
Indexing Metric Spaces with Nested Forests of

Topological Balls and Hyperplanes

José Martinez, Zineddine Kouahla

To cite this version:

José Martinez, Zineddine Kouahla. Indexing Metric Spaces with Nested Forests of Topological
Balls and Hyperplanes. 23rd Int. Conf.on Database and Expert Systems Applications - DEXA
2012, Sep 2012, Wien, Austria. pp.458-465, 2012. <hal-00711604>

HAL Id: hal-00711604

https://hal.archives-ouvertes.fr/hal-00711604

Submitted on 9 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53008541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00711604

Indexing Metric Spaces with Nested Forests of

Topological Balls and Hyperplanes

José Martinez and Zineddine Kouahla

Lunam Université
Laboratoire d’informatique de Nantes-Atlantique (LINA, UMR CNRS 6241)

École polytechnique de l’université de Nantes – BP 50609 – F-44306 Nantes cedex 3
{name.surname}@univ-nantes.fr

Abstract. Searching in a dataset for objects that are similar, with re-
spect to a distance, to a given query object is a fundamental problem
for several applications that use complex data, e.g., strings, graphs. The
main difficulties are to focus the search on as few elements as possible
and to further limit the computationally-extensive distance calculations
between them.
Here, we introduce a forest data structure for indexing and querying such
data. The efficiency of our proposal is studied through experiments on
real-world datasets and a comparison with previous proposals.

1 Introduction

For several decades, indexing techniques have been developed in order
to deal with efficient searches over large collections of data, especially
associative searches, i.e., searches where part of the information to be re-
trieved is provided, namely a key. This basic problem has been extended
over the years in order to retrieve information based on any subset of
its contents as well as taking care of imprecisions. When considering in-
dexing data as vectors, homogeneous or inhomogeneous ones, it turned
out that search and indexing become more and more difficult when the
dimension of the so-called vectors increases. This has been named the
“dimensionality-curse problem.” The reader can find several surveys to
present and compare existing multidimensional indexing techniques [8]
[2] [10].
However, the objects to be indexed are often more complex than mere
vectors (e.g., sets, graphs) or cannot be simply and meaningfully con-
catenated in order to give a larger vector (e.g., colour histograms and
keywords for jointly describing images in a multimedia database). Hence,
the focus of indexing has partly moved from multidimensional spaces to
metric spaces, i.e., from exploiting the data representation itself to work-
ing on the similarities that can be computed between objects. Inherently,
the difficulties of multidimensional spaces remain, in a generalised ver-
sion, whereas new difficulties arise due to the lack of information on the
objects.
This paper introduces a Metric-space Forest Indexing (MFI) technique.
It is organised as follows: Section 2 introduces kNN queries and reviews

a short taxonomy of indexing technique in metric spaces. Then, Sec-
tion 3 introduces our proposal, overviews its main characteristics and
the corresponding algorithms. Section 4 discusses the experimental re-
sults. Section 5 concludes the paper and introduces research directions.

2 Indexing in Metric Spaces

Metric spaces are becoming more and more useful, for several applica-
tions need to compare objects based on a similarity between them that
is formalised as a mathematical distance. Let us focus the basic search
query and introduce some indexing technique from the literature.

2.1 Similarity Queries in Metric Spaces

There exist numerous measures of similarity applicable to various kinds
of “objects,” e.g., Minkowski distances, among which the best known
are the Manhattan distance and the Euclidean distance, that can be
applied to any vector-like data such as colour histograms in multimedia
databases.

Formally, a metric space is defined for a family of elements that are
comparable through a given distance.

Definition 1 (Metric space). Let O be a set of elements. Let d :
O ×O → R

+ be a distance function, which verifies:

1. non-negativity: ∀(x, y) ∈ O2, d(x, y) ≥ 0;

2. reflexivity: ∀x ∈ O, d(x, x) = 0;

3. symmetry: ∀(x, y) ∈ O2, d(x, y) = d(y, x);

4. triangle inequality: ∀(x, y, z) ∈ O3, d(x, y) + d(y, z) ≤ d(x, z).

Then (O, d) is a metric space.

The concept of metric space is rather simple and leads to a limited num-
ber of possibilities for querying an actual database of such elements.
These are called similarity queries and several variants exist. We con-
sider k nearest neighbour (kNN) searches, i.e., searching for the k closest
objects with respect to a query object.

Definition 2 (kNN query). Let (O, d) be a metric space. Let q ∈ O
be a query point and k ∈ N be the expected number of answers. Then
(O, d, q, k) defines a kNN query, the value of which is S ⊆ O such that
|S| = k (unless |O| < k) and ∀(s, o) ∈ S ×O, d(q, s) ≤ d(q, o).

2.2 Background

Metric spaces introduce the notion of topological ball, which is close
to a broad match. It allows to distinguish between inside and external
objects.

��������	A��BCDE�F�D�B����

��	���	�AD�B	A������D�D�

����

�������

������

�	A���	A������D�D� ��D��	A��
	A������D�D�

�A��B	A������D�D�

��������

�������

���������

�D��D�����

�������

�����
�D��D�����

Fig. 1. A simplified taxonomy of indexing techniques in metric spaces

Definition 3 ((Closed) Ball). Let (O, d) be a metric space. Let p ∈ O
be a pivot object and r ∈ R

+ be a radius. Then (O, d, p, r) defines a
(closed) ball, which can partition inner objects from outer objects:

I(O, d, p, r) = {o ∈ O : d(p, o) ≤ r} ;
O(O, d, p, r) = {o ∈ O : d(p, o) > r}.

Another useful partitioning concept is the one of generalised “hyper-
plane.”

Definition 4 (Generalised hyper-plane). Let (O, d) be a metric space.
Let (p1, p2) ∈ O2 be two pivots, with d(p1, p2) > 0. Then (O, d, p1, p2)
defines a generalised hyper-plane:

H(O, d, p1, p2) = {o ∈ O : d(p1, o) = d(p2, o)}

which can partition “left-hand” objects from “right-hand” objects:

L(O, d, p1, p2) = {o ∈ O : d(p1, o) ≤ d(p2, o)} ;
R(O, d, p1, p2) = {o ∈ O : d(p1, o) > d(p2, oP)}.

Based on these two partitioning techniques, we can introduce a short
taxonomy of some indexing techniques in metric spaces (See Figure 1).
There are two main classes:
1. The first class is based on the partitioning of the space. Two sub-

approaches are included in this first class:
(a) One of them uses ball partitioning, like VP-tree [13], mVP-tree

[3], etc.
(b) The other approach uses hyper-plane partitioning such as GH-

tree [12], GNAT [4], etc.
2. The second class does enforce a partitioning (non-space-partitioning).

There, we find M-tree, Slim-tree, etc.
In the second class, the M-tree [7] builds a balanced index, allows in-
cremental updates, and it performs reasonably well in high dimension.
Unfortunately it suffers from the problem of overlapping that increases
the number of distance calculations to answer a query. There is an opti-
mised version of it: the Slim-tree [11]. It mainly reorganises the M-tree
index in order to reduce overlaps. The used algorithm, called slim-down,

has shown good performances on the research algorithm and has reduced
its processing time. Its defect is the need for reinserting objects.
The first class, the one base on space-partitioning of the space, either
with balls or with hyper-planes, is richer.
The GH-tree is a type of index based on the partitioning through hyper-
planes. It has proven its efficiency in some dimensions but it is still
inefficient in large dimensions. The principle of this technique is the re-
cursive partitioning of space into two regions. We choose each time two
pivots, and each object is associated to the nearest pivot.
The VP-tree is a type of index based on a partitioning thanks to a ball.
The VP-tree building process is based on finding the median element of
a set of objects. The mVP-tree is an enary generalisation of the VP-tree.
The mVP-tree nodes are divided into quantiles. In fact, the operations
(insertion and search) on this type of index are very similar to VP-trees.
Often, it behaves better; but there is not enough differences to investigate
further.
In recent years, a new technique has emerged, the MM-tree [9], which
also uses the principle of partitioning by balls, but it is based on the
exploitation of regions obtained from the intersection between two balls.
The general idea of this structure is to select two pivots from the set of
objects, in a random way, then to partition the space into four disjoint re-
gions using these two balls, their intersection, their respective differences,
and their “external space,” i.e., the complementation of their union. The
partitioning is done in a recursive way. In order to improve the balanc-
ing of the tree, a semi-balancing algorithm is applied near to the leaves,
which reorganises the objects in order to gain one level when possible.
An extension of this technique has been developed: the Onion-tree [5]. Its
aim is to divide the region external space into successive expansions that
improve the search algorithm, because this last region is particularly
vast. The goal is to have a wider and shallower index in order to go
faster to the right answers to a query. In our opinion, the problem is not
totally solved because the construction phase is always slow due to the
reinsertion of objects.

3 Metric Forest Indexing

In this section, we introduce a forest of (quadrary) trees, called MFI for
short, as an indexing technique in metric spaces. More specifically, it
is a family of such trees as we shall see that the framework is generic
and allows various implementations. It is a memory-based metric access
method that divides recursively the dataset into disjoint regions.

3.1 Definition

Let us introduce formally the MFI.

Definition 5 (MFI). Let M = (O, d) be a metric space. Let E ⊂ O
be a subset of objects to be indexed. Let 1 ≤ cmax ≤ |E| be the maximal
cardinal that one associates to a leaf node.

��

��

���

�

�
��

�

�
��
������

�
���

�
	

AB
�

CB
�

Fig. 2. The partitioning principle of one MFI node

We define N as the nodes of a so-called MFI in the usual two-fold way:
Firstly, a leaf node L consists merely of a subset of the indexed objects,
all of them belonging to a closed ball:

(p, r, EL) ∈ O × R
+ × 2O

with:

– EL ⊆ E;
– |EL| ≤ cmax.

Also, the contents of the leaves partition E.
Secondly, an internal node N is a generic set of couples with a recursive
component:

{(P1, N1), . . . , (Pn, Nn)} ∈ 2P×NN

where:

– P is a generic data structure;
– each Ni is a sequence of (sub-)nodes;
– n ≥ 1. (Note that the forest becomes de facto a tree when all its

internal nodes have arity 1.)

This generic definition is instantiated hereafter based on the heuristic
rules, namely: (i) avoiding too large balls (especially near the root of the
tree), (ii) intersecting them to further limit their volume, (iii) partitioning
them into concentric rings.
Figure 2 illustrates the way a node of the forest is built at a given step
in the refining process of recursively splitting the dataset. The structure
of the following instance is rather clumsy at first sight. Let us explain it.
Two distinct pivots are chosen at random in a given data subset. They
serve both as the centres of two balls each and as the base points for an
hyper-plane. The two balls create rings that help to reduce the number
of searches children searches when then query ball has an intersection
either with the ring or with the inner ball but not both.
The first ball, for each pivot, has a radius that is equal to half the dis-
tance between the pivots. The second ball has a radius that is equal to
a third half of this distance. The goal is to avoid too large balls since in
“multidimensional” the volume grows exponentially with respect to the
radius.
Thanks to these balls and to the hyper-plane, we can divide the space
into four disjoint regions, namely (I) and (II) the inner balls, (III) and
(IV) the intersection between the outer balls and their corresponding

“half-plane”. There remains a fifth part that is not to be treated as
part of the node. The rationale being that idea is again to avoid very
large balls, especially near the root of the “tree” because in that case no
pruning could occur.
Note that this definition is just one among several others. We shall exem-
plify this in Section 4 since previously proposed metric trees have been
implemented under our framework. In the following definition we provide
the formal definition of this proposal, which is slightly more complex that
described above.

Definition 6 (An MFI Instance). Let M = (O, d) be a metric space.
Let E ⊂ O be a subset of objects to be indexed. Let 1 ≤ cmax ≤ |E| be
the maximal cardinal that one associates to a leaf node.
Then, we define the following instance through an instantiation of the
generic component P of an MFI:

(p1, p2, d12, ir1, ir2, ior1, ior2, sor1, sor2) ∈ O2 × R
+6

where:
– (p1, p2) are two distinct objects, i.e., with d(p1, p2) > 0, called pivots;
– d12 = d(p1, p2) is redundantly stored to save computations, from

which we also define an inner radius ir = d12/2 and an outer radius
or = 3/2d12;

– ir1 ≤ ir and ir2 ≤ ir are the distances to the farthest object in
the sub-tree rooted at that node N with respect to the inner balls
centred on p1 and p2 respectively, i.e., sub-spaces (I) and (II), with
iri = max{d(pi, o), ∀o ∈ N} for i = 1, 2 where the set notation o ∈ N
is abusively used for the union of the leaf extensions that are rooted
at N ;

– ir < ior1 ≤ sor1 ≤ or and ir < ior2 ≤ sor2 ≤ or are their more
complex counterparts for data belonging to sub-spaces (III) and (IV),
for (iori, sori) delimits a ring centred on pi;

Then, the children of each couple always consists of four sub-nodes,
(N1, N2, N3, N4), such that:
– N1 = {o ∈ N : d(p1, o) ≤ ir ∧ d(p2, o) > r} for the first inner

ball centred on p1 (region I) that includes the single point on the
hyper-plane;

– N2 = {o ∈ N : d(p2, o) ≤ ir∧d(p1, o) ≥ r} for the partial ball centred
on p2 (region II) that excludes the single point on the hyper-plane;

– N3 = {o ∈ N : ir < d(p1, o) ≤ or ∧ d(p1, o) ≤ d(p2, o)} for the
intersection between the ring centred on p1 and the corresponding
hyperplane including the points of this plane, i.e., region III;

– N4 = {o ∈ N : ir < d(p2, o) ≥ or∧d(p2, o) < d(p1, o)} for region IV;
with the same informal set notation for the extension of an internal node.

3.2 Building an MFI data structure

Building an MFI can be done incrementally or in batch mode. For the
sake of clarity, and due to space limitation too, Algorithm 1 presents
formally the batch version only, corresponding to the more specific MFI
intance of Definition 6.

Algorithm 1 Building an MFI instance in batch-mode

Build
(

E ⊆ O, d ∈ O ×O → R
+, cmax ∈ N

∗
)

∈ N
with either:
– p = any{(o ∈ E};
– r = max{d(p, o) : o ∈ E};

or:
– (p1, p2) = any{(o1, o2) ∈ E2 : d(o1, o2) > 0};
– d12 = d(p1, p2);
– ir = d12/2;
– or = 3/2d12;
– ir1 = max{d(p1, e) : ∀e ∈ E, d(p1, e) ≤ ir};
– ir2 = max{d(p2, e) : ∀e ∈ E, d(p1, e) ≤ ir};
– E1 = {o ∈ E : d(p1, o) ≤ ir ∧ d(p2, o) ≤ r};
– E2 = {o ∈ E : d(p1, o) < r ∧ d(p2, o) ≥ r};
– E3 = {o ∈ E : d(p1, o) ≥ r ∧ d(p2, o) < r};
– E4 = {o ∈ E : d(p1, o) ≥ r ∧ d(p2, o) ≥ r};

∆
=























































{(⊥, ∅)} if E = ∅
{((p, r), E)} if |E| ≤ cmax

{((p, r), E)} if ∀(o1, o2) ∈ E2, d(o1, o2) = 0














































(

p1, p2, d12,
ir1, ir2, ior1, sor1, ior2, sor2

)

,








Build(E1, d, cmax),
Build(E2, d, cmax),
Build(E3, d, cmax),
Build(E4, d, cmax)























































∪ Build(E \ E1 \ E2 \ E3 \ E4, d, cmax) otherwise

For cases where the whole collection of data to index is known before
hand, a batch-mode construction can be chosen. However, in most situ-
ations, an incremental version would be required.
The incremental version is more intricate, therefore we describe it liter-
ately only. The insertions are done in a top-down way.
Initially, the forest is empty, i.e., it is an empty set, that can be translated
into a singleton containing a single empty leaf node.
Then, the first insertions in a leaf make it only grow until a maximum
number of elements, i.e., cmax, is attained. Due to time complexity con-
siderations, its value cannot be larger than

√
n where n = |E| is the

cardinal of the whole population of objects to be inserted in the tree.
The ball is updated whenever a new object is inserted in the leaf exten-
sion.
When the cardinal limit is reached, a leaf is replaced by an internal node
and four new leaves are obtained by splitting the former set of objects
into four subsets according to the conditions given in Definition 6 (or
another variant).
Here, in order to split the object set, two distinct pivots have to be cho-
sen. The selection of these pivots plays an important role in our proposal
along with the cmax parameter. The goal is to balance, as much as pos-
sible, the tree. In Algorithm 1, without clear guidelines, we “decided” to
choose two objects at random.
Inserting a new object into an internal node amounts to selecting the
subtree that has to contain it with respect to the conditions given in
Definition 6 and applying the insertion recursively. As a side-effect, iri,
or iori and/or sori may be modified.
However, the new object does not necessarily belong to regions I to IV.
In that case, we create a brother node, i.e., the “tree” becomes an actual
forest.
Let us note that, at each internal node, only two distances are calculated
in order to insert a new object. Besides, the forest tends to be rather
balanced, hence inserting a new object is a logarithmic operation, in
amortised cost.

3.3 Similarity queries

Next, let us shortly describe the algorithm for answering kNN queries
thanks to an MFI. We develop a “standard” algorithm, i.e., a kNN
search that runs a “branch-and-bound” algorithm where the query ra-
dius rq is monotonically decreasing down to the distance to the forth-
coming kth answer. The algorithm accepts an additional parameter A,
A = ((d1, o1), (d2, o2), . . . , (dk′ , ok′)), i.e., a solution “so-far,” with k′ ≤ k
and initialised to an empty answer.
Basically, the forest is traversed in pre-order. When arriving at a leaf
node, the currently known sub-solution is merged with the local sub-
solution. Note that “k-sort” and “k-merge” are variants of the sort and
merge algorithms respectively where the size of the answer is limited at
most to the first k values. These variants are faster.
When arriving on an internal node, the various children regions are envis-
aged, the remaining candidates are ordered and hopefully some of them

Dimensions
Dataset #Elements Distance Apparent Intrinsic Description

French Cities 36,000 L2 2 2 2D Coordinates
MPEG-7 10,000 L1 64 7 SCD

Table 1. Real-world datasets

pruned, finally the search is pursued in the elected children in expected
order of relevance. In that way, the sub-solution from a previous call is
transmitted to the next call, hence improving the knowledge of the next
branch on the query upper-bound.

4 Experiments and Analysis

In order to explore the efficiency of our approach, we run some experi-
ments. Firstly, we choose a few real-world datasets and the accompany-
ing queries, then run our indexing structure along previously introduced
ones, and finally evaluate some measures on the index structure as well
as the kNN searches.

4.1 Datasets

Real-world datasets are summarised in Table 1. The so-called intrinsic
dimensional of a dataset is computed thanks to the Chávez et al. formula
[6]:

d =
1

2

µ2

σ
(1)

where µ is the average value of the observed distances between pairs of
objects and σ is the variance. It gives a measure of the complexity of
indexing a given dataset.
French cities coordinates provides a base line, since 2D coordinates are
easy to index. By contrast, the Scalable Colour Descriptors (SCD) of
MPEG-7 are multimedia descriptors that present large dimensions.1 They
are not suitable, in this form, for common multidimensional indexing
techniques such as R-trees, X-trees [1], etc. However, their intrinsic di-
mensionality is not that high, “only” 7.
To run the search algorithms, we used 1,000 different objects as queries
and averaged the results.

4.2 Algorithms

Actually, we developed and used five algorithms:
– Naive. This is the basic search algorithm, which consists basically

of an improved sort limited to the first kth values, the complexity
of which is O(n.D) + O(n. log2 k) where D is the complexity of the
used distance. It serves as a (worst) comparison stallion.

1 Available from the COPhIR collection at http://cophir.isti.cnr.it.

http://cophir.isti.cnr.it

VP GH MM MFI
8 log sqrt 8 log sqrt 8 8 log sqrt

min 61,763 116,563 588,529 271,929 233,864 198,431 152,170 59,093 47,476 182,950
average 1,102,326 1,083,944 1,368,951 1,465,409 1,320,001 1,254,771 1,224,772 983,814 976,551 1,055,460
stddev 410,149 375,947 264,875 511,888 443,818 402,526 449,584 372,059 376,884 363,224

max 1,967,888 1,860,595 1,887,112 2,500,494 2,204,342 1,884,863 2,079,803 1,724,726 1,716,615 1,792,628
Table 2. SCD experimental measures

– FMI. This is our partitioning proposal.
– GH, VP, and MM. These are not the original versions but three

bucketed implementations of them, developed under our framework.
This allows a fair comparison, all the versions being implemented
and instrumented with a largely common code.

The cmax parameter was chosen either as a constant, 8, the logarithm
(base 2) or the square root of the size of the collection. For our MM-
tree-like implementation, only the constant 8 is used; it corresponds to
the original semi-balancing algorithm as well as to a tight constraint on
the time complexity for building the tree.
In all the experiments, we run kNN searches with k equal to 20.

4.3 Measures on kNN Searches

When running the queries, we extracted several measures. Hereafter, we
present only the overall performance, i.e., the sum of (i) the number of
accessed objects, (ii) the number and the cost of distance computations,
and (iii) the number of distance comparisons including the sort and merge
phases.
For the näıve algorithm, this is almost a constant; effectively, it appears
as an horizontal line on the various figures.
Experiments for the French cities dataset, the easy one, show clearly
(See Figure 3) that the performances are largely better than a k-sort.
We note that they tend to degrade as the size of the leaves increases,
but this degradation is less important for our proposal than for GH- and
VP-like trees (and remember that MM-like has a fixed size of 8).
Experiments for the multimedia dataset show clearly two points (See
Figure 4): Firstly, the overall performances largely degrade for all the
proposals, becoming in some cases worse than the näıve algorithm! This
is just another illustration of the so-called “curse of dimensionality” prob-
lem. Secondly, our proposal is the one that resists the best, being largely
under the other ones for cmax =

√

|E|.
Table 2 provides the numerical values of Figure 4 where we highlighted
the smallest values on each line. It turns out that our proposal with a
logarithmic size of the leaves is probably the best compromise.

5 Conclusion

In this paper, we have extended the hierarchy of indexing methods in
metric spaces with a family of indices consisting of a generalisation of

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 200 400 600 800 1000 1200

naive (upper bound)
GH
MM
VP
MF

(a) 8

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 200 400 600 800 1000 1200

naive (upper bound)
GH
MM
VP
MF

(b) log

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 200 400 600 800 1000 1200

naive (upper bound)
GH
MM
VP
MF

(c) sqrt

Fig. 3. French cities dataset performance curves

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 200 400 600 800 1000 1200

naive (upper bound)
GH
MM
VP
MF

(a) 8

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 200 400 600 800 1000 1200

naive (upper bound)
GH
MM
VP
MF

(b) log

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 200 400 600 800 1000 1200

naive (upper bound)
GH
MM
VP
MF

(c) sqrt

Fig. 4. SCD performances curves

metric trees: metric forests. We provided a first instantiation that com-
bines three approaches that seems a priori interesting when partitioning
a search space and found in the space partitioning part of the literature.
In addition, thanks to the concept of forest, we introduce some aspects
that are present in M-tree, i.e., several balls are located at the same level
which should help to avoid exploring some branches. Experiments are
encouraging and we shall work on determining the parameters that best
contribute to reducing the search effort.
Next, we notice that the performance curves tend to have close shapes.
We do believe that there is a intrinsic limit to the gain that can be achieve
through this king of improvements and that parallelism is unavoidable
for dealing with large datasets that present inherent “dimensionality”
difficulties. Therefore, we shall also investigate parallel search on these
structures. Working on a forest rather than a tree certainly offers addi-
tional possibilities.

References

1. S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An in-
dex structure for high-dimensional data. In Proceedings of the 22nd
International Conference on Very Large Data Bases (VLDB), pages
28–39, Mumbai (Bombay), India, 1996.

2. Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Search-
ing in high-dimensional spaces: Index structures for improving the
performance of multimedia databases. ACM Computing Surveys,
33(3):322–373, September 2001.

3. Tolga Bozkaya and Meral Özsoyoglu. Indexing large metric spaces for
similarity search queries. ACM Transactions on Database Systems,
24:361–404, September 1999.

4. Sergey Brin. Near neighbor search in large metric spaces. Proceedings
VLDB Conference Switzerland, 1995, pages 574–584, 1995.

5. Caio César Mori Carélo, Ives Rene Venturini Pola, Ricardo Ro-
drigues Ciferri, Agma Juci Machado Traina, Caetano Traina Jr.,
and Cristina Dutra de Aguiar Ciferri. Slicing the metric space to
provide quick indexing of complex data in the main memory. Inf.
Syst, 36:79–98, 2011.

6. Edgar Chavez, Gonzalo Navarro, Jose Luis Marroquin, and Ricardo
Baeza-Yates. Searching in metric spaces. ACM Computing Surveys,
33(3), September 2001.

7. Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient
access method for similarity search in metric spaces. Proceedings of
the 23rd VLDB International Conference, pages 426–435, 1997.

8. V. Gaede and O. Günther. Multidimensional access methods. ACM
Computing Surveys, 30(2):170–231, 1998.

9. Ives R. V. Pola, Caetano Traina, Jr, and Agma J. M. Traina. The
mm-tree: A memory-based metric tree without overlap between
nodes. ADBIS 2007, LNCS 4690:157–171, 2007.

10. Hanan Samet. Foundations of Multidimensional And Metric Data
Structures. Morgan-Kaufmann, September 2006. 993 p.

11. Caetano Traina Jr, Agma Traina, Bernhard Seeger, and Chris-
tos Faloutsos. Slim-trees: High performance metric trees minimiz-
ing overlap between nodes. International Conference on Extending
Database Technology (EDBT), 2000.

12. Jeffrey K. Ulhmann. Satisfying general proximity/similarity queries
with metric trees. Information Processing Letters, 40:175–179, 1991.

13. Peter N. Yianilos. Data structures and algorithms for nearest neigh-
bor search in general metric spaces. proceedings of the 4th Annual
In ACM-SIAM Symposium on Discrete Algorithms, pages 311–321,
1993.

	Indexing Metric Spaces with Nested Forests of Topological Balls and Hyperplanes

