εUε, εUε)Wε = −Rε

ψ2(εUε, εUε)Wε = −rε on xd = 0

Wε = 0 in t < 0,

(4.19)

where

D2(εUε, εUε)Wε := D(εUε)Uε −D(εUε)Uε =

D(εUε)Wε +

(∫ 1

0
∂vD(εUε + sε(Uε − Uε))ds

)
(Wε, εUε) ,

(4.20)

and ψ2(εUε, εUε)Wε is defined similarly. Since Uε ∈ Ea−1(ΩT ) and Uε ∈ Ea−3(ΩT ) a short compu-
tation shows

ψ2(εUε, εUε)Wε = ψ(εUε)Wε + ∂vψ(εU)(Wε, εUε) +O(C(δ)ε2) = B(εU, εU)Wε +O(C(δ)ε2),

(4.21)

where the error term is measured in Ha−3(bΩT ) and B is defined in (1.9). Similarly,

D2(εUε, εUε)Wε = D(εU, εU)Wε +O(C(δ)ε2) in Ea−3(ΩT ).(4.22)

Thus, using (4.16) and (4.17) we find

∂dWε + A

(
∂x′ +

β∂θ0
ε

)
Wε +D(εUε, εUε)Wε = ε(Kδ + C(δ)ε) in Ea−4(ΩT )

B(εUε, εUε)Wε|xd=0 = O(C(δ)ε2) in Ha−3(bΩT )

Wε = 0 in t < 0.

(4.23)

Applying the estimate of Proposition 2.9 we obtain

|Wε|E0(ΩT ) ≤ Kδ + C(δ)ε,(4.24)

which implies

|Uε − U0
ε |E0(ΩT ) ≤ Kδ + C(δ)ε.(4.25)

Fixing first δ small and then letting ε→ 0 we have shown

lim
ε→0

|Uε − U0
ε |E0(ΩT ) = 0.(4.26)

The family Uε − U0
ε , 0 < ε ≤ ε0, is bounded in Ea−2(ΩT ), so by interpolation (4.26) implies

lim
ε→0

|Uε − U0
ε |Ea−3(ΩT ) = 0(4.27)

as required.
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5 Nash-Moser schemes

5.1 Iteration scheme for profiles

A good reference for the Nash-Moser scheme is [AG07]. The method depends on having a
family of smoothing operators with the following properties. For T > 0, s ≥ 0, and γ ≥ 1, we let:

F s
γ (ΩT ) := {u ∈ Hs

γ(ΩT ), u = 0 for t < 0}.(5.1)

Lemma 5.1 ([Ali89], section 4). There exists a family of operators Sθ : F 0
γ (ΩT ) → ∩β≥0F

β
γ (ΩT )

such that:

(a) |Sθu|β ≤ Cθ(β−α)+ |u|α for all α, β ≥ 0

(b) |Sθu− u|β ≤ Cθ(β−α)|u|α, 0 ≤ β ≤ α

(c) | d
dθ
Sθu|β ≤ Cθ(β−α−1)|u|α for all α, β ≥ 0.

(5.2)

The constants are uniform for α, β in a bounded interval.
There is another family of operators S̃θ acting on functions defined on the boundary and satis-

fying the above properties with respect to the norms 〈u〉s on bΩT .
32.

Description of the scheme. Our goal is to solve the problem (3.10):

L(V ) = 0 in ΩT

B(V ) = g in bΩT

V = 0 in t ≤ 0.

(5.3)

The scheme starts with V0 = 0. Assume that Vk are already given for k = 1, . . . , n and satisfy
Vk = 0 for t < 0. We define

Vn+1 = Vn + V̇n,(5.4)

where the increment V̇n is specified below. Given θ0 ≥ 1, we set θn := (θ20 + n)1/2 and work with
the smoothing operators Sθn . We decompose

L(Vn+1)− L(Vn) = L′(Vn)V̇n + e′n = L′(SθnVn)V̇n + e′n + e′′n,(5.5)

where e′n denotes the usual “quadratic error” of Newton’s scheme and e′′n the “substitution error”.
Similarly,

B((Vn+1)|xd=0)− B((Vn)|xd=0) = B′((Vn)|xd=0))(V̇n|xd=0)) + e′n =

B′((SθnVn)|xd=0)(V̇n|xd=0) + ẽ′n + ẽ′′n.
(5.6)

The increment V̇n is computed by solving the linearized problem

L′(SθnVn)V̇n = fn

B′((SθnVn)|xd=0)(V̇n|xd=0) = gn

V̇n = 0 in t < 0,

(5.7)

32For u defined on ΩT we do not necessarily have equality of (Sθu)|xd=0 and S̃θ(u|xd=0).
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where fn and gn are computed as we now describe.
We set en := e′n + e′′n and ẽn := ẽ′n + ẽ′′n. Given

V0 := 0, f0 := 0, g0 := S̃θ0g, E0 := 0, Ẽ0 := 0,

V1, . . . , Vn

f1, . . . , fn−1, g1, . . . , gn−1, e0, . . . , en−1, ẽ0, . . . , ẽn−1,

(5.8)

we first compute for n ≥ 1 the accumulated errors

En :=
n−1∑

k=0

ek, Ẽn :=
n−1∑

k=0

ẽk.(5.9)

We then compute fn and gn from the equations

n∑

k=0

fk + SθnEn = 0,

n∑

k=0

gk + S̃θnẼn = S̃θng,(5.10)

solve (5.7) for V̇n, and finally compute Vn+1 from (5.4).
Next en, ẽn can be computed from 33

L(Vn+1)− L(Vn) = fn + en

B((Vn+1)|xd=0)− B((Vn)|xd=0) = gn + ẽn.
(5.11)

Thus the order of construction is

· · · → (en−1, ẽn−1) → (En, Ẽn) → (fn, gn) → V̇n → Vn+1 → (en, ẽn) → . . .(5.12)

Adding (5.11) from 0 to n and using (5.10) gives

L(Vn+1) = (I − Sθn)En + en

B((Vn+1)|xd=0)− g = (S̃θn − I)g + (I − S̃θn)Ẽn + ẽn.
(5.13)

Since Sθn → I and S̃θn → I as n → ∞ and we expect (en, ẽn) → 0, we formally obtain a solution
of (5.3) in the limit as n→ ∞.

Induction assumption. Let ∆n := θn+1 − θn and observe that

1

3θn
≤ ∆n =

√
θ2n + 1− θn ≤ 1

2θn
for all n ∈ N.(5.14)

With µ0 =
[
d+1
2

]
+ 2 as in Proposition 3.6, we now set α0 := µ0 − 1 and fix a choice of integers

α0 < α < α̃, whose values are explained below:

α = 2α0 + 4 and α̃ = 2α− α0.(5.15)

Given δ > 0 our induction assumption is:

(Hn−1) For all k = 0, . . . , n− 1 and for all s ∈ [0, α̃] ∩ N

|V̇k|s + 〈V̇k〉s ≤ δθs−α−1
k ∆k.(5.16)

33In the estimates of en and ẽn, we instead use the formulas (5.21),(5.25)
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The main step in the proof of Theorem 5.11 is to show that for correctly chosen parameters
δ > 0 (small) and θ0 ≥ 1 (large) and for small enough g, (Hn−1) implies (Hn). At the end we will
verify that (H0) holds for for small enough g.

First we state some easy consequences of (Hn−1).

Lemma 5.2. If θ0 is large enough, then for k = 0, . . . , n and all integers s ∈ [0, α̃] we have

|Vk|s + 〈Vk〉s ≤
{
Cδθ

(s−α)+
k , α 6= s

Cδ log θk, α = s
.(5.17)

Proof. This follows by writing Vk = V0+
∑k−1

j=0 V̇j and using the triangle inequality and an elemen-
tary comparison between Riemann sums and integrals.

Lemma 5.3. If θ0 is large enough, then for k = 0, . . . , n and all integers s ∈ [0, α̃+ 2] we have

|SθkVk|s ≤
{
Cδθ

(s−α)+
k , α 6= s

Cδ log θk, α = s
.(5.18)

Moreover, for k = 0, . . . , n and all integers s ∈ [0, α̃] we have

|(I − Sθk)Vk|s ≤
{
Cδθs−α

k log θk, s ≤ α

Cδθs−α
k , s > α

.(5.19)

Proof. This follows from Lemma 5.2 and the properties of the Sθ. For example, we have

|(I − Sθk)Vk|s ≤ 2|Vk|s ≤ Cδθs−α for s > α

|(I − Sθk)Vk|s ≤ Cθs−α|Vk|α ≤ Cδθs−α log θk for s ≤ α.
(5.20)

Estimate of the quadratic errors. From (5.5) and (5.6) we have

(a)e′k = L(Vk+1)− L(Vk)− L′(Vk)V̇k =

∫ 1

0
(1− τ)L′′(Vk + τ V̇k)(V̇k, V̇k)dτ

(b)ẽ′k = B(Vk+1)− B(Vk)− B′(Vk)V̇k =

∫ 1

0
(1− τ)B′′(Vk + τ V̇k)(V̇k, V̇k)dτ

(5.21)

where the arguments in (5.21)(b) are evaluated at xd = 0.

Lemma 5.4. 1) For large enough θ0 we have for all k = 0, . . . , n − 1 and all integer s ∈ [0, α̃]

|e′k|s ≤ Cδ2θ
L1(s)−1
k ∆k,(5.22)

where L1(s) = s+ α0 − 2α− 2.
2) For large enough θ0 we have for all k = 0, . . . , n− 1 and all integer s ∈ [0, α̃ − 1]

〈ẽ′k〉s ≤ Cδ2θ
L2(s)−1
k ∆k,(5.23)

where L2(s) = s+ α0 − 2α− 1.
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Proof. Using (5.21)(a), Proposition 3.3, and the fact that α0 > b0, we have

|e′k|s ≤ C|V̇k|s|V̇k|α0 .(5.24)

The estimate (5.22) then follows by applying the assumption (5.16) and using ∆k ∼ 1
θk
. The

estimate (5.23) is proved the same way; the restriction s ∈ [0, α̃ − 1] reflects the loss of one
derivative in (3.15).

Estimate of the substitution errors. From (5.5) and (5.6) we have

(a) e′′k =

∫ 1

0
L′′(SθkVk + τ(Vk − SθkVk))

(
V̇k, (I − Sθk)Vk

)
dτ

(b) ẽ′′k =

∫ 1

0
B′′(SθkVk + τ(Vk − SθkVk))

(
V̇k, (I − Sθk)Vk

)
dτ

(5.25)

where in (5.25)(b) we have, for example, written SθkVk for (SθkVk)|xd=0.

Lemma 5.5. 1) For large enough θ0 we have for all k = 0, . . . , n − 1 and all integer s ∈ [0, α̃]

|e′′k|s ≤ Cδ2θ
L3(s)−1
k ∆k,(5.26)

where L3(s) = s+ α0 − 2α+ 1.
2) For large enough θ0 we have for all k = 0, . . . , n− 1 and all integer s ∈ [0, α̃ − 2]

〈ẽ′′k〉s ≤ Cδ2θ
L4(s)−1
k ∆k,(5.27)

where L4(s) = s+ α0 − 2α+ 3.

Proof. Using (5.25)(a) and Proposition 3.3 we obtain

|e′′k|s ≤ C
(
|V̇k|s|(I − Sθk)Vk|α0 + |(I − Sθk)Vk|s|V̇k|α0

)
.(5.28)

The estimate (5.26) now follows from (Hn−1) and Lemma 5.3. The estimate (5.27) is proved the
same way, after using the trace estimate

〈(I − Sθk)Vk〉s+1 ≤ C|(I − Sθk)Vk|s+2.(5.29)

The restriction s ∈ [0, α̃ − 2] reflects the subscript s+ 2 in (5.29).

Estimate of (En, Ẽn) and (fn, gn). Since ek = e′k + e′′k and ẽk = ẽ′k + ẽ′′k, we have

Lemma 5.6. There exists θ0 sufficiently large so that

|En|α̃ ≤ Cδ2θL3(α̃)
n and 〈Ẽn〉α̃−2 ≤ Cδ2θL4(α̃−2)

n .(5.30)

Proof. Viewing En =
∑n−1

k=0 ek as a Riemann sum and using L3(α̃) > 0,34 we obtain the estimate
of En from (5.22) and (5.26). Since L4(α̃− 2) > 0, the estimate of Ẽn is similar.

34This determines α̃ in (5.15).
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From (5.10) we have

fn = −(Sθn − Sθn−1)En−1 − Sθnen−1

gn = (S̃θn − S̃θn−1)g − (S̃θn − S̃θn−1)Ẽn−1 − S̃θn ẽn−1

(5.31)

Lemma 5.7. There exists θ0 sufficiently large so that for s ∈ [0, α̃ + 1] we have

(a) |fn|s ≤ Cδ2θL3(s)−1
n ∆n

(b) 〈gn〉s ≤ Cδ2θL4(s)−1
n ∆n + Cθs−α−1

n 〈g〉α∆n.
(5.32)

Proof. Using (5.2)(c), (5.30), and s− α̃+ L3(α̃) = L3(s), we find

|(Sθn − Sθn−1)En−1|s ≤ C

∫ θn

θn−1

θs−α̃−1|En−1|α̃dθ ≤ Cδ2θ
L3(s)−1
n−1 ∆n.(5.33)

From (5.22),(5.26) and the properties of Sθ we readily obtain

|Sθnen−1|s ≤ Cδ2θL3(s)−1
n ∆n,(5.34)

and this gives (5.32)(a).
The first term on the right in (5.32)(b) arises similarly. With

〈(S̃θn − S̃θn−1)g〉s ≤ C

∫ θn

θn−1

θs−α−1〈g〉αdθ ≤ Cθs−α−1
n 〈g〉α∆n(5.35)

we obtain (5.32)(b).

Induction step. We claim that for δ > 0 sufficiently small, the estimate for the linearized
system (3.39) applies to (5.7) and gives for s ∈ [0, α̃]:

|V̇n|s + 〈V̇n〉s ≤ C [|fn|s+1 + 〈gn〉s + (|fn|α0+1 + 〈gn〉α0) (|SθnVn|s+1 + 〈SθnVn〉s+1)](5.36)

Indeed, (5.18) and α > α0+2 imply that for δ > 0 small enough, the requirement (3.38) holds.35 For
the terms involving fn and gn, except 〈gn〉α0 , we substitute directly into (5.36) the corresponding
estimates from Lemma 5.7. For 〈gn〉α0 we have

〈gn〉α0 ≤ C
(
δ2θL4(α0)−1

n ∆n + θ−α−2
n 〈g〉α0+α+1∆n

)
,(5.37)

where the last term arises from (5.35) with s = α0 and α replaced by α+ α0 + 1. We also use

〈SθnVn〉s+1 ≤ |SθnVn|s+2 ≤ Cδθ(s+2−α)++1
n(5.38)

and a similar estimate for |SθnVn|s+1, which follow directly from (5.18).
Since L4(s) > L3(s+ 1) this gives for s ∈ [0, α̃]:

|V̇n|s + 〈V̇n〉s ≤
C
[
δ2θL4(s)−1

n ∆n + θs−α−1
n 〈g〉α∆n +

(
δ2θL4(α0)−1

n ∆n + θ−α−2
n 〈g〉α0+α+1∆n

)
δθ(s+2−α)++1

n

]
.

(5.39)

35We use a trace estimate like (5.38) here as well.
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For s ∈ [0, α̃] the parameters α0 and α (recall (5.15)) satisfy:

L4(s) ≤ s− α

L4(α0) + (s+ 2− α)+ + 1 ≤ s− α

(s + 2− α)+ < s.

(5.40)

Thus, we have proved (Hn), which is the content of the following lemma.

Lemma 5.8 (Hn). If δ > 0 and 〈g〉α/δ are sufficiently small and θ0 sufficiently large, we have

|V̇n|s + 〈V̇n〉s ≤ δθs−α−1
n ∆n for all integer s ∈ [0, α̃].(5.41)

Still assuming (Hn−1) we now show:

Lemma 5.9. Suppose n ≥ 1. If δ > 0 is sufficiently small and θ0 sufficiently large, we have

(a) |L(Vn)|s ≤ δθs−α−1
n for all integer s ∈ [0, α̃]

(b) 〈B(Vn)− g〉s ≤ δθs−α−1
n for all integer s ∈ [0, α̃ − 2].

(5.42)

Proof. From (5.13) we have

(a) |L(Vn)|s ≤ |(I − Sθn−1)En−1|s + |en−1|s
(b) 〈B(Vn)− g〉s ≤ 〈(S̃θn−1 − I)g〉s + 〈(I − S̃θn−1)Ẽn−1〉s + 〈ẽn−1〉s.

(5.43)

Using (5.2) and the above estimates of En−1 and en−1, we find

|(I − Sθn−1)En−1|s ≤ Cθs−α̃
n |En−1|α̃ ≤ Cδ2θ(s−α−1)+(α0+2−α)

n

|en−1|s ≤ Cδ2θL3(s)−1
n ∆n,

(5.44)

which imply (5.42)(a) since α0 + 2− α < 0 and L3(s) < s− α.
The last two terms on the right in (5.43)(b) are estimated similarly. To finish we use

〈(S̃θn−1 − I)g〉s ≤ Cθs−(α̃−2)
n 〈g〉α̃−2 for s ≤ α̃− 2(5.45)

and observe that s− α̃+ 2 < s− α− 1.

We now fix δ and θ0 as above and check (H0).

Lemma 5.10. If 〈g〉α is small enough, then (H0) holds.

Proof. Applying the estimate for the linearized system to

L′(0)V̇0 = 0

B′(0)V̇0 = Sθ0g
(5.46)

we obtain for integer s ∈ [0, α̃]:

|V̇0|s + 〈V̇0〉s ≤ C〈Sθ0g〉s ≤ C

{
θs−α
0 〈g〉α, s ≥ α

〈g〉α, s < α
.(5.47)

Thus, (H0) holds if 〈g〉α is small enough.

60



We can now complete the proof of Proposition 3.1.

Proof of Proposition 3.1. We have

Vn = Vn−1 + V̇n−1 = V0 +

n−1∑

k=0

V̇k =

n−1∑

k=0

V̇k.(5.48)

Let µ = α− 1. Since θk ∼
√
k we have by (Hn)

∞∑

k=0

|V̇k|µ +

∞∑

k=0

〈V̇k〉µ ≤ δ
∑

k

θ−2
k ∆k ≤ C

∑

k

k−
3
2 <∞.(5.49)

Thus, for some V as described in Proposition 3.1, Vk → V in Hµ(ΩT ) and Vk|xd=0 → V |xd=0 in
Hµ(ΩT ). This implies

L(Vk) → L(V ) in Hµ−1(ΩT ) and B(Vk|xd=0) → B(V |xd=0) in H
µ−1(bΩT ).(5.50)

Applying Lemma 5.9 with s = µ−1 we conclude that V is a solution of the profile system (3.10).

Having solved the key subsystem we can now easily complete the solution of the full profile
system (1.35), (1.36) and obtain the following result.

Theorem 5.11. Fix T > 0, let α0 =
[
d+1
2

]
+ 1, α = 2α0 + 4, α̃ = 2α − α0, and suppose

G ∈ H α̃−1(ΩT ). If 〈G〉α+1 is small enough, there exist solutions

V0 = V0
inc ∈ Hα−1(ΩT ), V1 = V1 + V1

inc + V1
out ∈ Hα−2(ΩT )(5.51)

of the full profile system (1.35), (1.36) satisfying36

V0 = EV0 ∈ Hα−1(ΩT ), V0
inc|xd=0,θj=θ0 ∈ Hα−1(bΩT )

V1
out = EV1

out ∈ Hα−1(ΩT ), (EV1
out)|xd=0,θj=θ0 ∈ Hα−1(bΩT )

V1 ∈ Hα−2(ΩT ), (I − E)V1
inc ∈ Hα−2(ΩT ), EV1

inc ∈ Hα−2(ΩT ).

(5.52)

These statements remain true if α is increased and if α̃ ≥ 2α− α0.

Proof. After the subsystem (1.42) is solved we know V0 = V0
inc = EV0

inc, V1
out = EV1

out, and
α, and these functions have the regularity described in Proposition 3.1. Taking the mean of
equations (1.36)(b)(c)(d), using the fact that the mean of the quadratic term in (1.36)(b) lies in
Hα−1(ΩT ), and applying the result of [Cou05] to the resulting weakly stable system, we conclude
V1 ∈ Hα−2(ΩT ). From (1.36)(a) we find

(I − E)V1 = (I − E)V1
inc ∈ Hα−2(ΩT ).(5.53)

It remains to determine EV1
inc. Since the solvability condition (1.41) holds, we can make a choice

of EV1
inc|xd=0,θj=θ0 ∈ Hα−2(bΩT ) satisfying the boundary equation (1.40), whose right side is now

known and lies in Hα−2(bΩT ).
37Finally, we determine the components of EVinc by solving the

transport equations determined by (1.36)(b), the choice of initial data, and the initial condition
(1.36)(d). Observe that the interaction integrals corresponding to the quadratic term in (1.36)(b)
lie in Hα−1(ΩT ).

36Here when we write V0
inc ∈ Hα−1(ΩT ), for example, we mean that the individual components of V0

inc lie in that
space.

37All terms on the right in (1.40) lie in Hα−1(bΩT ), except the term involving L(∂). That term is actually more
regular than Hα−2(bΩT ), but we do not wish to introduce more refined spaces to capture this.
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5.2 Iteration scheme for the exact solution

The Nash-Moser scheme for the exact solution will use the scale of spaces Es
γ,T on ΩT and

Hs
γ,T on bΩT . Since T was fixed at the start and γ was fixed in section 2.3, we now drop these

subscripts in the notation for norms and function spaces. For s ≥ 0 we let

F
s := {u(x, θ0) ∈ Es, u = 0 for t < 0}.(5.54)

Moreover, we shall now denote Es norms simply by |U |s and Hs norms by 〈U〉s.
Lemma 5.12. There exists a family of operators Sθ : F

0 → ∩β≥0F
β such that:

(a) |Sθu|β ≤ Cθ(β−α)+ |u|α for all α, β ≥ 0

(b) |Sθu− u|β ≤ Cθ(β−α)|u|α, 0 ≤ β ≤ α

(c) | d
dθ
Sθu|β ≤ Cθ(β−α−1)|u|α for all α, β ≥ 0.

(5.55)

The constants are uniform for α, β in a bounded interval.
There is a family of operators S̃θ acting on functions defined on the boundary and satisfying the

above properties with respect to the norms 〈u〉s on bΩT , and we have

(Sθu)|xd=0 = S̃θ(u|xd=0).(5.56)

Proof. Let S̃θ be a standard family of smoothing operators, for example as in [Ali89], acting in the
(x′, θ0) variables on the scale of spaces Hs. For U ∈ Es simply treat xd as a parameter and define

SθU = S̃θU(·, xd, ·).(5.57)

The properties (5.55) then follow immediately from the corresponding properties of the operators
S̃θ.

To avoid excessive repetition we use the notation and arguments of section 5.1 as much as
possible, and just point out where changes are needed. Thus, we now denote the solution to the
semilinear singular problem (1.18) by V instead of U , write g instead of G, and rewrite (1.18) as

L(V ) = 0 on ΩT

B(V ) = g on bΩT

V = 0 in T < 0,

(5.58)

where

L(V ) :=
1

ε

(
∂dV + A

(
∂x′ +

β∂θ0
ε

)
V +D(εV )V

)

B(V ) :=
1

ε
(ψ(εV )V ) .

(5.59)

We now let38

α0 =

[
d+ 1

2

]
, α1 =

[
d+ 1

2

]
+M0, α = max(2α0 + 3, α1 + 1), α̃ = 2α− α0.(5.60)

The main result of this section is the following proposition.

38The parameter α̃ is determined so that L2(α̃) > 0 for L2(s) as in Lemma 5.18. The definition of α is chosen so
that α1 < α and the conditions (5.80) hold.
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Theorem 5.13. Fix T > 0, define α, α0, and α̃ as in (5.60), and suppose g ∈ H α̃, where g is the
same as the function denoted G in (1.18). There exists ε0 > 0 such that if 〈g〉α+2 is small enough,
there exists a solution V of the system (5.58) on ΩT for 0 < ε ≤ ε0 with V ∈ Eα−1, V |xd=0 ∈ Hα.
Thus, Uε = V is a solution of the singular system (1.18) on ΩT for 0 < ε ≤ ε0. These statements
remain true if α is increased and if α̃ ≥ 2α − α0.

The linearized singular problem (2.54) is now written

L′(V )V̇ = f on ΩT

B′(V )V̇ = g on bΩT

V̇ = 0 in t < 0.

(5.61)

With this notation the description of the scheme in section 5.1 starting at line (5.3) applies here
word for word down to line (5.14).

Remark 5.14. (a) In order to apply the tame estimate of Proposition 2.16 to the linearized system
(5.61), by Sobolev embedding (Remark 2.14) it suffices to have

|ε∂dV |α1−1 + |V |α1 < K ′ for ε ∈ (0, 1], and |V |α0+2 < κ(5.62)

for some constant K ′ depending on K and κ as in Proposition 2.16. In fact we use the slightly
weaker (because we use Es norms on the right) estimate for s ∈ [0, α̃]:

|V̇ |s + 〈V̇ 〉s+1 ≤ C [|f |s+1 + 〈g〉s+2 + (|f |α0+1 + 〈g〉α0+2) (|U |s+1 + 〈U〉s+2)] .(5.63)

(b) By Proposition 2.15 when |V |α0 ≤ K ′, the tame estimates for second derivatives now take
the form

(a) |L′′(V )(V̇ a, V̇ b)|s ≤ C
(
|V̇ a|s|V̇ b|α0 + |V̇ b|s|V̇ a|α0 + ε|V |s|V̇ a|α0 |V̇ b|α0

)

(b)〈B′′(V )(V̇ a, V̇ b)〉s ≤ C
(
〈V̇ a〉s〈V̇ b〉α0 + 〈V̇ b〉s〈V̇ a〉α0 + ε〈V 〉s〈V̇ a〉α0〈V̇ b〉α0

)
.

(5.64)

With α and α̃ redefined as in (5.60), for a given δ > 0 the induction hypothesis (Hn−1) is now

(Hn−1) For all k = 0, . . . , n− 1 and for all s ∈ [0, α̃] ∩ N

|V̇k|s + 〈V̇k〉s+1 ≤ δθs−α−1
k ∆k.(5.65)

Lemmas 5.2 and 5.3 are now replaced, with no real change in the proofs, by the following two
lemmas.

Lemma 5.15. If θ0 is large enough, then for k = 0, . . . , n and all integers s ∈ [0, α̃] we have

|Vk|s + 〈Vk〉s+1 ≤
{
Cδθ

(s−α)+
k , α 6= s

Cδ log θk, α = s
.(5.66)
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Lemma 5.16. If θ0 is large enough, then for k = 0, . . . , n and all integers s ∈ [0, α̃ + 2] we have

|SθkVk|s + 〈SθkVk〉s+1 ≤
{
Cδθ

(s−α)+
k , α 6= s

Cδ log θk, α = s
.(5.67)

For k = 0, . . . , n and all integers s ∈ [0, α̃] we have

|(I − Sθk)Vk|s + 〈(I − Sθk)Vk〉s+1 ≤
{
Cδθs−α

k log θk, s ≤ α

Cδθs−α
k , s > α

.(5.68)

We have used (5.57) for the estimate on traces in Lemma 5.16. In place of Lemma 5.4 we now
have:

Lemma 5.17. 1) For large enough θ0 and small enough δ we have for all k = 0, . . . , n− 1 and all
integer s ∈ [0, α̃]

|e′k|s ≤ Cδ2θ
L1(s)−1
k ∆k,(5.69)

where L1(s) = max(s+ α0 − 2α− 2, (s − α)+ + 2α0 − 2α− 1).
2) For large enough θ0 and small enough δ we have for all k = 0, . . . , n − 1 and all integer

s ∈ [0, α̃]

〈ẽ′k〉s+1 ≤ Cδ2θ
L1(s)−1
k ∆k.(5.70)

Proof. Again we use the formulas in (5.21). By Lemma 5.15 and (Hn−1) we see that for δ small
enough, |Vk + τ V̇k|α0 ≤ K ′, so we can apply the estimates (5.64). The new definition of L1(s)
reflects the third term on the right in the estimates (5.64).

In place of Lemma 5.5, the estimate of substitution errors, we now have:

Lemma 5.18. 1) For large enough θ0 and small enough δ we have for all k = 0, . . . , n− 1 and all
integer s ∈ [0, α̃]

|e′′k|s ≤ Cδ2θ
L2(s)−1
k ∆k,(5.71)

where L2(s) = max(s+ α0 − 2α+ 1, (s − α)+ + 2α0 − 2α+ 2).
2) For large enough θ0 and small enough δ we have for all k = 0, . . . , n − 1 and all integer

s ∈ [0, α̃]

〈ẽ′′k〉s+1 ≤ Cδ2θ
L2(s)−1
k ∆k.(5.72)

Proof. Again we use the formulas (5.25). By Lemma 5.3 we have |SθkVk + τ(I − Sθk)Vk|α0 ≤ K ′

for δ small enough, so we can apply the estimates (5.64). When estimating the right sides of (5.64)
we use, for example,

|(I − Sθk)Vk|s ≤ Cδθs−α+1
k .(5.73)
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In place of Lemma 5.6, the estimate of accumulated errors, we now have:

Lemma 5.19. There exist θ0 sufficiently large and δ0 sufficiently small so that for 0 < δ ≤ δ0

|En|α̃ ≤ Cδ2θL2(α̃)
n and 〈Ẽn〉α̃+1 ≤ Cδ2θL2(α̃)

n .(5.74)

Proof. Since α̃ = 2α− α0, we have L2(α̃) > 0, so the proof is the same as that of Lemma 5.6.

The new version of Lemma 5.7, the estimate of fn and gn, is:

Lemma 5.20. There exist θ0 sufficiently large and δ0 sufficiently small so that for s ∈ [0, α̃ + 1],
0 < δ ≤ δ0 we have

(a) |fn|s ≤ Cδ2θL2(s)−1
n ∆n

(b) 〈gn〉s+1 ≤ Cδ2θL2(s)−1
n ∆n + Cθs−α−2

n 〈g〉α+2∆n.
(5.75)

Proof. Since s− α̃+ L2(α̃) ≤ L2(s), the proof of Lemma 5.7 can be repeated here.

Induction step. For δ > 0 sufficiently small, the estimate for the linearized system (5.63)
applies to (5.7) and gives for s ∈ [0, α̃]:

|V̇n|s + 〈V̇n〉s+1 ≤ C [|fn|s+1 + 〈gn〉s+2 + (|fn|α0+1 + 〈gn〉α0+2) (|SθnVn|s+1 + 〈SθnVn〉s+2)](5.76)

Indeed, (5.67) implies that for δ > 0 small enough, SθnVn satisfies the requirement (5.62).39 For
the terms involving fn and gn, except 〈gn〉α0+2, we substitute directly into (5.76) the corresponding
estimates from Lemma 5.20. For 〈gn〉α0+2 we have

〈gn〉α0+2 ≤ C
(
δ2θL2(α0+1)−1

n ∆n + θ−α−2
n 〈g〉α0+α+3∆n

)
,(5.77)

where the last term arises from an estimate like (5.35) with s = α0+2 and α replaced by α+α0+3.
We also use

〈SθnVn〉s+2 ≤ Cδθ(s+1−α)++1
n(5.78)

and a similar estimate for |SθnVn|s+1, which follow directly from (5.67).
Making these substitutions in (5.76) gives for s ∈ [0, α̃]:

|V̇n|s + 〈V̇n〉s+1 ≤
C
[
δ2θL2(s+1)−1

n ∆n + θs−α−1
n 〈g〉α+2∆n +

(
δ2θL2(α0+1)−1

n ∆n + θ−α−2
n 〈g〉α0+α+3∆n

)
δθ(s+1−α)++1

n

]
.

(5.79)

For s ∈ [0, α̃] the parameters α0 and α (recall (5.60)) satisfy:

(a) L2(s+ 1) ≤ s− α

(b) L2(α0 + 1) + (s+ 1− α)+ + 1 ≤ s− α

(c) (s+ 1− α)+ < s.

(5.80)

Thus, we have proved (Hn), which is the content of the following lemma.

39Here we use α1 < α. Also, the term |ε∂d(SθnVn)|α1−1 is estimated using the equation (5.7).
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Lemma 5.21 (Hn). If δ > 0 and 〈g〉α+2/δ are sufficiently small and θ0 sufficiently large, we have

|V̇n|s + 〈V̇n〉s+1 ≤ δθs−α−1
n ∆n for all integer s ∈ [0, α̃].(5.81)

Still assuming (Hn−1) we now show:

Lemma 5.22. Suppose n ≥ 1. If δ > 0 is sufficiently small and θ0 sufficiently large, we have

(a) |L(Vn)|s ≤ δθs−α−1
n for all integer s ∈ [0, α̃]

(b) 〈B(Vn)− g〉s+1 ≤ δθs−α−1
n for all integer s ∈ [0, α̃].

(5.82)

Proof. From (5.13) we have

(a) |L(Vn)|s ≤ |(I − Sθn−1)En−1|s + |en−1|s
(b) 〈B(Vn)− g〉s+1 ≤ 〈(S̃θn−1 − I)g〉s+1 + 〈(I − S̃θn−1)Ẽn−1〉s+1 + 〈ẽn−1〉s+1.

(5.83)

Using (5.55) and the above estimates of En−1 and en−1, we find

|(I − Sθn−1)En−1|s ≤ Cθs−α̃
n |En−1|α̃ ≤ Cδ2θ(s−α−1)+(α0−α)

n

|en−1|s ≤ Cδ2θL2(s)−1
n ∆n,

(5.84)

which imply (5.82)(a) since α0 − α < 0 and L2(s) < s− α.
The last two terms on the right in (5.83)(b) are estimated similarly. To finish we use

〈(S̃θn−1 − I)g〉s+1 ≤ Cθs+1−α̃
n 〈g〉α̃ for s ≤ α̃− 1,(5.85)

and observe that s− α̃+ 1 < s− α− 1.

We now fix δ and θ0 as above and check (H0).

Lemma 5.23. If 〈g〉α+2 is small enough, then (H0) holds.

Proof. Applying the estimate for the linearized system to

L′(0)V̇0 = 0

B′(0)V̇0 = Sθ0g
(5.86)

we obtain for integer s ∈ [0, α̃]:

|V̇0|s + 〈V̇0〉s+1 ≤ C〈Sθ0g〉s+2 ≤ C

{
θs−α
0 〈g〉α+2, s ≥ α

〈g〉α+2, s < α
.(5.87)

Thus, (H0) holds if 〈g〉α+2 is small enough.

We can now complete the proof of Theorem 5.13.
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Proof of Theorem 5.13. We have

Vn = Vn−1 + V̇n−1 = V0 +
n−1∑

k=0

V̇k =
n−1∑

k=0

V̇k.(5.88)

Let µ = α− 1. Since θk ∼
√
k we have by (Hn)

∞∑

k=0

|V̇k|µ +

∞∑

k=0

〈V̇k〉µ+1 ≤ δ
∑

k

θ−2
k ∆k ≤ C

∑

k

k−
3
2 <∞.(5.89)

Thus, for some V as described in Proposition 5.13, Vk → V in Eµ and Vk|xd=0 → V |xd=0 in Hµ+1

(in fact, uniformly for 0 < ε ≤ ε0). Lemma 5.22 applied with s = µ − 1 now implies that V is a
solution of the semilinear system (5.58).
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A A calculus of singular pseudodifferential operators

Here we summarize the parts of the singular calculus constructed in [CGW12] that are needed in
this article, and we also prove some additional smoothing properties for some of the operators that
appear in the proof of Propositions 2.4 and 2.6.

A.1 Symbols

Our singular symbols are built from the following sets of classical symbols.

Definition A.1. Let O ⊂ R
N be an open subset that contains the origin. For m ∈ R we let Sm(O)

denote the class of all functions σ : O ×R
d × [1,∞) → C

M , M ≥ 1, such that σ is C∞ on O ×R
d

and for all compact sets K ⊂ O:

sup
v∈K

sup
ξ′∈Rd

sup
γ≥1

(γ2 + |ξ′|2)−(m−|ν|)/2 |∂αv ∂νξ′σ(v, ξ′, γ)| ≤ Cα,ν,K .

Let Ck
b (R

d × T), k ∈ N, denote the space of continuous and bounded functions on R
d × R that

are 2π-periodic in their last argument, and whose derivatives up to order k are continuous and
bounded.

Definition A.2 (Singular symbols). Let m ∈ R, n ∈ N, and fix β ∈ R
d \ 0. We let Sm

n denote the
family of functions (aε,γ)ε∈(0,1],γ≥1 that are constructed as follows:

∀ (x′, θ0, ξ′, k) ∈ R
d × T× R

d × Z, aε,γ(x
′, θ0, ξ

′, k) = σ

(
εV (x′, θ0), ξ

′ +
k β

ε
, γ

)
,(A.1)

where σ ∈ Sm(O) and V ∈ Cn
b (R

d × T). Below and in the main text we often set

X := ξ′ +
k β

ε
.

A.2 Singular pseudodifferential operators

To each symbol aε,γ as in (A.1), we associate a singular pseudodifferential operator Opε,γ(a)
whose action on Schwartz class functions u ∈ S(Rd × T : CM) is defined by

Opε,γ(a)u(x′, θ0) :=
1

(2π)d+1

∑

k∈Z

∫

Rd

ei x
′·ξ′+i k θ0 σ

(
εV (x′, θ0), ξ

′ +
k β

ε
, γ

)
û(ξ′, k) dξ′ ,(A.2)

where û(ξ′, k) denotes the Fourier transform at ξ′ of the k-th Fourier coefficient of u with respect
to θ0. When aε,γ is defined as in (A.1), below and in the main text of the article, we will often
write σ(εV (x, θ0),X, γ) in place of aε,γ(x

′, θ0, ξ′, k), and σD in place of Opε,γ(a). In particular, we
let ΛD denote the singular Fourier multiplier associated to the function

Λ(X, γ) := (γ2 + |X|2)1/2.

When V (x′, xd, θ0) depends also on a normal variable xd ≥ 0, we define the associated family
of operators depending on the parameter xd in the obvious way. The pseudodifferential calculus
takes place only in the tangential directions (x′, θ0). To discuss mapping properties we first define
“singular” Sobolev spaces as follows.
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Definition A.3. We let

Hs,ε(Rd × T) :=

{
u ∈ S ′(Rd × T) :

∑

k∈Z

∫

Rd

(1 + |X|2)s |û(ξ′, k)|2dξ′ <∞
}
.

This space is equipped with the family of norms40

|u|2Hs,ε,γ :=
1

(2π)d+1

∑

k∈Z

∫

Rd

(γ2 + |X|2)s |û(ξ′, k)|2dξ′.

Observe that for s fixed the space Hs,ε depends on ε with no obvious inclusion if ε1 < ε2.
However, for fixed ε > 0 the norms | · |Hs,ε,γ1 and | · |Hs,ε,γ2 are equivalent.

The next Proposition describes some of the mapping properties of these operators. Detailed
proofs can be found in [CGW12]. The constant C is always independent of ε ∈ (0, 1] and γ ≥ 1,
and we denote the L2(Rd × T) norm by | · |0 (which corresponds to s = 0 in Definition A.3).

Proposition A.4 (Mapping properties). (a) Suppose σ(εV (x, θ0),X, γ) ∈ Sm
n , where n ≥ d + 1

and m ≤ 0. Then σD : L2(Rd × T) → L2(Rd × T) and

|σDu|0 ≤
C

γ|m| |u|0.

(b) Suppose σ(εV (x, θ0),X, γ) ∈ Sm
n , where n ≥ d+ 1 and m > 0. Then σD : Hm,ε(Rd × T) →

L2(Rd × T) and
|σDu|0 ≤ C |u|Hm,ε,γ .

(c) [Smoothing property] Suppose σ(εV (x, θ0),X, γ) ∈ S−1
n , where n ≥ d + 2. Then σD :

L2(Rd × T) → H1,ε(Rd × T) and
|σDu|H1,ε,γ ≤ C |u|0.

(d) Suppose σ(εV (x, θ0),X, γ) ∈ S0
n, where n ≥ d+2. Then σD : H1,ε(Rd ×T) → H1,ε(Rd ×T)

and
|σDu|H1,ε,γ ≤ C |u|H1,ε,γ .

Residual operators. We sometimes denote by r0,D an operator that maps L2(Rd × T) →
L2(Rd × T) and satisfies a uniform operator bound

|r0,Du|0 ≤ C |u|0,

even when r0,D is not necessarily defined by a symbol in some class S0
n. Similarly, we sometimes

let r−1,D denote an operator not necessarily associated to a symbol in S−1
n such that

(A.3) |r−1,Du|H1,ε,γ ≤ C |u|0.

For example, the composition σ−1,D τ0,D = r−1,D of an operator of order −1 (case (c) in Proposition
A.4) with an operator of order 0 (case (a) when m = 0) is of this latter type.

40In this appendix we use | · | instead of 〈·〉 in the notation for norms on R
d × T, but otherwise we retain notation

from the main text.
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Remark A.5. Observe that a composition of the form r0,Dr−1,D is not necessarily an operator of
type r−1,D, a fact that is a source of difficulty in the proof of the main linear estimate, Proposition
2.2. This is the case, for example, if r0,D is the operator of multiplication by V (x′, θ0) ∈ C1

b (R
d×T).

On the other hand we have
ε V (x′, θ0) r−1,D = r−1,D ,

and more generally, Proposition A.4(d) implies that if σ ∈ S0
n, n ≥ d+ 2, we have

σD r−1,D = r−1,D.(A.4)

A.3 Adjoints and products

In spite of the fact that singular symbols and their derivatives fail to decay in the classical way
in 〈ξ′, k, γ〉, it is possible to construct a crude calculus of singular pseudodifferential operators with
useful formulas for adjoints and products which, in particular, permit G̊arding inequalities to be
proved. This calculus was used repeatedly in the proof of the main linear estimate, Proposition
2.2.

In the next proposition σ∗ denotes the conjugate transpose of theM×M matrix valued symbol
σ, while (σD)

∗ denotes the adjoint operator for the L2 scalar product.

Proposition A.6 (Adjoints). (a) Let σ ∈ S0
n, where n ≥ 2d+ 3. Then (σD)

∗ − (σ∗)D = r−1,D.
(b) Let σ ∈ S1

n, where n ≥ 3d+ 4. Then (σD)
∗ − (σ∗)D = r0,D.

Proposition A.7 (Products). (a) Suppose σ and τ lie in S0
n, where n ≥ 2d+ 3. Then

σD τD − (σ τ)D = r−1,D.

(b) Suppose σ ∈ S1
n, τ ∈ S0

n or σ ∈ S0
n, τ ∈ S1

n, where n ≥ 3d+ 4. Then

σD τD − (σ τ)D = r0,D.

(c) Suppose σ ∈ S−1
n , τ ∈ S1

n, where n ≥ 3d+ 4. Then

σD τD − (σ τ)D = r−1,D.(A.5)

Remark A.8. Observe that when τ = τ(X, γ) is independent of εV (x, θ0) and thus gives rise to
a Fourier multiplier, the composition σD τD = (σ τ)D is exact, a fact that has been used several
times in the proof of Proposition 2.2.

The equality (A.5) does not hold in general when σ ∈ S1
n and τ ∈ S−1

n , and this is one of the
main difficulties in the proof of Proposition (2.6). There is however one frequency regime in which
it becomes possible to prove the analogue of equality (A.5) for (1,−1) compositions, see Proposition
A.9 below.

A.4 Extended calculus

In the proof of Proposition 2.2 and of intermediate results, see in particular the decomposition
(2.6), we use a slight extension of the singular calculus. For given parameters 0 < δ1 < δ2 < 1, we
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choose a cutoff χe(ξ′, k β
ε , γ) such that

0 ≤ χe ≤ 1 ,

χe

(
ξ′,
k β

ε
, γ

)
= 1 on

{
(γ2 + |ξ′|2)1/2 ≤ δ1

∣∣∣∣
k β

ε

∣∣∣∣
}
,

suppχe ⊂
{
(γ2 + |ξ′|2)1/2 ≤ δ2

∣∣∣∣
k β

ε

∣∣∣∣
}
,

(A.6)

and define a corresponding Fourier multiplier χD in the extended calculus by the formula (A.2)
with χe(ξ′, k β

ε , γ) in place of σ(εV,X, γ). Composition laws involving such operators are proved in
[CGW12], but here we need only the fact that part (a) of Proposition A.7 holds when either σ or
τ is replaced by an extended cutoff χe.

The following Proposition is essential for treating some of the remainder terms that arise in the
proof of Proposition 2.4. Part (b) of Proposition A.9 is used to handle the remainder in the (1,−1)
composition in (2.14)(a), and part (c) is used for that in (2.30)(a).

Proposition A.9. (a) Suppose V ∈ C1
b (R

d × T). Let f(V ) be any smooth function, suppose
a−1(X, γ) is of order −1, and let χe be a cutoff in the extended calculus satisfying (A.6). Then we
have

f(V ) a−1,D χ
e
D = r−1,D.

(b) Suppose V ∈ Cn
b (R

d × T) where n ≥ 2d + 3. Let c(εV ) be any smooth function and suppose
α1(X, γ) ∈ S1

n and a−1(X, γ) ∈ S−1
n . Let also χe be a cutoff in the extended calculus satisfying

(A.6). Suppose also that α1 is smooth and homogeneous degree one in (X, γ). Then we have

[α1,D, c(εV )] a−1,D χ
e
D = r−1,D.

(c) Suppose V ∈ Cn
b (R

d × T) where n ≥ 3d + 5. Let c(εV ) be any smooth function and suppose
α1(X, γ) ∈ S1

n. Then we have
[∇x′ , [α1,D, c(εV )]] = r0,D.

Proof. (a) There is first an obvious L2 bound:

γ |f(V ) a−1,D χ
e
Du|0 ≤ γ |f(V )|L∞ |a−1,D χ

e
Du|0 ≤ C |u|0 .

Then we need to estimate the singular derivatives (∂xj
+ βj ∂θ0/ε), j = 0, . . . , d− 1, of the product

f(V ) a−1,D χ
e
Du. When the singular derivatives is applied to the term a−1,D χ

e
Du, we use the bound

|X| |a−1(X, γ)| ≤ C to obtain a uniform L2 bound, and it thus only remains to look at the term
[(
∂xj

+
βj
ε
∂θ0

)
f(V )

]
a−1,D χ

e
Du .

Since V ∈ C1
b , the only difficult term is ∂θ0 f(V )/ε. For this term, we use the fact that on the

support of χe(ξ′, k β
ε , γ) we have

|X, γ|−1 ≤ C ε ,

and therefore |a−1,D χ
e
Du|0 ≤ C ε |u|0.

(b) It follows easily from part (a) that
[
∂xj

+ βj
∂θ0
ε
, c(εU)

]
a−1,D χ

e
D = r−1,D , j = 0, . . . , d− 1.(A.7)
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We now reduce to this case by writing

α1(X, γ) =

d−1∑

j=0

(∂Xj
α)Xj + (∂γα1) γ =

d−1∑

j=0

b0,j(X, γ) (iXj) + b0,γ(X, γ) γ.

With b0 = b0,j, for example, we have

[
b0,D

(
∂xj

+ βj
∂θ0
ε

)
, c(εU)

]
a−1,D χ

e
D

= [b0,D, c(εU)]

(
∂xj

+ βj
∂θ0
ε

)
a−1,D χ

e
D + b0,D

[
∂xj

+ βj
∂θ0
ε
, c(εU)

]
a−1,D χ

e
D.

The first term on the right is clearly of type r−1,D as a product of an r−1,D operator on the left by
an r0,D operator on the right. By (A.7) and (A.4) the same is true of the second term. We leave
to the reader the verification that the commutator with the last term b0,γ(X, γ) γ gives also rise to
an r−1,D remainder (this is even easier).

(c) The claim follows from the relation

[∇x′ , [α1,D, c(εU)]] = [α1,D, (∇x′c(εU))] ,

and from Proposition A.7 (b).

Remark A.10. Since |ε ∂dU |C0,M0−1 ≤ K by the assumption in Proposition 2.4, the result of
Proposition A.9 part (a) yields ∂dQ−1,D = r−1,D in (2.14)(a). Similarly, Proposition A.9 part (b)
enables us to obtain (2.14)(b).

In the proof of Proposition 2.2 we use the following localized G̊arding inequality for zero order
operators. As before we write ζ = (ξ′, γ).

Proposition A.11 (G̊arding’s inequality). Let σ(v, ζ) ∈ S0(O) and χ(v, ζ) ∈ S0(O) be such that

Re σ(v, ζ) ≥ c > 0

on a conic neighborhood of suppχ. Provided the corresponding singular symbols lie in S0
n, n ≥ 2d+2,

we have

Re (σD χDu, χDu) ≥
c

2
|χDu|20 −

C

γ
|u|20.
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B An example derived from the Euler equations

In this appendix we explain in a particular example how one can derive a single nonlocal nonlinear
equation that governs the evolution of the amplitude function a, which itself determines the leading
profile V0, see Proposition 1.23. In the process we provide explicit constructions of a number of
the objects that appeared in our earlier discussion of approximate solutions.

As in [CG10], we consider the linearized Euler equations in two space dimensions to which we
add a nonlinear zero order term (we slightly change notation compared with the introduction).
More precisely, we consider the following system

(B.1)





∂tV
ε +A1 ∂x1V

ε +A2 ∂x2V
ε +D(V ε, V ε) = 0 , (t, x1, x2) ∈ ]−∞, T ]× R

2
+ ,

B V ε|x2=0 +Ψ(V ε, V ε)|x2=0 = ε2G(t, x1, φ0(t, x1)/ε) , (t, x1) ∈ ]−∞, T ]× R ,

V ε|t<0 = 0 ,

where the 3× 3 matrices A1, A2 are given by

A1 :=




0 −v 0
−c2/v 0 0

0 0 0


 , A2 :=




u 0 −v
0 u 0

−c2/v 0 u


 ,

and the parameters v, u, c are chosen so that

v > 0 , 0 < u < c .

The latter assumption corresponds to the linearization of the Euler equations at a given specific
volume v with corresponding sound speed c, and a subsonic incoming velocity (0, u) (observe the
difference with [CG10]). We also assume that D in (B.1) is a symmetric bilinear operator from
R
3 × R

3 into R
3, and that Ψ is a bilinear operator from R

3 × R
3 into R

2 (why we choose R
2 is

explained below).
For such parameters, the operator ∂t+A1 ∂x1 +A2 ∂x2 in (B.1) is strictly hyperbolic with three

characteristic speeds

λ1(ξ1, ξ2) := u ξ2 − c
√
ξ21 + ξ22 , λ2(ξ1, ξ2) := u ξ2 , λ3(ξ1, ξ2) := u ξ2 + c

√
ξ21 + ξ22 .

There are two incoming characteristics and one outgoing characteristic, so B should be a 2 × 3
matrix of maximal rank. The choice of B is made precise below. Of course, the source term G in
(B.1) is valued in R

2. We assume moreover that G is 1-periodic and has mean zero with respect to
its third variable θ0. We choose a planar phase φ0 for the oscillations of the boundary source term
in (B.1):

φ0(t, x1) := τ t+ η x1 , (τ , η) 6= (0, 0) .

The hyperbolic region H can be explicitly computed and is given by

H =
{
(τ, η) ∈ R× R / |τ | >

√
c2 − u2 |η|

}
.

For concreteness, we fix from now on the parameters (τ , η) such that η > 0 and τ = c η. In this
way, we have (τ , η) ∈ H.
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We determine the planar characteristic phases whose trace on {x2 = 0} equals φ0. This amounts
to finding the roots ω of the dispersion relation

det
[
τ I + η A1 + ωA2

]
= 0 .

We obtain three real roots that are given by

ω1 :=
2M

1−M2
η , ω2 := 0 , ω3 := − 1

M
η , M :=

u

c
∈ ]0, 1[ .

The associated (real) phases are φi(t, x) := φ0(t, x1) + ωi x2, i = 1, 2, 3. The relations

τ + λ1(η, ω1) = τ + λ1(η, ω2) = τ + λ2(η, ω3) = 0 ,

yield the group velocity vi associated with each phase φi:

v1 :=
1−M2

1 +M2

(
−c
−u

)
, v2 :=

(
−c
u

)
, v3 :=

(
0
u

)
.

Hence the phase φ1 is outgoing while φ2, φ3 are incoming. With the notation of the introduction,
we can also compute

r1 :=




1 +M2

1−M2
v

c
2M c

1−M2


 , r2 :=



v
c
0


 , r3 :=



0
c
u


 ,

ℓ1 :=
1−M2

2 (1 +M2)




1/v
−1/c
1/u


 , ℓ2 :=

1

2




1/v
1/c
−1/u


 , ℓ3 :=

1

1 +M2



−1/v
1/c
M/c


 ,

from which one can obtain the expression of the projectors P1, P2, P3 as well as the expression of the
partial inverses R1, R2, R3. The stable subspace at the frequency (τ , η) is spanned by the vectors
r2, r3. The matrix B in (B.1) is chosen as

B :=

(
0 v 0
u 0 v

)
,

so that we can choose e := r2 − r3 as the vector that spans kerB ∩ E
s(τ , η). The reader can

check that all our weak stability assumptions are satisfied with this particular choice of boundary
conditions. (We skip the details that are just slightly more complicated than those in [CG10].) The
one-dimensional space B E

s(τ , η) can be written as the orthogonal of the vector b := (u,−c)T .
The leading profile V0 and the corrector V1 satisfy

V0 = V0
inc = σ2(t, x, θ2) r2 + σ3(t, x, θ3) r3 , V1

out = τ1(t, x, θ1) r1 .

Moreover, there holds

V0(t, x1, 0, θ0, θ0, θ0) = a(t, x1, θ0) e = a(t, x1, θ0) (r2 − r3) ,
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where the scalar function a is 1-periodic with respect to θ0 and has mean 0. The Fourier coefficients
of a are denoted ak, k ∈ Z, where a0 equals 0 for all time t. Since the functions σ2, σ3 satisfy the
transport equations41

∂tσ2 + v2 · ∇xσ2 = ∂tσ3 + v3 · ∇xσ3 = 0 ,

and vanish for t < 0, we obtain the expressions

(B.2) σ2(t, x, θ2) = a
(
t− x2

u
, x1 +

x2
M
,θ2

)
, σ3(t, x, θ3) = −a

(
t− x2

u
, x1, θ3

)
.

To compute V1
out, we must solve

(B.3) Eout

(
L(∂)V1

out +A−1
2 D(V0

inc,V0
inc)
)
= 0 , (here Eout = E1) ,

and we thus need to determine the resonances between the phases. A simple calculation shows that
there is a nontrivial n ∈ Z

3 satisfying n1 φ1 = n2 φ2 + n3 φ3 if and only if M2 is a rational number.
We thus assume this to be the case from now on. The resonance between the phases reads

n1 := q , n2 := p+ q , n3 := −p , with
2M2

1−M2
=
p

q
,

and it is understood that p, q are both positive and have no common divisor (for instance p = q = 1
when M equals 1/

√
3). Expanding the quadratic term D(V0

inc,V0
inc) in Fourier series, and using

the relation

C1 = Z



1
0
0


 ∪ Z




0
n2
n3


 ,

we obtain (use the expressions (B.2))

E1

(
A−1

2 D(V0
inc,V0

inc)
)
= −2

∑

k∈Z
ak(p+q)

(
t− x2

u
, x1 +

x2
M

)
a−kp

(
t− x2

u
, x1

)
e2iπkqθ1

P1A
−1
2 D(r2, r3) .

In terms of the interaction integral, we obtain the expression

E1

(
A−1

2 D(V0
inc,V0

inc)
)

= −2

∫ 1

0
(a)n2

(
t− x2

u
, x1 +

x2
M
,
n1
n2

θ1 −
n3
n2

θ3

)
a
(
t− x2

u
, x1, θ3

)
dθ3 P1A

−1
2 D(r2, r3) ,

where (a)n2 still denotes the action of a under the preparation map that retains only Fourier
coefficients that are multiples of n2. Consequently (B.3) reads

(B.4)

(
∂t −

1−M2

1 +M2
c ∂x1 −

1−M2

1 +M2
u∂x2

)
τ1

= d

∫ 1

0
(a)n2

(
t− x2

u
, x1 +

x2
M
,
n1
n2

θ1 −
n3
n2

θ3

)
a
(
t− x2

u
, x1, θ3

)
dθ3 ,

41Observe that there is no zero order term in the transport equations because the zero order term in (B.1) has only
a quadratic part. This choice has been made for the sake of simplicity.

75



with

d := −2u
1−M2

1 +M2
ℓ1 ·A−1

2 D(r2, r3) .

The transport equation (B.4) is solved by integrating along the characteristics and we obtain the
expression

(B.5) τ1(t, x1, 0, θ1) = d

∫ t

0

∫ 1

0
(a)n2

(
2 s − (1−M2) t

1 +M2
, x1 + 2 c

1−M2

1 +M2
(t− s),

n1
n2

θ1 −
n3
n2

θ3

)

a

(
2 s− (1−M2) t

1 +M2
, x1 + c

1−M2

1 +M2
(t− s), θ3

)
dθ3 ds .

The Fourier series expansion of τ1 reads

τ1(t, x1, 0, θ1) = d
∑

k∈Z

∫ t

0
ak(p+q)

(
2 s− (1−M2) t

1 +M2
, x1 + 2 c

1−M2

1 +M2
(t− s)

)

a−kp

(
2 s − (1−M2) t

1 +M2
, x1 + c

1−M2

1 +M2
(t− s)

)
ds e2iπkqθ1 .

The equation governing the amplitude a reads

b ·
(
(a2)∗ Ψ(e, e) + τ1|x2=0B r1 −BR (L(∂)V0

inc)|x2=0

)
= b ·G ,

where functions are evaluated at x2 = 0 and θ1 = θ2 = θ3 = θ0. Since we already have the
expression of τ1 in terms of a, the only task left is to compute the trace of the term BR (L(∂)V0

inc).
Recalling that R2 r2 = R3 r3 = 0, we have

BR (L(∂)V0
inc)|x2=0 = (BR2A

−1
2 r2 +BR3A

−1
2 r3) ∂ta+ (BR2A

−1
2 A1 r2 +BR3A

−1
2 A1 r3) ∂x1a ,

with a the unique primitive function of a with zero mean. Using the expressions of R2, R3 in terms
of the projectors P1, P2, P3, which themselves can be obtained from the vectors ri, ℓi, we get

b · (BR2A
−1
2 r2 +BR3A

−1
2 r3) = −u v (1 +M2)

M2 η
,

b · (BR2A
−1
2 A1 r2 +BR3A

−1
2 A1 r3) =

u c v (1 +M2)

M2 η
.

The fact that both quantities are proportional one to the other with a factor −c comes from a
general fact, see [CG10, Lemma 5.1].

The function a should therefore satisfy the amplitude equation

u v (1 +M2)

M2 η

(
∂ta− c ∂x1a

)
+ b ·Ψ(e, e) (a2)∗ + b · B r1 τ1|x2=0 = b ·G ,

or equivalently

(B.6)
u v (1 +M2)

M2 η

(
∂ta− c ∂x1a

)
+ b ·Ψ(e, e) ∂θ0(a

2) + b · B r1 ∂θ0τ1|xd=0 = b · ∂θ0G .
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Let us define the two constants

α1 :=
M2 η

u v (1 +M2)
b ·Ψ(e, e) , α2 :=

4u cM2 η

1 +M2
ℓ1 ·A−1

2 D(r2, r3) .

Then equation (B.6) reads

∂ta− c ∂x1a+ α1 ∂θ0(a
2) + α2 ∂θ0

τ1
d
|x2=0 =

M2 η

u v (1 +M2)
b · ∂θ0G ,

where the derivative ∂θ0τ1/d|x2=0 is computed from the relation (B.5):

∂θ0
τ1
d
|x2=0 =

n1
n2

∫ t

0

∫ 1

0
(∂θ0a)n2

(
2 s − (1−M2) t

1 +M2
, x1 + 2 c

1−M2

1 +M2
(t− s),

n1
n2

θ0 −
n3
n2

Θ

)

a

(
2 s− (1−M2) t

1 +M2
, x1 + c

1−M2

1 +M2
(t− s),Θ

)
dΘds .

In terms of the Fourier coefficients ak, the latter equation is seen to be equivalent to the infinite
system of transport equations

∂tak − c ∂x1ak + 2 i π k α1

∑

k′∈Z
ak′ ak−k′ = 2 i π k

M2 η

u v (1 +M2)
b ·Gk , k 6∈ q Z ,

and

∂takq − c ∂x1akq + 2 i π k q α1

∑

k′∈Z
ak′ akq−k′

+ 2 i π k q α2

∫ t

0
ak(p+q)

(
2 s− (1−M2) t

1 +M2
, x1 + 2 c

1−M2

1 +M2
(t− s)

)

a−kp

(
2 s − (1−M2) t

1 +M2
, x1 + c

1−M2

1 +M2
(t− s)

)
ds = 2 i π k q

M2 η

u v (1 +M2)
b ·Gkq .

We recall that the coefficient a0 vanishes.
In the special case M = 1/

√
3, the above system reduces to

∂tak − c ∂x1ak + 2 i π k α1

∑

k′∈Z
ak′ ak−k′

+ 2 i π k α2

∫ t

0
a2k

(
3 s − t

2
, x1 + c (t− s)

)
a−k

(
3 s− t

2
, x1 +

c

2
(t− s)

)
ds

= 2 i π k
η

4u v
b ·Gk , k ∈ Z ,

with parameters α1, α2 computed from the nonlinearities D,Ψ in (B.1):

α1 :=
η

4u v
b ·Ψ(e, e) , α2 := u c η ℓ1 · A−1

2 D(r2, r3) .
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