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Abstract—This paper proposes an iterative method for a joint
estimation of the signal-to-noise ratio (SNR) and the frequency
selective transmission channel in OFDM systems. The noise
variance is estimated using a pilot preamble scheme, with the
minimum mean square error (MMSE) criterion which requires
the channel estimation. The channel estimation uses the Linear
MMSE (LMMSE) method which requires the noise variance
estimation. As each estimatior feeds the other one, an iterative
algorithm is proposed. We prove that this algorithm converges for
any non-null initialization value. Simulations show the validity of
the method with a very low number of iteration for both SNR and
channel estimation. We show that the number of pilot symbols in
the preamble with respect to the performance of SNR estimation
is improved compared to existing SNR estimation methods. Our
approach also requires only one pilot symbol. Furthermore, for
a given BER value, the SNR gap between perfect estimation and
our proposed method is less than 0.5 dB.

I. INTRODUCTION

The performance quality of a communication system is

strongly dependent on the design of the transmitter. The

knowledge of the signal-to-noise ratio (SNR) is then very

useful in order to adjust transmitter parameters as mapping

constellation size or robustness of encoding. Moreover, in

many algorithms such as linear minimum mean square error

(LMMSE) channel estimation [1], or adaptive modulations

[2], the SNR or the noise power is required, but most of

the time, the SNR is only supposed to be known at receiver

side. The context of this paper is orthogonal frequency division

multiplexing (OFDM) broadcast systems (as digital television

[3] or digital radio [4]) in frequency selective channels.

Reference [5] covers the usual maximum likelihood (ML),

minimum mean square error (MMSE) and second- and forth-

Order moment (M2M4) algorithms performance for SNR es-

timation in OFDM systems and makes a comparison with

its proposed method, based on the use of the autocorrelation

function given by the model of the channel (Jakes or Ricean

models). ML, MMSE and M2M4 algorithms are depicted and

their efficiencies are compared in the case of AWGN channel

for single carrier systems in [6], [7] and [8]. Some iterative

algorithms are presented in [8] and [9], but they are not

suitable for frequency selective channels. ML SNR estimator,

whose developments are given in [10], presents a prohibitive

calculation complexity in the case of frequency selective chan-

nels. MMSE estimator, from which we derive our proposed

method, requires the estimation of the transmission channel.

Mainly for the same requirement, only theoretical expressions

of the MMSE SNR estimator are proposed in the literature [5],

[6], [11], and no practical algorithm. M2M4, firstly mentioned

in [12], presents a low computational complexity and does

not require any channel estimation. However, its efficiency is

degraded in frequency selective channels. Simplifications of

ML estimator have been brought by the recursive expectation

maximisation EM algorithm [13] [14], wich also allows to

estimate both noise variance and channel perturbations [15],

[16]. However, each step of the EM algorithm necessitates a

maximisation wich requires the estimation of all the param-

eters from the previous step. Furthermore, EM is used when

the observed datas are not complete.

In order to avoid the need of the channel estimation, [11]

develops a method for a 2×2 multi input multi output (MIMO)

OFDM system assuming that the channel is invariant during

a two-symbols preamble and for two consecutive carriers.

Reference [17] presents a method using the estimation of the

variance of the noise thanks to a two-pilots preamble and

combines it with the estimation of the second moment (M2)

of the received signal. These two methods require a two-

pilot preamble, what reduces the data rate of the transmission,

especially if the preamble must be frequently repeated. In [18],

an estimation of the SNR is presented using the properties of

the channel correlation matrix, estimated thanks to a one-pilot

preamble. This method is limited by an insufficient statistic

on the channel, what degrades the performance, in particular

for low SNR.

In this paper, we propose a method to estimate both

SNR and frequency selective channel with MMSE criterion.

The SNR is estimated using the noise variance estimation

combined with the second moment of the received signal.

The noise variance estimation method, based on the MMSE

criterion, requires the channel estimate. In its turn, the channel

estimation, performed with LMMSE method, needs the noise

variance in addition to the channel correlation matrix. As

a consequence, we propose an iterative approach in which

both noise variance and channel estimations are computed for

each iteration, using the results of the previous one. Here is

the similarity with the EM, although in our algorithm, the

estimation of each parameter only requires the estimation of

the other one and not both. We show in the cases of perfect

and approximated covariance matrix, that our method quickly



converges for both noise variance and channel estimation.

Furthermore, as our method only requires a one-pilot preamble

by frame, the trade-off between the number of pilot and the

performance is improved compared to existing methods.

The continuation of this paper is organized as follows :

Section II presents the OFDM system model and the noise

variance and channel estimation methods. In Section III,

we present our iterative estimation method, and we prove

in Section IV the convergence of the proposed algorithm.

With the simulations in Section V, one can firstly verify the

convergence of the method, secondly compare it with two

existing methods of the literature [17], [18]. We draw the

conclusions in Section VI.

II. BACKGROUND

This section aims at describing the transmission system

model and the techniques of estimation (noise variance, SNR,

channel) required for the proposed method presented in Sec-

tion III.

A. Transmitted Signal Model

We consider the transmission of OFDM symbols over a

multipath channel. After the removal of the cyclic prefix

(CP) and the Discrete Fourier Transform (DFT), (1) gives

the formulation of the ntℎ received OFDM symbol in the

frequency domain:

Un = CnHn +Wn. (1)

Un = [U0,n, ..., UM−1,n]
T

, Hn = [H0,n, ..., HM−1,n]
T

and

Wn = [W0,n, ...,WM−1,n]
T

are the M × 1 complex vectors

of the received signal, the multipath channel and the gaussian

white noise on the ntℎ time-slot respectively. M is the size

of the DFT, which also tallies with the number of carriers per

symbol in our model. Cn is the M ×M diagonal matrix of

the transmitted signal containing the vector [C0,n, ..., CM−1,n].
Cm,n are either data elements or pilots, whose gains, phases

and positions are perfectly known at emission and reception

sides. In this article, pilots are dedicated to channel estimation

and noise variance estimation. We consider a pilot-preamble

scheme with only one OFDM pilot symbol by frame and as-

sume a constant channel between two consecutive preambles.

In the rest of the paper, the pilot symbols are noted with the

subscript p. Hm,n are the components of the vector Hn given

by

Hm,n =

L−1
∑

l=0

ℎl,n exp
(

−2j�
m

M
�l

)

, (2)

where m denotes the sub-carrier subscript, L the length of

the impulse response and ℎl,n the zero-mean complex process

of the ltℎ path of the channel. All L paths are considered

independent.

B. Noise Variance Estimation

We note �2 the noise variance (or noise power), equal to

�2 = E
{

∣Wm,n∣
2
}

, or in the same way in its vector form

�2 = 1
M
E
{

∣∣Wn∣∣
2
}

. We here consider the matrix Frobenius

norm, defined for a matrix A as ∣∣A∣∣2 = tr(AAH), where tr
is the trace and (.)H is the Hermitian transpose. We use in this

article the Minimum Mean Square Error (MMSE) criterion to

estimate the noise variance (see [10]), noted �̂2 and given by

(3)

�̂2 =
1

M
E
{

∣∣Up − CpĤp∣∣
2
}

, (3)

where Ĥp is the channel estimation performed on the pilot

symbol. In practice, the expectation can only be approximated

by the mean on a sufficiently large number of sub-carriers,

leading to

�̂2 =
1

M

M−1
∑

m=0

∣Um,p − Cm,pĤm,p∣
2, (4)

where Ĥm,p is the estimation of the mtℎ subcarrier. Equation

(4) then shows that the efficiency of the MMSE noise variance

estimation depends on the quality of the channel estimation.

C. SNR Estimation

The SNR noted � is basically obtained from the second

moment M2 of the received signal and the noise variance:

M2 =
1

M
E
{

∣∣Un∣∣
2
}

= PS + �2, (5)

where PS is the power of the useful transmitted signal. We

then get the SNR:

� =
M2

�2
− 1. (6)

In practice, we estimate the SNR �̂ in the same way:

�̂ =
M̂2

�̂2
− 1, (7)

where �̂2 is defined in (4) and M̂2 by

M̂2 =
1

M

M−1
∑

m=0

∣Um,n∣
2. (8)

D. Channel Estimation

The two basic estimation methods are the Least Square (LS)

and Linear Minimum Mean Square (LMMSE) presented in

[19] and [20]. (9) gives the LS channel estimate:

Ĥ
LS

p = C−1
p Up = Hp + C

−1
p Wp. (9)

LS estimation is very simple but sensitive to the noise.

Furthermore, this estimation cannot be used for the noise

variance estimation in (4) as we obtain �̂2 = 0 for Ĥp = Ĥ
LS

p .

(10) gives the efficient LMMSE channel estimation:



Ĥ
LMMSE

p = RH(RH + �2(CpC
H
p )−1)−1Ĥ

LS

p , (10)

where RH is the channel covariance matrix. LMMSE channel

estimation is more efficient than LS, but requires a matrix

inversion. We assume in the rest of the paper that: ∀m =
0, ...,M − 1, Cm,p = 1 on a given preamble position p.

Consequently, the pilot matrix Cp is equal to the identity

matrix noted I. Thus, we get from (10): Ĥ
LMMSE

p =

RH(RH + �2I)−1Ĥ
LS

p . RH is usually unknown at receiver,

we then proposed in [21] a LMMSE-based estimation method

which can replace (10). Furthermore, this estimation method

requires the noise variance knowledge generally unknown and

estimated by (4). This problem leads to our proposed algorithm

for both noise variance and channel iterative estimation.

III. PROPOSED ALGORITHM FOR NOISE VARIANCE AND

CHANNEL ESTIMATION

From (4), we notice that the accuracy of the noise vari-

ance estimation is directly linked to the channel estimation

technique that is used. As, by combining (3) and (9), a LS

channel estimation gives a noise variance estimation equal

to zero, we then consider a solution that is based on the

efficient LMMSE channel estimation. However, from its ex-

pression given in (10), the knowledge of the noise variance

is necessary and also determines the quality of the channel

estimation. Consequently, as the variance estimation feeds the

channel estimation and vice versa, we here propose an iterative

technique allowing a joint estimation of the noise variance

and the channel coefficients, whose principle is described

in Fig. 1. In this figure, we then observe that the iterative

improvement of the noise variance estimation (respectively the

channel coefficients estimation) allows a better estimation of

the channel coefficients (respectively the noise variance).

�̂2
(i−1)

Ĥ
LS

p
LMMSE
Channel

Estimation

Ĥ
LMMSE

p

MMSE
Noise

Estimation

�̂2
(i)Variance

Estimation

SNR

Fig. 1. Block diagram of the proposed iterative algorithm.

Let us then consider the ith iteration of our algorithm, with

i ≥ 1. At this step, due to the iterative nature of our algorithm,

the noise variance �̂2
(i−1), estimated at the iteration (i−1), can

be used for the LMMSE estimation of the channel by using

(10), giving then:

Ĥ
LMMSE

p(i) = RH(RH + �̂2
(i−1)I)

−1Ĥ
LS

p . (11)

Consequently, by using (3) with Ĥp = Ĥ
LMMSE

p(i) , we can

propose a new estimation of the noise variance. Recalling that

Cp = I, this new estimation is expressed by

�̂2
(i) =

1

M
E
{

∣∣Up − CpĤ
LMMSE

p(i) ∣∣2
}

=
1

M
E
{

∣∣Hp +Wp − Ĥ
LMMSE

p(i) ∣∣2
}

�̂2
(i) =

1

M
E
{

∣∣Ĥ
LS

p − Ĥ
LMMSE

p(i) ∣∣2
}

. (12)

This algorithm finally necessitates a non-null value of �̂2
(0)

as initialization step in order to be completely described.

Indeed, if we choose �̂2
(0) = 0, the channel estimation in (11) is

equivalent to the LS one. Consequently, applying this result in

(12), we then get a noise variance estimation equal to zero and

the algorithm enters an endless loop. These both expressions

(11) and (12) are obtained for pilots in the preamble equal to

1. In a different case, the pilot matrix Cp (respectively the pilot

total energy) has to be taken into account in (11) (respectively

in (12)). Note also that for practical issues, (12) is replaced

by

�̂2
(i) =

1

M

M−1
∑

m=0

∣ĤLS
m,p − ĤLMMSE

m,p(i) ∣2. (13)

Then if i0 is the final algorithm iteration, from (7), the SNR

is estimated from the noise variance �̂2
(i0)

by the expression:

�̂ =
M̂2

�̂2
(i0)

− 1. (14)

In practice, the covariance matrix RH in (11) is unknown.

However, if (�) is the power intensity profile of the channel

and if we use the notations of (2), the covariance matrix may

be approximated by the matrix R̆H , whose elements (R̆H)u,v
are derived by the expression given in [19]:

(R̆H)u,v =

L−1
∑

l=0

∫ �max

0

(�l)e
−2j�

(u−v)
M

�ld�l. (15)

Consequently, our proposed algorithm can be described as

follows:

1) Calculate the matrix R̆H from (15) or consider RH if

the channel is perfectly known.

2) Initialize the noise variance so that �̂2
(0) > 0.

3) For i ≥ 1, performe a LMMSE estimation of the channel

by using (11).

4) For i ≥ 1, performe the noise variance estimation �̂2
(i)

from (12).

5) Back to step 3 with i← i+ 1 or go to step 5.

6) Estimate the SNR �̂ by (14) from the final noise variance

estimation �̂2
(i0)

.

7) end of the algorithm.

In the case of an unknown channel, where neither R̆H

nor RH can be computed, the covariance matrix is estimated

by R̃H = Ĥ
LS

p (Ĥ
LS

p )H . This matrix must be then regularly

updated according to the channel fluctuations. An adaptation of

our algorithm in this context is currently under development.



The similarity of the proposed method with EM algorithm

comes from its iterative character. However, our method is

MMSE-based, and not ML-based. Furthermore, the iterations

of our technic are only made up of two steps of estimation

(11) and (13), without step of maximisation. Lastly, EM is

used when the observed data vector dimension is lower than

the wanted estimated vector dimension [13], [14]. This is not

the case here, the estimation being performed on a complete

one-symbol pilot preamble.

IV. CONVERGENCE OF THE ALGORITHM

In this section, it is shown that our proposed algorithm

converges for both noise variance �̂2
(i) and channel Ĥ

LMMSE

n(i)

estimations. From (11), it is easy to prove that Ĥ
LMMSE

n(i)

converges to a given channel estimation if the sequence (�̂2
(i))

admits a limit for an infinite number of iterations. Then, after

the derivation of a recursive expression of �̂2
(i), the proof of

the convergence of this sequence is given.

A. Scalar Expression of the Iterative Noise Variance Estima-

tion

In the following, the different mathematical formulations are

based on the covariance matrix RH . However, as R̆H and R̃H

have the same properties than RH , these formulations remain

valid if one of these matrices is considered. Consequently,

from (12), we get

�̂2
(i+1) =

1

M
E
{

∣∣Ĥ
LS

p − Ĥ
LMMSE

p(i+1) ∣∣2
}

=
1

M
E
{

∣∣Ĥ
LS

p − RH(RH + �̂2
(i)I)

−1Ĥ
LS

p ∣∣2
}

=
1

M
E
{

∣∣(�̂2
(i)I(RH + �̂2

(i)I)
−1)Ĥ

LS

p ∣∣2
}

=
1

M
tr

(

E
{

(�̂2
(i)(RH + �̂2

(i)I)
−1Ĥ

LS

p )

×(�̂2
(i)I(RH + �̂2

(i)I)
−1Ĥ

LS

p )H
})

. (16)

To extend that (RH + �̂2
(i−1)I) is an Hermitian invertible

matrix, (RH + �̂2
(i−1)I)

−1 is also an Hermitian matrix, we

obtain

�̂2
(i+1) =

1

M
tr

(

(�̂2
(i)(RH + �̂2

(i)I)
−1)

×E
{

(Ĥ
LS

p (Ĥ
LS

p )H)
}

(�̂2
(i)I(RH + �̂2

(i)I)
−1)

)

=
1

M
tr

(

�̂4
(i)(RH + �̂2

(i)I)
−1(RH + �2I)

×(RH + �̂2
(i)I)

−1
)

. (17)

We note DH(i) (respectively, DH ) the diagonal matrix obtained

by the diagonalization of (RH + �̂2
(i)I) (respectively, (RH +

�2I)). The diagonal elements of DH(i) (respectively, DH ) are

equal to �m + �̂2
(i) (respectively, �m + �2), where �m,m =

0, 1, ...,M − 1 are the eigenvalues of RH . We also note Q as

the orthonormal transformation matrix of RH . Consequently,

we can rewrite (17) as follows:

�̂2
(i+1) =

1

M
tr

(

�̂4
(i)Q(DH(i))

−1(DH)(DH(i))
−1Q−1

)

.

(18)

From (18), we obtain a recursive formulation of �̂2
(i+1):

�̂2
(i+1) =

�̂4
(i)

M

M−1
∑

m=0

�m + �2

(�m + �̂2
(i))

2
. (19)

B. Proof of Convergence

As the length of the channel impulse response is equal to

L, the eigenvalues �m for m = L,L+ 1, ...,M − 1 are equal

to zero, and the eigenvalues �m for m = 0, 1, ..., L − 1 are

positive. If we note �max the largest eigenvalue and �min = 0
the lowest one, we express the following upper and lower

bounds for �̂2
(i+1):

�̂4
(i)

M

M−1
∑

m=0

�m + �2

(�max + �̂2
(i))

2
≤ �̂2

(i+1) (20)

�̂2
(i+1) ≤

�̂4
(i)

M

M−1
∑

m=0

�m + �2

(�min + �̂2
(i))

2
. (21)

As M2 = 1
M

∑M−1
m=0 (�m + �2), we have :

�̂4
(i)

(�max + �̂2
(i))

2
M2 ≤ �̂2

(i+1) ≤M2. (22)

We can write �̂2
(i+1) = f(�̂2

(i)), where the function f is defined

by :

f(x) =
x2

M

M−1
∑

m=0

�m + �2

(�m + x)2
. (23)

As �̂2
(i) > 0, the variable x is necessarily positive. From (22),

we obtain:

∀x ≥ 0,
x2

(�max + x)2
M2 ≤ f(x) ≤M2. (24)

The proof of the convergence of the sequence (�̂2
(i)) is

based on the fixed-point theorem. Indeed, if f possesses at

least one fixed point on an closed interval [a, b] and if the

sequence (�̂2
(i)) is bounded and monotonous, (�̂2

(i)) necessarily

converges to one of the fixed points of f . In order to prove that

f has at least one fixed point on a closed interval [a, b] (i.e.

that the equation f(x) = x has at least one solution in [a, b]),
we first prove that f([a, b]) ⊂ [a, b], with a and b correctly

chosen. Indeed, from (24), we show that

f(x) −−−−−→
x→+∞

M2. (25)

Due to the fact that �min = 0, f is not defined for x = 0.

However:

f(�) −−−−−→
�→0,�>0

M − L

M
�2 > 0. (26)



Noise variance estimation

Channel estimation
(�2

,Hn)

(�̂2
, Ĥn)

Perfect estimation

Fig. 2. Illustration of the convergence of the algorithm.

As a consequence, (26) ensures the existence of an � ∈
] 0, M−L

M
�2 ] verifying f(�) ≥ �. In addition, as

∀x > 0, f ′(x) =
2

M

M−1
∑

m=0

�m(�m + �2)x

(�m + x)3
> 0, (27)

we prove that f is a strictly growing function.

From (25) and (26), we easily obtain that f([ �,+∞ [ ) ⊂
[�,M2]. In addition, as f is a strictly growing function and

upper-bounder by M2, we get the following inclusion:

f([�,M2]) ⊂ [�,M2], (28)

proving then that f has at least one fixed point on [�,M2].
As it has been previously shown that f is stricty growing

on the interval [ �,+∞ [ , equivalently on [�,M2], the sequence

(�̂2
(i)) is consequently monotonous. From (25) and (26), the

sequence (�̂2
(i)) is also lower bounded by � and upper bounded

by M2. Finally, from the fixed-point theorem, (�̂2
(i)) converges

to one of the fixed point of f .

These mathematical formulations theoretically prove that our

proposed algorithm converges, what is confirmed by simu-

lations in the following section. Fig. 2 depicts the way our

algorithm works. The noise variance and channel estimations

alternatively feed each other until the algorithm reaches its

limit, characterized by the couple (�̂2, Ĥn). This couple is

normally different from the couple (�2,Hn) leading to the

perfect estimation. Section V-A then depicts the performance

of our algorithm and finally shows that our estimated couple

(�̂2, Ĥn) is close to the perfect estimation couple (�2,Hn).

V. SIMULATION RESULTS

Simulations are based on the Digital Radio Mondiale

(DRM) standard [4] designed as the digital audio broad-

casting over the currently AM frequency bands. The OFDM

modulation considered uses 201 sub-carriers for a sampling

frequency equal to 12 kHz. The added cyclic prefix (CP)

of time duration TCP = 2.66 ms is supposed to be longer

than the maximum channel delay. Although DRM standard

recommends a scattered pilot repartition, we consider for the

need of our method a pilot-preamble scheme. Each preamble

is then composed of only one pilot symbol. The channel

model considered is the US Consortium, also taken from

the DRM standard. This four-paths channel has a maximum

delay �max = 2.2 ms and a maximum Doppler frequency

fD = 2 Hz. All paths are mutually independent and follow a

Gaussian power density spectrum.

A. Convergence of noise variance estimation

Fig. 3 and 4 show the evolutions of two estimated noise

variances compared to the real noise variance as a function

of the number of iterations. Case 1 tallies with the channel

estimation made with the real covariance matrix RH and Case

2 tallies with the channel estimation made with the approx-

imated covariance matrix R̆H . Fig. 3 shows the evolution of

the algorithm for the initialization �̂2
(0) = 0.1 and Fig. 4 for

�̂2
(0) = 2. Furthermore, for both Fig. 3 and 4, two fixed values

of the SNR � are considered : � = 0 dB (for high values of

�2), and � = 10 dB (for the lower ones). All the curves are

obtained with 4000 simulation runs.
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Fig. 3. Convergence of the algorithm for �̂2
(0)

= 0.1.
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Fig. 4. Convergence of the algorithm for �̂2
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= 2.

Figs. 3 and 4 display the convergence of the algorithm, for

low and high values of the initializations �̂2
(0) and for two

values of SNR (0 dB and 10 dB). Although the development

of Section IV is not done with the matrix R̆H , we also observe



the convergence of the algorithm in Case 2. Whatever the value

of �̂2
(0), we verify that the sequence (�̂2

(i)) is monotonous

and converges to a given limit, as shown in Section IV.

Furthermore, for both cases 1 and 2, the convergence is fast

: the noise variance estimation �̂2
(i) is constant for i ≥ 1 for

Case 1 and for i ≥ 3 for Case 2. Fig. 3 and 4 also allow to

characterize the bias of the noise variance estimation method.

For both cases 1 and 2, after a few iterations, we observe a

very low bias. Indeed, if we note � = ∣(�̂2
(i)) − �2∣/�2 the

normalized error, given in percentage, we have, in Case 1 (real

covariance matrix) � = 1.67 % for � = 0 dB and � = 4.57 %
for � = 10 dB. In Case 2 (approximated covariance matrix),

we get � = 1.96 % for � = 0 dB and � = 5.43 % for � = 10
dB.

B. Comparison of SNR estimation with other methods

Fig. 5 shows the curves of the Normalized Mean Square

Error (NMSE) of SNR estimations in the case of the frequency

selective channel US Consortium. We remind that estimated

SNR is �̂ = M̂2

�̂2 − 1 (see section II-C). The NMSE of the

SNR estimation �̂ is defined by NMSE = E
[

∣�̂− �∣2/�2
]

.

In our simulations, the expectation is performed on 200000

samples. The initialization is �̂2
(0) = 0.1 and the number of

iterations is i = 3. We compare the proposed algorithm to two

existing methods using a preamble-based SNR estimation in

a frequency selective channel supposed invariant between two

consecutive preambles.

Ren’s method, depicted in [17], uses a 2 pilot-symbols pream-

ble which allows to remove the effect of the channel in order

to estimate the noise variance only. The SNR is then estimated

thanks to the second moment M2, as done in (7). Xu’s

method, depicted in [18], uses a single pilot-symbol preamble

to estimate the covariance matrix. A diagonalization of this

matrix allows to estimate the noise variance in one hand and

the second moment in the other hand. Unlike our technique,

none of these two methods performs a joint channel and SNR

estimation. It makes these techniques of SNR estimation less

complex to apply than our algorithm, but our method makes

the joint estimation of SNR and channel directly usable for the

equalization. To perform equalization, Ren and Xu’s methods

require then a separated channel estimation.

Fig. 5 compares the efficiency of our algorithm in terms

of NMSE to Ren and Xu’s ones [17], [18]. The shape of

the curves of Ren’s and Xu’s estimation methods matches

with those of the simulations in [17]. Our theoretical case

(Case 1) has a lower NMSE than Ren’s method (which is

better than Xu’s method), while Ren’s technique requires

two pilot symbols (our technique requires only one pilot

symbol). In Case 2, Ren’s method has a lower NMSE than

ours, due to the approximation of the covariance matrix.

However, our algorithm has a globally lower NMSE than Xu’s

method, except for the SNR values between 3 and 7 dB. Xu’s

method and ours require only 1 pilot symbol, so the proposed

algorithm is globally more efficient for the same useful bit

rate. Furthermore, our method performs a channel estimation,

whose efficiency is studied in next sub-section V-C.
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C. Channel estimation

Fig. 6 shows the Bit Error Rate (BER) as a function of

SNR of the proposed algorithm in both cases 1 and 2. The

convergence of the channel estimation is proved by simulation.

We use the frequency selective channel US Consortium. The

initialization is �̂2
(0) = 0.1. The BER is computed on 2.5×106

bits. We simulate frames of 22 OFDM symbols, including

1 pilot symbol. The channel is then considered as invariant

over 22 consecutives symbols. The useful-data symbols are

composed of samples mapped with a 16-QAM. For both cases

1 and 2, we study the efficiency of the channel estimation as a

function of the number of iteration. The method is compared

with the perfect estimation and the regular LS estimation.

The channel estimation made in Case 1 reaches its limit

from the first iteration, what tallies with the convergence speed

shown in Fig. 3 and 4. The error compared to the perfect

estimation is less than 0.1 dB for SNR = 25 dB. This esti-

mation matched with the theoretical LMMSE estimation using

the real covariance matrix RH and the real noise variance

�2. This theoretical LMMSE estimation is not displayed for

a better visibility. In the same way for Case 2, the channel



estimation reaches its limit from i = 3, what tallies with the

number of iterations necessary for (�̂2
(i)) reaches its limit (see

Fig. 3 and 4). The error compared to the perfect estimation

is less than 0.5 dB for SNR = 25 dB. Furthermore, the

proposed iterative method is more efficient than the regular

LS estimation. Indeed, for SNR = 25 dB, the error of the

LS estimation compared to the proposed method in Case 2 is

equal to 2.5 dB.

VI. CONCLUSION

This article presents an iterative and joint method for SNR

and channel estimation. The SNR is estimated combining the

second moment of the received signal and the noise variance

estimation made thanks to a pilot-preamble scheme. We use

the MSE criterion to estimate the noise variance. To do so,

we require an efficient channel estimation, thus we use an

LMMSE channel estimation, which requires itself the noise

variance estimation. We then propose an iterative estimation of

both noise variance and transmission channel. We prove that

the algorithm converges whatever the non-null initialization,

and the simulations show the low bias of the noise variance

estimation. In comparison to two existing SNR estimation

methods, our method improves the rate between the number

of pilots in the preamble and the efficiency of the SNR

estimation, as far as our method requires only one pilot.

Furthermore, this pilot is used to perform in the same time

the channel estimation. The simulations show that the channel

estimation is close to the perfect estimation by less than 0.5

dB. The subjects of our future work is the theoretical proof

of the unicity of the convergence of the algorithm and the

extension of the algorithm for the case of the estimated channel

covariance matrix R̃H .
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