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Dans cet article, nous considérons le contexte de très grands systèmes distribués, au sein desquels chaque nœud doit
pouvoir rapidement analyser une grande quantité d’information, lui arrivant sous la forme d’un flux. Ce dernier ayant
pu être modifié par un adversaire, un problème fondamental consiste en la détection et la quantification d’actions
malveillantes effectuées sur ce flux. Dans ce but, nous proposons AnKLe (pour Attack-tolerant eNhanced Kullback-
Leibler divergence Estimator), un algorithme local permettant d’estimer la divergence de Kullback-Leibler entre un flux
observé et le flux espéré. AnKLe combine des techniques d’échantillonnage et des méthodes de théorie de l’information.
Il est efficace à la fois en complexité en terme d’espace et en temps, et ne nécessite qu’une passe unique sur le flux. Les
résultats expérimentaux montre que l’estimateur fourni par AnKLe est pertinent pour plusieurs types d’attaques, pour
lesquels les autres méthodes existantes sont significativement moins performantes.

Keywords: Flux de données, Divergence de Kullback-Leibler, Echantillonnage, Adversaire Byzantin.

1 Introduction
The main objective of this paper is to propose an algorithm for estimating the similarity between an

observed data stream and the expected (i.e. idealized) one in the context of massive data streams. More
precisely, we consider the setting of large scale distributed systems, in which each node needs to quickly
process a huge amount of data on the fly. Typically, this data corresponds to IP network traffic, sensors
readings, nodes identifiers or any other data issued from distributed applications. Moreover, nodes can only
locally store very limited data and perform few operations on this data. Additionally, it is often the case
that if some data has not been locally stored for further processing, once it has been read, it cannot be read
anymore (this refers to the one-pass data streaming model).

Given our constraint settings, we propose an algorithm to detect changes in the observed stream with
respect to an expected behavior by relying on sampling techniques and information-theoretic methods.
More precisely, by adequately sampling the observed data stream, we estimate with high accuracy the
distance between the expected stream and the observed one, and this even if the stream has been tampered
with by an adversary. The metric, we use in our context is the Kullback-Leibler (KL) divergence, which
can be viewed as an extension of the Shannon entropy and is often referred to as the relative entropy. Our
main contribution is the proposition of AnKLe (Attack-tolerant eNhanced Kullback-Leibler divergence
Estimator), an algorithm that estimates the relative entropy between the observed stream and the expected
ones in the context of massive data streams, while using only a memory of small size to cope with the very
strict space constraint. Extensive simulations indicate that while AnKLe relies on sampling techniques, the
accuracy of the estimation is very high. Finally, AnKLe is versatile enough to cope with any type of input
distribution, including distribution that have been generated by an adversary. To the best of our knowledge,
an algorithm combining all these strengths for the estimation of relative entropy has never been published
before in the literature. Due to space constraints, we are not able to describe the related work, nevertheless,
we refer the reader to [ABG12] for the full details.
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2 System Model and Background
System Model. We consider a system in which a node P receives a large data stream σ = a1,a2, . . . ,am,
where the i-th element ai of the stream is called an item. The value u of an item is assumed to be drawn from
a large universe N and the length of the stream m is very high (e.g., 232). Moreover, items can be repeated
multiple times in the stream. The number of distinct items in the stream is denoted by n, and thus we have
n≤m. We suppose that items arrive on a regular basis and quickly, and due to memory constraints, need to
be processed sequentially and in an online manner. Therefore, node P can locally store only a small fraction
of the items and perform simple operations on them.

Adversary Model. We suppose that the adversary is omnipotent in the sense that it may actively tamper
with the data stream of any node by observing, inserting, dropping or re-ordering items of their input stream.
The activity of the adversary can be detected by an honest node provided that it can accurately estimate the
divergence between the observed stream and the ideal one. The presence of a high level of divergence is
important as it may be a good indicator of attacks.

Preliminaries. Kullback-Leibler divergence. The Kullback-Leibler (KL) divergence, also called the rela-
tive entropy, is a robust metric for measuring the statistical difference between two data streams. Given two
probability distributions on events p = {p1, . . . , pn} and q = {q1, . . . ,qn}, the Kullback-Leibler divergence
between pu relative to qu is defined as a likelihood ratio with respect to qu : D(p||q) = ∑u∈N pu log pu

qu
=

H(p,q)−H(p), where H(p) = −∑ pu log pu is the empirical (i.e., Shannon) entropy of p and H(p,q) =
−∑ pu logqu is the cross entropy.

Frequency moments. Frequency moments F̀ are important statistical tools, which allows to quantify the
amount of skew in a data stream. Among the remarkable moments, F0 represents the number of distinct
elements in a stream (i.e., n in our model), while F1 corresponds to the size m of the stream. For each `≥ 0,
the `-th frequency moment F̀ of σ is defined as F̀ = ∑u∈N(mu)

`, where mu represents the number of times
the value u appears in the stream σ.

3 Detecting Adversarial Behaviors via KL Divergence Estimation
Building Blocks. We briefly review three algorithms that form the building blocks of the AnKLe algo-
rithm. The first one, due to Alon et al. [AMS96] estimates the `-th frequency moment of a stream. Although
we do not need such a quantity, we adopt the structure of their algorithm to estimate the relative entropy of
a stream. The second algorithm due to Bar-Yossef et al. [BYJK+02] estimates the number of distinct items
in a stream (i.e., n). Finally the third algorithm, proposed by Misra and Gries [MG82], estimates the k most
frequent items of a stream. Details about this algorithm are provided in [ABG12].

The AnKLe algorithm. This section describes AnKLe, the algorithm we propose for computing the KL
divergence of a stream. Our starting point is the re-writing of the KL divergence as follows :

D(qσ||p(U)) =
1
m

(
∑

u∈N
mu log

(mu

m

)
− ∑

u∈N
mu log

(
1
n

))
= log(n)− log(m)+

1
m ∑

u∈N
mu log(mu) . (1)

Thus estimating the KL-divergence amounts in estimating the number of distinct items in the stream in
order to obtain a good approximation of log(n), and in estimating the norm of the entropy FH . While the first
point is solved by relying on BJKST algorithm [BYJK+02], the second point is tackled by extending the
approach proposed by Alon et al [AMS96] to deal with arbitrary distributions of items in the input stream.

Algorithm 1 presents AnKLe, which consists of two phases for computing the KL divergence : the first
one is executed upon reception of the items of the stream (“the for loop a j ∈ σ”), while the second one is
run when m items have been read from the stream (“the forall loop until end”). The first phase is composed
of three tasks, which are executed in parallel. Task T1 estimates the number of distinct items present in the
stream, Task T2 identifies the k most frequent items in the stream, and Task T3 samples random items in
the stream in order to compute their exact frequency. Specifically, Task T3 consists in running a sampling
estimator X on the stream. The basic estimator X = Xi, j is designed so that its mean value is equal to the
norm of the entropy FH and its variance is small. More precisely, we have X = m(r logr−(r−1) log(r−1))
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where r is the random variable representing the number of occurrence of an item v, which is chosen at
random in the stream through its position j being randomly generated (see the first line). The random
variable r counts the number of times v appears in the stream from position j onwards. Formally, r is defined
as r =| { j : j ≥ v,a j = av} | . We can show as in [AMS96], that the basic estimator X is unbiased (i.e., X’s
expectation is equal to FH ) : E[X ] = 1

m ∑u∈N ∑
mu
j=1 m( j log j−( j−1) log( j−1)) = m

m ∑u∈N mu log(mu) = FH .

Algorithm 1: AnKLe algorithm
Input: An input stream σ of length m, k (number of

counters in the Misra-Gries algorithm), s1 and
s2 (for the size of the AMS matrix)

Output: An estimation of D(qσ||p(U))
Choose s1× s2 random integers in [1. .m];
for u1 ∈ [0. .s1],u2 ∈ [0. .s2] do S[u1,u2]← (⊥,⊥);
for a j ∈ σ do

v = a j;
Task T1 :
F̂0← BJKST Algorithm [BYJK+02] fed with v;
Task T2 :
F̂ ←Misra-Gries Algorithm [MG82] fed with v;
Task T3 :
forall the entries i of S st (si,ri) 6= (⊥,⊥) do

if si = v then
ri← ri +1

if j is one the s1× s2 random integers then
assign (v,1) to the first unused entry of S

forall the entries i of matrix S do
if (si,−) ∈ F̂ then

Xi← 0 // si is one of the frequent items
else

Xi← m(ri logri− (ri−1) log(ri−1))
YS← average of all non null entries Xi;
YF̂ ← ∑(si,ri)∈F̂ ri logri;

p← 1−max
(

0, min(YS,YF̂ )−m
10·m

)
;

return D = log F̂0− logm+ p
m
(
YS +YF̂

)
;

To improve the accuracy of the estimation, s1×
s2 such basic estimators Xi j (for 1 ≤ i ≤ s1 and
1 ≤ j ≤ s2) are used, each one sampling a random
position in the stream. From the implementation
point of view, tracking these estimators consists
in storing s1× s2 counters, each one counting the
number of occurrences of an item whose position
has been randomly chosen in the stream. When
item u is read from the input stream, if u has already
one or more counters assigned to it then all these
counters are incremented. In addition, if the posi-
tion at which u has been read in the stream is one
of the chosen locations, then a new counter is assi-
gned to u, and its value is set to one. Thus for each
of these “tracked” items, an exact count of their fre-
quency is continuously maintained, starting from a
random position in the stream.

The post-processing phase of AnKLe algorithm
estimates the KL divergence of the input stream ac-
cording to Relation (1). To accurately estimate the
KL divergence of the stream, one needs to cope
with patterns in which a small number of items
occur with a very high frequency with respect to
the other items. In this case, the basic estimator X
alone is unable to compute the norm of the entropy
in bounded space as the variance of the estimator
grows with the norm of the entropy. In Chakrabarti
et al. [CCM07], the authors propose to decompose
the computation of the entropy as the sum of the
entropy of the most frequent items and the estima-
tion of the entropy of the remaining items of the stream. In AnKLe, we extend their method to deal with
any stream distribution in order to guarantee that whatever the strategy of the adversary, the error on the
estimation is kept small (see for instance the performance analysis below). Therefore, the basic estimator X
is computed on unfrequent items, while the contribution of highly frequent items on the norm of the entropy
is directly computed as ∑(si,ri)∈F̂ ri logri (cf., YF̂ ), in which the set F̂ represents the set of highly frequent
items dynamically computed in Task T2. Finally, to prevent some of the items to appear in both terms, we
weight the contribution of both terms by p.

Performance Analysis. In this section, we evaluate the accuracy of AnKLe by comparing its estimation
with the exact value of the KL divergence computed between the observed input stream and the uniform one.
We also compare AnKLe to adapted versions of the estimator-based algorithms of Alon et al. [AMS96] and
Chakrabarti et al. [CCM07]. In the former case, the original estimator computes the k-th frequency moment
of a stream, while in the latter case, the original estimator measures the entropy of a stream. In both cases, the
adapted versions compute instead the norm of the entropy. All the experiments have been conducted on syn-
thetic traces of streams generated from classical distributions that capture different adversarial strategies :
Uniform, Poisson, Zipf, Pascal. More precisely, all the generated streams have a length of m = 200,000
items. We have tested 750 different settings of n, s1, and s2 (s1 and s2 being related to the size of the es-
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(a) Distribution : Uniform
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(b) Distribution : Zipf – α = 1
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(c) Distribution : Zipf – α = 4
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(d) Distribution : Pascal
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(e) Estimation only as a function of s1
and s2 (Pascal Distribution). Settings : n=
m/125 – k = 0.1n
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(f) Estimation only as a function of
k (Pascal Distribution). Settings : n =
m/100 and s1 = s2 = m/80

FIGURE 1: KL divergence estimation as a function of n, k, s1 and s2

timator matrix in Task T3), and k, the number of counters used in Task T2. For each setting of parameters,
we have conducted 10 trials of the same experiment and compute the average and the standard deviation.
Results obtained for the AnKLe, AMS and CCM estimators, averaged over 45,000 experiments, clearly
show that AnKLe outperforms other ones. Figure 1 shows the evolution of the KL divergence estimation as
a function of n, k, s1 and s2. In the four first figures, the abscissa represents the number of distinct items in
the stream as a ratio of its length m. For each value of n ∈ {m/100, . . . ,m/20}, all the other parameters k, s1
et s2 also vary in the experiments, respectively in {0.1n, . . . ,n}, {m/100,. . .,m/20},and{m/100, . . . ,m/20}.
Fig. 1(e) (resp. Fig. 1(f)) shows the influence of s1 and s2 (respectively of k) on KL divergence estimation.
The main observation drawn from these figures is that AnKLe fully overlaps with the exact value of the KL
divergence, which clearly demonstrates the robustness of this estimator in presence of any input streams.

Conclusion. To summarize, experiments have validated the high accuracy and robustness of AnKLe in
presence of a very large spectrum of distributions. This illustrates the importance of the weighting factor
applied to both terms of the estimator. We left as future work the theoretical analysis of the behavior of
AnKLe. In particular, we would like to conduct a detailed analysis on how the different parameters impact
the precision of the estimation and the space complexity of AnKLe (and vice-versa).
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