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Online Equivalence Learning Through A
Quasi-Newton Method

Hoel Le Capitaine
LINA (UMR CNRS 6241), École Polytechnique de Nantes,

Rue C. Pauc, 44300 Nantes, France.
Email: hoel.lecapitaine@univ-nantes.fr

Abstract—Recently, the community has shown a growing
interest in building online learning models. In this paper, we
are interested in the framework of fuzzy equivalences obtained
by residual implications. Models are generally based on the
relevance degree between pairs of objects of the learning set,
and the update is obtained by using a standard stochastic (on-
line) gradient descent. This paper proposes another method for
learning fuzzy equivalences using a Quasi-Newton optimization.
The two methods are extensively compared on real data sets for
the task of nearest sample(s) classification.

Index Terms—Fuzzy similarity, nearest-neighbor classification,
online learning.

I. INTRODUCTION

A. Preliminaries

The concept of metric or similarity measures is fundamental
in many pattern recognition problems such as classification
and clustering (see e.g. [1], [2]). Depending on the model,
the prediction to be made on observations often relies on the
evaluation of the comparison between two observations, or one
observation and a prototype. More formally, the prediction is
a mapping X → Y from the feature space X to a set of labels,
or classes, Y . For instance, instance-based classifiers [3] such
as nearest prototype, nearest neighbor, heavily rely on the
metric used. When dealing with unsupervised classification,
the comparison between two objects is also very important,
e.g. in the k-means and the fuzzy c-means algorithms.

Among the usual metrics that are used, the Euclidean
distance is without a doubt the most prevalent measure.
However, it is not always adapted to the observations to be
compared. Consequently there are a substantial number of
distance measures, and finding an appropriate one is a difficult
task.

More recently, instead of selecting a metric, people began to
learn a parametric metric. A popular choice is the Mahalanobis
distance defined by

d2(x,y) = (x− y)tM(x− y)

where x,y ∈ X and M is a p × p matrix, where p is the
dimension of X . The goal is to learn M such that the distance
between x and y is small if they are in the same class, and
large if they do not share the same class. There exists many
methods to obtain the matrix M , such as convex optimization
methods (see e.g. [4], [5]), or simply by estimating the inverse
of the covariance matrix of each class.

Another problem comes from the imprecision or the uncer-
tainty of the data. Fuzzy logic theory is now a well founded
framework to deal with such imprecisions. Operations of
intersection and union can be modeled by triangular norms (t-
norm) and triangular co-norms (t-conorms), respectively. For-
mally, a t-norm is an increasing, associative and commutative
mapping > : [0, 1]2 → [0, 1] satisfying the boundary condition
>(x, 1) = x for all x ∈ [0, 1]. Alternatively, a t-conorm ⊥
shares the same properties, except that ⊥(x, 0) = x for all
x ∈ [0, 1], see [6] for additional details.

A key operation in fuzzy logic is the fuzzy implication
[7], [8]. Generally speaking, a fuzzy implication function is
a mapping I : [0, 1] × [0, 1] → [0, 1] holding the following
properties

• I is non-increasing in the first variable,
• I is non-decreasing in the second variable,
• I(0, 0) = I(1, 1) = 1, and I(1, 0) = 0.

Additionally, there are a lot of other properties that can
be desired, e.g. the confinement principle, see [7], [8] for
details. The two classes of fuzzy implication that are generally
used are the S-implications, based on a triangular co-norm,
and residual implications (R-implications for short) based on
triangular norms.

In this paper, R-implication functions are considered,
mainly because they hold the confinement principle: x ≤ y iff
I(x, y) = 1, whereas S-implications do not. Given a t-norm
>, its corresponding residuum is defined by

I>(x, y) = sup
t
{t ∈ [0, 1]|>(x, t) ≤ y}. (1)

In the case of a left-continuous t-norm, the sup can be
substituted by the maximum. In the sequel, the following
notation is adopted:

• X = {x1, · · · , xn} is the (supposed finite) universe of
discourse,

• fA(x), ∀x ∈ X , is the membership function of a fuzzy
set A over X .

B. Fuzzy similarity measures

There are several ways to compare fuzzy values or fuzzy
quantities. The first one is based on a broad class of measures
of equality based on a distance measure which is specified
for membership functions of fuzzy sets. The second category



involves set- theoretic operations for fuzzy sets (fuzzy inter-
section, union, cardinality) [9], [10]. Finally, a third way of
defining a similarity measure consists in using logical concepts
of fuzzy implication, as first suggested in [11], following the
seminal paper of [12].

In this paper, logical-based similarity measures are consid-
ered. In particular, one can define a fuzzy similarity measure
S(A,B) between two fuzzy sets A et B by using a residual
implication as follows [13]:

S(A,B) =

Ax∈X
{
min

(
I>(fA(x), fB(x)), I>(fB(x), fA(x))

)}
(2)

An appealing property of this formulation is that one can
choose
• any aggregation operator (providing that boundary con-

ditions and monotony are satisfied),
• any (parametric) triangular norm for the residual impli-

cation.
In this paper, the aggregation operator that is used is the
arithmetic mean. However more sophisticated operators such
as the Choquet integral can be used. In the sequel we refer as
equivalence learning the operation of learning the parameter,
say λ, of a parametric t-norm giving rise to a residual
implication. Naturally, learning an equivalence could be much
more complex, e.g. if the weights of a weighted arithmetic
means are learnt, but this is left for future research.

II. LEARNING MODELS

Metric or similarity learning methods are now a well studied
problem, and give good results in batch settings. However,
when the data arrives sequentially, or the number of observa-
tions of the data does not allow to load it entirely in memory, it
may be interesting to consider online learning methods. Online
learning methods, that consider samples one at a time, tend to
take a growing importance in the machine learning community
[14].

In this paper, an online learning procedure is adopted. In this
setting, the algorithm sequentially receives samples, and pre-
dicts an output. Once the output is obtained, the algorithm gets
a feedback indicating its goodness. Afterwards, parameters can
be changed so that the probability of correct output increases
in the next step. An appealing property of online algorithms is
that they are relatively simple to implement and quickly (i.e.
with a few number of iterations) provides good performances
[15]. Moreover, the learning algorithm does not require to use
all the learning set, so that a great improvement in terms of
computation is obtained when one considers large datasets.
Although convergence is not guaranteed, experimental results
show that it is almost always obtained [14].

The main idea of similarity learning based on the relation-
ship and relevance between samples is as follows. Starting
from information related to the degree of correspondence that
may exist between any two objects, the principle is to consider
this relevance to construct a measure of comparison reflecting

this correspondence. A correspondence, or relevance, between
two objects a and b can be seen as a pairwise function
f(a, b) specifying how strongly a and b can be linked. This
relationship can be obtained in many ways. For instance, in
image annotation, a user may specify that an image repre-
senting a beach is not linked to a picture of a plane, whereas
there exists a relationship with an image having a sailboard
on it. In supervised classification, this link can simply be
the representation of classes: two objects belonging to the
same class have a strong correspondence. Naturally, obtaining
relevance degrees of all possible pairs of observations is not
mandatory. This is one of the advantage of this approach: a
reduced amount of information is needed for learning.

More formally, one can consider a set C of relevance degrees
between the samples of the dataset. The relevance degrees are
specified with relevance functions. For simplicity, a relevance
function f : [X × X ] → [0, 1] is a function taking two
objects as inputs, and output a real value in the unit interval. If
f(a, b) = 1, then there is a maximum correspondence between
a and b, and if f(a, b) = 0, it means that the objects are not
related with each other, provided the current knowledge of the
system.

From this relevance relationships, we seek to build a sim-
ilarity measure respecting the order induced by the relation:
if f(a, b) is greater than f(a, c), then the similarity measure
must show a similar behavior:

S(a, b) > S(a, c) (3)

In order to take into account this constraint in our model,
we propose to use the following hinge loss function

`λ(a, b, c) = max
{
0,Sλ(a, c)− Sλ(a, b)

}
(4)

When the equation (3) holds, the loss function (4) is equal
to zero. In contrast, the loss is even more important than the
difference between similarities is important. In other words,
the more the loss, the greater the correction of the similarity
measure.

In batch learning, the standard goal is to minimize the total
loss on the entire set of relevance degrees C. This total loss is
defined as follows

Lλ =
∑

(a,b,c)∈C

`λ(a, b, c). (5)

Instead of a sum over all the elements of the training set,
all combinations of C are considered. If C is complete, this

amounts to considering the sum of
(
n
3

)
loss functions, where

n is the size of the training set.
Consequently, even with moderately large datasets, this

becomes quickly intractable in practice. In order to tackle this
problem, we propose to use an online learning model. In this
context, we do not minimize the total loss (5), but use the
instantaneous loss, i.e. the loss associated to the triplet (a, b, c).
In practice, in each iteration of the algorithm, the three objects
are selected such that f(a, b) > f(a, c), and the corresponding
loss `λ is computed and used for updating.



Now we present two optimization models resulting in differ-
ent updates of similarity measures: stochastic gradient descent
and quasi-newton optimization.

A. Stochastic Gradient Descent

Since the similarity measure is determined by its parameter
value λ, its optimal value is searched by using an online
learning algorithm based on sequential updates of λ. It leads
to find λ such that:

λi = argminλ

(
1

2
‖λ− λi−1‖2 + α`λ(a, b, c)

)
, (6)

where α ≥ 0. In other terms, during the optimization process,
λi is selected in order to obtain a trade-off between minimizing
the loss on (a, b, c) and staying quite close to its previous
value λi−1. This trade-off is controlled by the ‘aggressiveness’
parameter α. Naturally, if α is set to zero, then the optimal λi
value is equal to λi−1. In contrast, setting α to a high value
imposes an important weight on the loss function. It is clear
that when the loss `λ(a, b, c) is equal to zero, then the optimal
parameter value does not change from the previous iteration,
i.e. λi = λi−1. Otherwise, the objective function L is defined
by

L(λ) = 1

2
‖λ− λi−1‖2 + α

(
− Sλ(a, b) + Sλ(a, c)

)
(7)

The optimal solution with respect to λ is such that the gradient
of L, ∂L(λ)/∂λ, vanishes:

∂L(λ)
∂λ

= λ− λi−1 − α
∂
(
Sλ(a, b)− Sλ(a, c)

)
∂λ

= 0

(8)

Let Gi be the gradient value

∂
(
Sλ(a, b)− Sλ(a, c)

)
∂λ

. (9)

Therefore, the optimal new value λ is given by

λ = λi−1 + αGi (10)

The corresponding algorithm is described in Algorithm 1 (see
[13] for details).

B. Quasi-Newton

An online learning method of parametric fuzzy similarity
measures by adopting the Quasi- Newton optimization method
[16] is now briefly presented. The advantages of Newton
methods are that they allow fast convergence, but they require
second derivatives.

Given a starting value λ0, the sequences of λ(i) can be
obtained as follows

λi+1 = λi − α
Gi
Ui

(11)

where Gi is defined by (9), and Ui is the second derivative.
With this formulation, the term Ui is approximated to avoid
high computational efforts by the difference equation

Ui =
Gi −Gi−1
λi − λi−1

(12)

Algorithm 1 Stochastic Gradient Descent Learning algorithm
1: function SGD UPDATE
2: i← 0
3: λi ← initial value
4: repeat
5: Random selection with replacement of a, b and c

in the learning set such that R(a, b) > R(a, c).
6: if `λ(a, b, c) > 0 then

7: Gi ←
∂
(
Sλ(a,b)−Sλ(a,c)

)
∂λ

8: λi+1 ← λi + αGi
9: end if

10: i← i+ 1
11: until convergence
12: return λ
13: end function

As in the previous method, if the gradient value Gi is
equal to zero, then the value of λ remains unchanged. The
corresponding algorithm is given in Algorithm 2.

Algorithm 2 Quasi-Newton Learning algorithm
1: function QN UPDATE
2: i← 0
3: λi−1 ← 0
4: λi ← initial value
5: repeat
6: Random selection with replacement of a, b and c

in the learning set such that R(a, b) > R(a, c).
7: if `λ(a, b, c) > 0 then

8: Gi ←
∂
(
Sλ(a,b)−Sλ(a,c)

)
∂λ

9: Ui ← Gi−Gi−1

λi−λi−1

10: λi+1 ← λi − αGi/Ui
11: end if
12: i← i+ 1
13: until convergence
14: return λ
15: end function

C. Implementation details

The update equations (10) and (11) depend on the similarity
measure, and therefore of the implication and the aggregation
operator. Using a similarity measure therefore requires to be
able to derive it with respect to its free parameter λ in order
to obtain Gi and Ui.

The performance of the algorithms also depend on the
initialization of λ0. Depending on the measure being used, this
initialization can vary. In general, it is recommended to specify
a value allowing to obtain a similarity measure approximating
the dual similarity measure of the L1 norm. This leads to use
a parameter value of the t-norm such that it is close to the
Łukasiewicz t-norm.

It can also happen that the value obtained for λ is not in the
domain of definition of the t-norm. In this case, the algorithm



stops and the last correct value of λ is chosen. The value λ
can also take particular values of the t-norm. In this case the
measure used is the one corresponding to the associated t-
norm. For instance, if λ = 0 for the Schweizer-Sklar t-norm,
then the similarity obtained by the product is used, thanks to
the continuity around 0 of this t-norm.

Two criteria can be considered for convergence. The most
simple is to set a fixed number of iterations. The second
one is based on the convergence of the learnt parameter
λ. Naturally a criterion such as ‖λi − λi−1‖2 is below a
given threshold cannot be used because a zero loss in only
iteration implies that λi = λi−1. Therefore, an additional
parameter stating the number of no change of λi needed for
convergence must be specified in this case. Finally, note that
both criteria can be used: set a maximum number of iterations,
and yes the convergence of λ. This is the setting we used
in the experimental part. The number of no change of λ for
convergence checking is set to 5.

It may happens that data set is unbalanced in the sense
that it may exists a lot of samples belonging to a particular
concept and a few to others. This case is not handled by our
proposition, but a balanced random selection in the algorithms
can be used.

III. NUMERICAL EXPERIMENTS

A. Datasets and protocol

In the experiments, four datasets coming from the UCI
Machine Learning Repository [17] are used : Iris, Vehicle,
Satimage and Segment. First, a brief description of the datasets
is given.

The Iris dataset contains 150 observations of 3 kinds of
iris flowers with 4 attributes: petal and leaf width and length.
Setosa iris flowers are easily discriminated, but Versicolor and
Virginica are harder to recognize.

The Vehicle dataset contains 18 features of 846 silhouettes
of 4 types of vehicle (Opel, Saab, bus and van). The 18 features
are geometrical and order moments.

The third dataset, Satimage, is obtained from a Landsat
Multispectral Scanner image. It contains 6435 observations
described by 36 attributes. The 36 features are the pixel values
of a 3 × 3 square neighborhood in the four spectral bands.
Each observation has a label corresponding to the central
pixel. There are 6 different labels, that correspond to a ground
category. This dataset is known to present a high generalization
error.

The last dataset, Segment, is composed of 2310 observa-
tions extracted from 7 outdoor images. Each observation is
described by 19 color and geometrical features, and belongs
to one of the 7 classes of the problem: brick face, sky, foliage,
cement, window, path or grass.

Table I summarizes the characteristics of the four datasets.
As can be seen in the table, the considered datasets present
a large variety in terms of the number of samples, features
and classes. Additionally, a two-dimensional PCA projection
(not plotted here for brevity) of the datasets reveals that their
distributions also present a large variety of shapes. A method

TABLE I
THE FOUR DATASETS USED IN THE EXPERIMENTS.

Dataset # Samples # Features # Classes

Iris 150 4 3
Vehicle 846 18 4

Satimage 6435 36 6
Segment 2310 19 7

allowing to obtain fuzzy features for each sample from the
datasets is now described. Let X = {(x1, y1), · · · , (xn, yn)}
denote a learning set of n observations in Rp that belong to
one of the c discrete labels (classes) y ∈ {1, · · · , c}. In the
following, we propose a projection of each sample xi into a
larger feature space whose dimension is Rc×p. Into this new
feature space, the samples are described as fuzzy sets, allowing
the use of the aforementioned similarity measures.

Each sample xi is projected as follows.
• for each feature f ∈ {1, · · · , p} and for each label
` ∈ {1, · · · , c}, compute the corresponding mean µj and
standard deviation σj , where j = f + (`− 1)f .

• the new (projected) sample x′ of x is given for each j in
{1, · · · , c× p}, by

x′j = f(xj |σj , µj)

For simplicity, the Gaussian membership function is used. It
is defined by

f(x|σ, µ) = exp

(
− (x− µ)2

2σ2

)
(13)

where µ is the mean and σ is the standard deviation. Naturally,
other membership functions (trapezoidal, sigmoidal) can be
used as well.

As mentioned earlier, one can choose, or even construct,
its own triangular norm, and then write the corresponding
implication, that gives a similarity measure. For clarity and
brevity, we use in this paper the similarity measure obtained
by the Hamacher triangular norm defined by

>H(x, y) =


Drastic t-norm if λ =∞
0 if λ = x = y

x y
λ+(1−λ) (x+y−x y) if λ ∈ [0,∞[

and (λ, x, y) 6= (0, 0, 0)

The corresponding residual implication is given by [18]

IH(x, y) =

{
1 if y ≥ x

y(λ+x−λx)
y(λ+x−λx)+x−y otherwise

The similarity measure is finally obtained by using (2) where
A is the arithmetic mean.

B. Evaluation metric

The quality of a similarity measure is evaluated by the use of
a ranking precision measure rather than classification accuracy.
Average precision is a commonly used metric in information



retrieval. The mean average precision and the discounted
cumulative gain (DCG, not considered here) are frequently
used in similarity-based classifiers evaluation [19]. Before
defining the mean average precision (mAP ), we introduce the
precision at k (prec@k), which is the proportion of first k
relevant samples given the similarity measure, i.e. the top k
similar samples. The prec@k for a given sample xi is defined
by

prec@k(xi) =
1

k

k∑
j=1

1
(
y(xi) = y(xσ(j))

)
where 1(A) is the indicator function : if proposition A is true
then 1(A) = 1, 0 otherwise, and y(xi) is the true label of xi.
The function σ() is a permutation such that S(xi,xσ(1)) ≥
· · · ≥ S(xi,xσ(k)). The average precision at k is then obtained
by averaging the precision at k over all samples

AP@k =
1

n

n∑
i=1

prec@k(xi).

Finally, the level k can vary from 1 to kmax, and the mean
average precision (mAP ) is obtained by averaging AP@k
across all k values

mAP =
1

kmax

kmax∑
k=1

AP@k

Therefore, the mean average precision measure lies in the unit
interval, and the larger the better. Note that setting kmax to 1
is equivalent, in terms of classification, to the nearest-neighbor
classification rule, but this cannot be generalized to the kmax
nearest-neighbors classification rule. In the sequel, kmax is set
to 10.

C. Results

The two algorithms are evaluated on the four presented
datasets, and Table II gives the detailed results. There is one
main parameter to select in the algorithms, the aggressiveness
α. It is chosen in the set {1, 10, 100}, and results for each of
these values are reported in the table. For comparison purpose,
a baseline performance is also given when using the following
fuzzy similarity measure

S(A,B) = 1−max
x∈X
|fA(x)− fB(x)|, (14)

which is known to give satisfying results in nearest-neighbor
classification [13]. Results obtained with another online sim-
ilarity learning method where a metric matrix W is learned
(OASIS, [15]) are also given. Due to the random part of the
algorithms, the learning procedures are executed ten times, and
average values are reported in the table. The learning set and
testing set are randomly selected such that they are respectively
2/3 and 1/3 of the original set. In this classification application,
two objects are considered relevant when they belong to the
same class, so that the random selection simply consists in
taking two objets from the same class, and another from a
different one. A notable consequence in this particular setting
of classification is that relevance degrees are binary. Standard

deviation, as well as the mean number of iterations needed
for convergence are also reported in the table. Note that the
maximum number of iterations is set to 2000.

As a general comment, one can see that both algorithms
roughly give the same mean average precision. However, one
can see differences on each dataset when considering different
parameters α, as described as follows.

On the Iris dataset, the SGD method gives slightly better
results than the QN method for a given parameter α. When the
parameter α is increased, the precision increases whatever the
method, and the number of iterations needed for convergence
decreases. For a small α value, the number of iterations is
approximately equal, whereas it is drastically lower for the
QN method with a larger α. Finally, standard deviation, i.e.
the stability, of both methods is comparable. An interesting
point is that the stability increases when α increases.

On the Vehicle dataset, here again the SGD method gives
slightly better results than the QN method for a given parame-
ter α. However, when α increases, the mean average precision
decreases for SGD and QN methods. The number of iterations
decreases as α increases, and like for the Iris dataset, the
number of iterations needed for convergence is roughly equal
on both methods for a small value of α, and much lower for
the QN method as α increases. According to the table, the
stability of the SGD method is better than the stability of the
QN method on this dataset.

On the Satimage dataset, the best results are obtained with
the SGD method, whatever the aggressiveness parameter α.
Like on the Vehicle dataset, decreasing the value of α tends to
decrease the mean average precision. Increasing α also reduces
the number of iterations needed for convergence for the QN
method. However, for the SGD method, this relationship is
not clear: increasing α may lead to fall into a local optimum.
Nevertheless, the number of iterations of the QN method is
much lower than the one of the SGD method. Here again, the
figures show that the stability of the SGD method is better
than that of the QN method.

Finally, on the Segment dataset the SGD method gives the
best results for α = 1, 10, while the QN method gives the best
result for α = 100. For this dataset, mean average precision
increases as α increases. For the QN method the number
of iterations decreases as α increases, whereas for the SGD
method, the number of iterations is stable whatever the value
of α. More generally, the number of iterations for the QN
method is lower than for SGD. Contrary to the other datasets,
the stability of the QN method is better than SGD for this
dataset.

To conclude on this first experiment, one can say that there
is no method undoubtedly better than the other. In terms of
mean average precision, the SGD method gives better results.
However the QN method allows faster convergence, so that this
method could be preferred to handle large datasets, whereas
the SGD might be choosen when precision is a key factor.
The fact that large values of α leads to a reduced number of
iterations is easily understandable because it heavily modifies
the value of λ in the update equations (10) and (11). Finally,



TABLE II
RESULTS

Method α datasets
Iris Vehicle Satimage Segment

mAP(%) iter. mAP(%) iter. mAP(%) iter. mAP(%) iter.
1 93.93 ± 0.19 1249 67.77 ± 0.01 2000 88.25 ± 0.01 1684 82.66 ± 0.30 1656

SGD 10 94.12 ± 0.05 641 67.64 ± 0.29 1728 88.26 ± 0.01 2000 83.05 ± 0.23 1408
100 94.29 ± 0.04 778 67.33 ± 0.23 1334 87.88 ± 0.06 1154 83.53 ± 0.34 1978

1 93.47 ± 0.14 1973 67.60 ± 0.05 1792 88.22 ± 0.01 2000 82.46 ± 0.54 1333
QN 10 94.02 ± 0.13 17 63.04 ± 1.55 13 87.88 ± 0.27 14 83.02 ± 0.08 15

100 94.25 ± 0.06 6 64.67 ± 0.44 7 87.52 ± 0.28 7 84.14 ± 0.07 6
Baseline (14) 93.05 61.68 81.53 80.31

OASIS 93.25 64.29 84.89 80.18

since the value λ changes slowly with the SGD method leads
to a good stability of the results, whereas large changes from
the update of the QN method decrease the stability.

The second experiment is a detailed study of both algo-
rithms on two datasets: Iris and Vehicle. For both datasets,
the following aspects are analyzed:
• the influence of the maximum number of iterations on

mean average precision
• the influence of the neighborhood considered on mean

average precision
• the influence of the aggressiveness parameter α on the

number of iterations needed for convergence or stopping.
The influence of the maximum number of iterations on mean
average precision is analyzed as follows. The number of itera-
tions varies from 1 to 8,000, with a step of 1000 iterations. For
each different number of iterations, the mAP score is reported
using the actual λ value. The results for this experiment
are repeated for various values of aggressiveness parameter
α = 1, 10 and 100.

The influence of the neighborhood considered on mean
average precision is studied as follows. The maximum level
number kmax varies from 1 to 10, and for each value, the
mAP score is reported.

Finally, the effect of α over the number of iterations is
analyzed as follows. The aggressiveness varies from 1 to 100,
and for each value of α the number of iterations needed for
convergence is reported. If convergence is not reached within
2000 iterations, the algorithm is stopped. For visualization
purpose, α is represented in a logarithmic scale.

1) Iris dataset: The results of the first aspect on the Iris
dataset are given in Figure 1, with the SGD method (left) and
the QN method (right). As can be seen, the mean average
precision globally increases with the number of iterations,
whatever the value of α, and whatever the learning algorithm.
Comparing the curve (α = 1) to the two others and

(respectively α = 10 and α = 100) shows that it always
provide the worst results. When the number of iterations is low
(i.e. the number of updates is low), mAP values are ranked
according to the value of α because the larger α, the faster λ is
modified. However, setting α to 10 seems to be a better choice

when the number of iterations increases. For the QN method,
the mAP scores also globally increase when the number of
iterations increases. Looking at the curve (α = 1) shows
that it first gives poorer results than and (respectively
α = 10 and α = 100), but greater with a large α (α = 100)
for a larger number of iterations. The same behavior than the
one observed for the SGD method occurs: the mAP score
obtained with α = 100 grows faster, but at the price of a
lower performance than the two others later on.

The results of the two other points that are studied (neigh-
borhood, left and aggressiveness, right) are given in Figure
2. As can be seen on the left figure, the two curves present
the same silhouette: the first decrease, and then increase to
reach a maximum around 6 neighbors, and finally decrease.
For both of them, the value kmax = 6 seems to be a good
choice, whereas choosing kmax = 2 or 3 gives poor results.
On the right, one can see that increasing α leads to a reduced
number of iterations. However, the number of iterations for the
QN method decreases much faster than the one of the SGD
method, confirming the impression of the first experiment.

2) Vehicle dataset: The second dataset is now analyzed. In
Figure 3, the mean average precision as function of the number
of iterations for the SGD method (left) and the QN method
(right) is plotted. As can be seen on the left figure, results
with α = 1 ( ) and α = 10 ( ) are comparable. The
precision obtained with α = 100 ( ) is also comparable
until the 4000 iterations, where it drastically decrease. On the
right, results obtained show that setting α to 1 ( ) gives
the best performance, and α = 10, 100 (respectively and

) give comparable performance.

In the Figure 4-left, the mean average precision as a function
of kmax is given. For both methods, the lower kmax, the
better. On the right plot, the same behavior observed on the
iris dataset can be seen: increasing α leads to a reduced
number of iterations, and the QN method provides faster
convergence. Moreover, the number of iterations needed for
the SGD method stays quite large.
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Fig. 1. Mean average precision as a function of the number of iterations for the Iris dataset, with SGD (left) et QN (right) optimization methods.
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iterations for convergence on the Iris dataset.
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Fig. 3. Mean average precision as a function of the number of iterations for the Vehicle dataset, with SGD (left) et QN (right) optimization methods.
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iterations for convergence on the Vehicle dataset.

IV. CONCLUSION

In this paper, an optimization method is used for on-
line learning of fuzzy similarity measures defined by fuzzy
equivalences. The optimization method is based on Quasi-
Newton equation updates, which allows a fast convergence
of parameters. Compared to another update algorithm based
on stochastic gradient descent, the proposed method exhibits
the following advantage. The number of iterations needed
is low, so that the method is adapted to the processing of
large datasets. However, according to the evaluation metric,
the method based on the stochastic gradient descent gives the
best results. Eventually, the end-user should use one or another
method depending its requirements in terms of precision and
the dimension of the dataset. The proposed application is
dedicated to classification, but it can also be used for ranking,
novelty detection, and so on.

As future line of research, an interesting idea is to use other
aggregation function than the arithmetic mean. For instance,
weighted means, or Choquet integrals could be used. In this
context, individual weights, or coalition weights can be learnt
online in the manner of [20], or following the recent work
[21]. Another important point is the specification of α, that
could change over the iterations, wether by line search [16],
a time decay factor or depending on the density in the feature
space of the current sample.
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