
Pancake Flipping is Hard

Laurent Bulteau, Guillaume Fertin, Irena Rusu

To cite this version:

Laurent Bulteau, Guillaume Fertin, Irena Rusu. Pancake Flipping is Hard. Springer Verlag.
37th International Symposium on Mathematical Foundations of Computer Science (MFCS
2012), Aug 2012, Bratislava, Slovakia. 7467, pp.247-258, 2012, Lecture Notes in Computer
Science. <hal-00717712>

HAL Id: hal-00717712

https://hal.archives-ouvertes.fr/hal-00717712

Submitted on 13 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00717712

Pancake Flipping Is Hard

Laurent Bulteau, Guillaume Fertin, and Irena Rusu

Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241
Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France

{Laurent.Bulteau, Guillaume.Fertin, Irena.Rusu}@univ-nantes.fr

Abstract. Pancake Flipping is the problem of sorting a stack of pancakes of
different sizes (that is, a permutation), when the only allowed operation is to
insert a spatula anywhere in the stack and to flip the pancakes above it (that is,
to perform a prefix reversal). In the burnt variant, one side of each pancake is
marked as burnt, and it is required to finish with all pancakes having the burnt side
down. Computing the optimal scenario for any stack of pancakes and determining
the worst-case stack for any stack size have been challenges over more than three
decades. Beyond being an intriguing combinatorial problem in itself, it also yields
applications, e.g. in parallel computing and computational biology.
In this paper, we show that the Pancake Flipping problem, in its original (unburnt)
variant, is NP-hard, thus answering the long-standing question of its computa-
tional complexity.

Keywords. Pancake problem, Computational complexity, Permutations, Prefix
reversals.

1 Introduction

The pancake problem was stated in [7] as follows:

The chef in our place is sloppy, and when he prepares a stack of pancakes they come out
all different sizes. Therefore, when I deliver them to a customer, on the way to the table I
rearrange them (so that the smallest winds up on top, and so on, down to the largest at the
bottom) by grabbing several from the top and flipping them over, repeating this (varying the
number I flip) as many times as necessary. If there are n pancakes, what is the maximum
number of flips (as a function of n) that I will ever have to use to rearrange them?

Stacks of pancakes are represented by permutations, and a flip consists in reversing
a prefix of any length. The previous puzzle yields two entangled problems:

– Designing an algorithm that sorts any permutation with a minimum number of flips
(this optimization problem is called MIN-SBPR, for Sorting By Prefix Reversals).

– Computing f(n), the maximum number of flips required to sort a permutation of
size n (the diameter of the so-called pancake network).

Gates and Papadimitriou [9] introduced the burnt variant of the problem: the pan-
cakes are two-sided, and an additional constraint requires the pancakes to end with the
unburnt side up. The diameter of the corresponding burnt pancake network is denoted
g(n). A number of studies [4–6, 9, 11–13] have aimed at determining more precisely
the values of f(n) and g(n), with the following results:

– f(n) and g(n) are known exactly for n ≤ 19 and n ≤ 17, respectively [5].
– 15n/14 ≤ f(n) ≤ 18n/11 +O(1) [12, 4].
– b(3n+ 3)/2c ≤ g(n) ≤ 2n− 6 [5] (upper bound for n ≥ 16).

Considering MIN-SBPR, 2-approximation algorithms have been designed, both for the
burnt and unburnt variants [6, 8]. Moreover, Labarre and Cibulka [13] have character-
ized a subclass of signed permutations, called simple permutations, that can be sorted
in polynomial time.

The pancake problems have various applications. For instance, the pancake net-
work, having both a small degree and diameter, is of interest in parallel computing.
The algorithmic aspect, i.e. the sorting problem, has applications in comparative ge-
nomics, since prefix reversals are possible elementary modifications that can affect a
genome during evolution. A related problem is Sorting By Reversals [1] where any
subsequence can be flipped at any step, not only prefixes. This problem is now well-
known, with a polynomial-time exact algorithm [10] for the signed case, and a 1.375-
approximation [2] for the APX-hard unsigned case [3].

In this paper, we prove that the MIN-SBPR problem is NP-hard (in its unburnt vari-
ant), thus answering a question which has remained open for several decades. We in fact
prove a stronger result: it is known that the number of breakpoints of a permutation (that
is, the number of pairs of consecutive elements that are not consecutive in the identity
permutation) is a lower bound on the number of flips necessary to sort a permutation.
We show that deciding whether this bound is tight is already NP-hard.

2 Notations

We denote by Ja ; bK the interval {a, a+1, . . . , b} Let n be an integer. Input sequences
are permutations of J1 ; nK, hence we consider only sequences where all elements are
unsigned, and there cannot be duplicates. We use upper case for sequences, and lower
case for elements.

Consider a sequence S of length n, S =
〈
x1, x2, . . . , xn

〉
. Element x1 is said to

be the head element of S. Sequence S has a breakpoint at position r, 1 ≤ r < n if
xr 6= xr+1 − 1 and xr 6= xr+1 + 1. It has a breakpoint at position n if xn 6= n.
We write db(S) the number of breakpoints of S. Note that having x1 6= 1 does not
directly count as a breakpoint, and that db(S) ≤ n for any sequence of length n. For
any p ≤ q ∈ N, we write Ipq the sequence

〈
p, p+1, p+2, . . . , q

〉
. I1n is the identity. For

a sequence of any length S =
〈
x1, x2, . . . , xk

〉
, we write ?S the sequence obtained

by reversing S: ?S =
〈
xk, xk−1, . . . , x1

〉
. Given an integer p, we write p + S =〈

p+ x1, p+ x2, . . . , p+ xk
〉
.

The flip of length r is the operation that consists in reversing the r first elements of
the sequence. It transforms

S =
〈
x1, x2, . . . , xr, xr+1, . . . , xn

〉
into S′ =

〈
xr, xr−1, . . . , x1, xr+1, . . . , xn

〉
.

Property 1. Given a sequence S′ obtained from a sequence S by performing one flip,
we have db(S′)− db(S) ∈ {−1, 0, 1}.

〈
5, 2, 3, 1, 4

〉↗ 〈
1, 3, 2, 5, 4

〉
→ ⊥

→
〈
4, 1, 3, 2, 5

〉
→

〈
2, 3, 1, 4, 5

〉
→

〈
3, 2, 1, 4, 5

〉
→

〈
1, 2, 3, 4, 5

〉
↘ 〈

1, 4, 3, 2, 5
〉
→ ⊥〈

5, 2, 3, 4, 1
〉
→

〈
1, 4, 3, 2, 5

〉
→ ⊥

Fig. 1. Examples of efficient flips. Sequence
〈
5, 2, 3, 1, 4

〉
is efficiently sortable (in four flips),

but
〈
5, 2, 3, 4, 1

〉
is not.

A flip from S to S′ is said to be efficient if db(S′) = db(S)− 1, and we reserve the
notation S → S′ for such flips. A sequence of size n, different from the identity, is a
deadlock if it yields no efficient flip, and we write S → ⊥. By convention, we underline
in a sequence the positions corresponding to possible efficient flips: there are at most
two of them, and at least one if the sequence is neither a deadlock nor the identity.

A path is a series of flips, it is efficient if each flip is efficient in the series. A
sequence S is efficiently sortable if there exists an efficient path from S to the identity
permutation (equivalently, if it can be sorted in db(S) flips). See for example Figure 1.

Let S be a sequence different from the identity, and T be a set of sequences. We
write S =⇒ T if both following conditions are satisfied:

1. for each T ∈ T, there exists an efficient path from S to T .
2. for each efficient path from S to the identity, there exists a sequence T ∈ T such

that the path goes through T .

If T consists of a single element (T = {T}), we may write S =⇒ T instead of S =⇒
{T}. Note that condition 1. is trivial if T = ∅, and condition 2. is trivial if there is no
efficient path from S to I1n. Given a sequence S, there can be several different sets T
such that S =⇒ T. The following properties are easily deduced from the definition of
=⇒.

Property 2. Given any sequence S 6= I1n,

S =⇒ I1n ⇔ S is efficiently sortable.
S =⇒ ∅ ⇔ S is not efficiently sortable.

Property 3. If S =⇒ {S1, S2}, S1 =⇒ T1 and S2 =⇒ T2, then S =⇒ T1 ∪ T2.

3 Reduction from 3-SAT

The reduction uses a number of gadget sequences in order to simulate boolean variables
and clauses with subsequences. They are organized in two levels (where level-1 gadgets
are directly defined by sequences of integers, and level-2 gadgets are defined using a
pattern of level-1 gadgets). For each gadget we define, we derive a property character-
izing the efficient paths that can be followed if some part of the gadget appears at the
head of a sequence. The proofs for all these properties follow the same pattern, with no
obstacle appart from the increasing complexity of the sequences, and only the one for
the Dock gadget is given in this extended abstract.

3.1 Level-1 gadgets

Dock. The dock gadget is the simplest we define. Its only goal is to store sequences of
the kind ?Ip+1

q (with p < q) out of the head of the sequence, without “disturbing” any
other part.

Definition 1. Given two integers p and q with p < q, the dock for ?Ip+1
q is the sequence

Dock(p, q) = D, where

D =
〈
p− 1, p, q + 1, q + 2

〉
.

It has the following property:

Property 4. Let p and q be any integers with p < q, D = Dock(p, q), and X and Y be
any sequences. We have〈?Ip+1

q , X, D, Y
〉
=⇒

〈
X, Ip−1q+2 , Y

〉
Proof. An efficient path from

〈?Ip+1
q , X, D, Y

〉
to
〈
X, Ip−1q+2 , Y

〉
is given by:〈?Ip+1

q , X, D, Y
〉
=
〈
q, q − 1, . . . , p+ 2, p+ 1, X, p− 1, p, q + 1, q + 2, Y

〉
→
〈
p, p− 1, ?X, p+ 1, p+ 2, . . . , q − 1, q, q + 1, q + 2, Y

〉
→
〈
X, p− 1, p, p+ 1, p+ 2, . . . , q − 1, q, q + 1, q + 2, Y

〉
=
〈
X, Ip−1q+2 , Y

〉
For each sequence in the path, we apply the only possible efficient flip, hence every
efficient path between

〈?Ip+1
q , X, D, Y

〉
and I1n (if such a path exists) begins with

these two flips, and goes through
〈
X, Ip−1q+2 , Y

〉
.

Lock. A lock gadget contains three parts: a sequence which is the lock itself, a key
element that “opens” the lock, and a test element that checks whether the lock is open.

Definition 2. For any integer p, Lock(p) is defined by Lock(p) = (key, test, L), where

key = p+ 10 test = p+ 7
L = p+

〈
1, 2, 9, 8, 5, 6, 4, 3, 11, 12

〉
Given a lock (key, test, L) = Lock(p), we write

Lo = p+
〈
1, 2, 3, 4, 6, 5, 8, 9, 10, 11, 12

〉
.

Sequences L and Lo represent the lock when it is closed and open, respectively. If a
sequence containing a closed lock has key for head element, then efficient flips put the
lock in open position. If it has test for head element, then it is a deadlock if and only if
the lock is closed.

Property 5. Let p be any integer, (key, test, L) = Lock(p), and X and Y be any se-
quences. We have

a.
〈
key, X, L, Y

〉
=⇒

〈
X, Lo, Y

〉
b.

〈
test, X, Lo, Y

〉
=⇒

〈
X, Ip+1

p+12, Y
〉

c.
〈
test, X, L, Y

〉
→ ⊥

We use locks to emulate literals of a boolean formula: variables “hold the keys”, and
in a first time open the locks corresponding to true literals. Each clause holds three test
elements, corresponding to its three literals, and the clause is true if the lock is open for
at least one of the test elements.
Hook. A hook gadget contains four parts: two sequences used as delimiters, a take
element that takes the interval between the delimiters and places it in head, and a put
element that does the reverse operation. Thus, the sequence between the delimiters can
be stored anywhere until it is called by take, and then can be stored back using put.

Definition 3. For any integer p, Hook(p) is defined by Hook(p) = (take, put, G,H),
where

take = p+ 10 put = p+ 7

G = p+
〈
3, 4

〉
H = p+

〈
12, 11, 6, 5, 9, 8, 2, 1

〉
.

Given a hook (take, put, G,H) = Hook(p), we write

G′ = p+
〈
12, 11, 6, 5, 4, 3

〉
H ′ = p+

〈
10, 9, 8, 2, 1

〉
G′′ = p+

〈
3, 4, 5, 6, 7

〉
H ′′ = p+

〈
12, 11, 10, 9, 8, 2, 1

〉
.

Property 6. Let p be an integer, (take, put, G,H) = Hook(p), and X , Y and Z be any
sequences. We have

a.
〈
take, X, G, Y, H, Z

〉
=⇒

〈
Y, G′, ?X, H ′, Z

〉
b.

〈
put, X, G′, ?Y, H ′, Z

〉
=⇒

〈
Y, G′′, X, H ′′, Z

〉
c.

〈
G′′, X, H ′′, Y

〉
=⇒

〈
X, ?Ip+1

p+12, Y
〉

Fork. A fork gadget implements choices. It contains two parts delimiting a sequence
X . Any efficient path encountering a fork gadget follows one of two tracks, where
either X or ?X appears at the head of the sequence at some point. Sequence X would
typically contain a series of triggers for various gadgets (key, take, etc.), so that X and
?X differ in the order in which the gadgets are triggered.

Definition 4. For any integer p, Fork(p) is defined by Fork(p) = (E,F), where

E = p+
〈
11, 8, 7, 3

〉
F = p+

〈
10, 9, 6, 12, 13, 4, 5, 15, 14, 2, 1

〉
.

Given a fork (E,F) = Fork(p), we write

F 1 = p+
〈
10, 9, 6, 7, 8, 11, 12, 13, 14, 15, 5, 4, 3, 2, 1

〉
F 2 = p+

〈
3, 7, 8, 11, 10, 9, 6, 12, 13, 4, 5, 15, 14, 2, 1

〉

Property 7. Let p be an integer, (E,F) = Fork(p), and X , Y be any sequences. We
have

a.
〈
E, X, F, Y

〉
=⇒

{〈
X, F 1, Y

〉
,
〈?X, F 2, Y

〉}
b.

〈
F 1, Y

〉
=⇒

〈?Ip+1
p+15, Y

〉
c.

〈
F 2, Y

〉
=⇒

〈?Ip+1
p+15, Y

〉
3.2 Level-2 gadgets

Literals. The following gadget is used only once in the reduction. It contains the locks
corresponding to all literals of the formula.

Definition 5. Let p and m be two integers, Literals(p,m) is defined by

Literals(p,m) = (key1, . . . , keym, test1, . . . , testm, Λ)

where ∀i ∈ J1 ; mK , (keyi, testi, Li) = Lock(p+ 12(i− 1))

Λ =
〈
L1, L2, . . . , Lm

〉
LetO and I be two disjoint subsets of J1 ; mK. We use ΛOI for the sequence obtained

from Λ by replacing Li by Loi for all i ∈ O and by Ip+12i−11
p+12i for all i ∈ I .

Elements of O correspond to open locks in ΛOI , while elements of I correspond to
open locks which have moreover been tested. Note that Λ∅∅ = Λ, and that Λ∅J1 ;mK =

Ip+1
p+12m.

Property 8. Let p and m be two integers, O and I be two disjoint subsets of J1 ; mK,
(key1, . . . , keym, test1, . . . , testm, Λ) = Literals(p,m), and X be any sequence. We
have

a. ∀i ∈ J1 ; mK−O − I,
〈
keyi, X, Λ

O
I

〉
=⇒

〈
X, Λ

O∪{i}
I

〉
b. ∀i ∈ O,

〈
testi, X, ΛOI

〉
=⇒

〈
X, Λ

O−{i}
I∪{i}

〉
c. ∀i ∈ J1 ; mK−O,

〈
testi, X, ΛOI

〉
→ ⊥

Variable. In the rest of this section, we assume that pΛ and m are two fixed inte-
gers, and we define the gadget (key1, . . . , keym, test1, . . . , testm, Λ) = Literals(pΛ,m).
Thus, we can use elements keyi and testi for i ∈ J1 ; mK, and sequences ΛOI for any
disjoint subsets O and I of J1 ; mK.

We now define a gadget simulating a boolean variable xi. It holds two series of key
elements: the ones with indices in P (resp. N) open the locks corresponding to literals
of the form xi (resp. ¬xi). When the triggering element, ν, is brought to the head, a
choice has to be made between P and N , and the locks associated with the chosen set
(and only them) are opened.

Definition 6. Let P,N be two disjoint subsets of J1 ; mK (P = {p1, p2, . . . , pq}, N =
{n1, n2, . . . , nq′}) and p be an integer, Variable(P,N, p) is defined by

Variable(P,N, p) = (ν, V,D)

where (take, put, G,H) = Hook(p+ 2), (E,F) = Fork(p+ 14),

in ν = take
V =

〈
G, E, keyp1 , . . . , keypq , put, keyn1

, . . . , keynq′
, F, H

〉
D = Dock(p+ 2, p+ 29)

Given a variable gadget (ν, V,D) = Variable(P,N, p), we write

V 1 =
〈
G′′, keyn1

, . . . , keynq′
, F 1, H ′′

〉
V 2 =

〈
G′′, keypq , . . . , keyp1 , F

2, H ′′
〉

where G′′, H ′′, F 1, F 2, come from the definitions of Hook (Definition 3) and Fork
(Definition 4).

The following property determines the possible behavior of a variable gadget.

Property 9. Let P , N be two disjoint subsets of J1 ; mK, p be an integer, X and Y be
two sequences,O, I be two disjoint subsets of J1 ; mK, and (ν, V,D) = Variable(P,N, p).
For sub-property (a.) we require that (P∪N)∩(O∪I) = ∅, for (b.) thatN∩(O∪I) = ∅,
and for (c.) that P ∩ (O ∪ I) = ∅ (these conditions are in fact necessarily satisfied by
construction since all sequences considered are permutations). We have

a.
〈
ν, X, V, Y, ΛOI

〉
=⇒

{〈
X, V 1, Y, ΛO∪PI

〉
,〈

X, V 2, Y, ΛO∪NI

〉 }
b.

〈
V 1, X, D, Y, ΛOI

〉
=⇒

〈
X, Ip+1

p+31, Y, Λ
O∪N
I

〉
c.

〈
V 2, X, D, Y, ΛOI

〉
=⇒

〈
X, Ip+1

p+31, Y, Λ
O∪P
I

〉
Clause. The following gadget simulates a 3-clause in a boolean formula. It holds the
test elements for three locks, corresponding to three literals. When the triggering ele-
ment, γ, is at the head of a sequence, three distinct efficient paths may be followed. In
each such path, one of the three locks is tested: in other words, any efficient path leading
to the identity requires one of the locks to be open.

Definition 7. Let a, b, c ∈ J1 ; mK be pairwise distinct integers and p be an integer,
Clause(a, b, c, p) is defined by

Clause(a, b, c, p) = (γ, Γ,∆)

where (E1, F1) = Fork(p+ 2), (take1, put1, G1, H1) = Hook(p+ 21),
(E2, F2) = Fork(p+ 45), (take2, put2, G2, H2) = Hook(p+ 33),

in γ = take1
Γ =

〈
G1, E1, take2, put1, testc, F1, G2, E2, testa, put2, testb, F2, H2, H1

〉
∆ =

〈
Dock(p+ 2, p+ 17), Dock(p+ 21, p+ 60)

〉

Given a clause gadget (γ, Γ,∆) = Clause(a, b, c, p), we write

Γ 1 =
〈
G′′1 , testc, F 1

1 , G
′′
2 , testb, F 1

2 , H
′′
2 , H

′′
1

〉
Γ 2 =

〈
G′′1 , testc, F 1

1 , G
′′
2 , testa, F 2

2 , H
′′
2 , H

′′
1

〉
Γ 3 =

〈
G′′1 , take2, F 2

1 , G2, E2, testa, put2, testb, F2, H2, H
′′
1

〉
The following two properties determine the possible behavior of a clause gadget.

The main point is that, starting from a sequence
〈
γ, X, Γ, Y, ΛOI

〉
, there is one efficient

path for each true literal in the clause (ie. each literal with index in O).

Property 10. Let X and Y be any sequences, and O, I be two disjoint subsets of
J1 ; mK. We have 〈

γ, X, Γ, Y, ΛOI
〉
=⇒ T,

where T contains from 0 to 3 sequences, and is defined by:〈
X, Γ 1, Y, Λ

O−{a}
I∪{a}

〉
∈ T iff a ∈ O〈

X, Γ 2, Y, Λ
O−{b}
I∪{b}

〉
∈ T iff b ∈ O〈

X, Γ 3, Y, Λ
O−{c}
I∪{c}

〉
∈ T iff c ∈ O

Property 11. Let Y andZ be any sequences, andO, I be two disjoint subsets of J1 ; mK.
We have

a. If b, c ∈ O, then
〈
Γ 1, Y, ∆, Z, ΛOI

〉
=⇒

〈
Y, Ip+1

p+62, Z, Λ
O−{b,c}
I∪{b,c}

〉
b. If a, c ∈ O, then

〈
Γ 2, Y, ∆, Z, ΛOI

〉
=⇒

〈
Y, Ip+1

p+62, Z, Λ
O−{a,c}
I∪{a,c}

〉
c. If a, b ∈ O, then

〈
Γ 3, Y, ∆, Z, ΛOI

〉
=⇒

〈
Y, Ip+1

p+62, Z, Λ
O−{a,b}
I∪{a,b}

〉
3.3 Reduction

Let φ be a boolean formula over l variables in conjunctive normal form, such that each
clause contains exactly three literals. We write k the number of clauses, m = 3k the
total number of literals, and {λ1, . . . , λm} the set of literals. Let n = 31l+62k+12m.

Definition 8. We define the sequence Sφ as the permutation of J1 ; nK obtained by:

(key1, . . . , keym, test1, . . . , testm, Λ) = Literals(31l + 62k,m)

∀i ∈ J1 ; lK , Pi = {j ∈ J1 ; mK | λj = xi}
Ni = {j ∈ J1 ; mK | λj = ¬xi}
(νi, Vi, Di) = Variable(Pi, Ni, 31(i− 1)),

∀i ∈ J1 ; kK , (ai, bi, ci) = indices such that the i-th clause of φ is λai ∨ λbi ∨ λci
(γi, Γi, ∆i) = Clause(ai, bi, ci, 31l + 62(i− 1))

Sφ =
〈
ν1, . . . , νl, γ1, . . . , γk, V1, . . . , Vl, Γ1, . . . , Γk, D1, . . . , Dl, ∆1, . . . ,∆k, Λ

∅
∅
〉

Two things should be noted in this definition. First, elements keyi and testi are used
in the clause and variable gadgets, although they are not explicitly stated in the param-
eters (cf. Definitions 6 and 7). Second, one could assume that literals are sorted in the
formula (φ = (λ1 ∨ λ2 ∨ λ3) ∧ . . .), so that ai = 3i− 2, bi = 3i− 1 and ci = 3i, but
it is not necessary since these values are not used in the following.

We now aim at proving Theorem 1 (p. 11), which states that Sφ is efficiently sortable
if and only if the formula φ is satisfiable. Several preliminary lemmas are necessary, and
the overall process is illustrated in Figure 2.
Variable assignment.

Definition 9. A full assignment is a partition P = (T, F) of J1 ; lK. Using notations
from Definition 8, we define the sequence Sφ[P] by:

For all i ∈ J1 ; lK , V ′i =

{
V 1
i if i ∈ T
V 2
i if i ∈ F

O =
⋃
i∈T

Pi ∪
⋃
i∈F

Ni

Sφ[P] =
〈
γ1, . . . , γk, V

′
1 , . . . , V

′
l , Γ1, . . . , Γk, D1, . . . , Dl, ∆1, . . . ,∆k, Λ

O
∅
〉

With the following lemma, we ensure that any sequence of efficient flips from Sφ
begins with a full assignment of the boolean variables, and every possible assignment
can be reached using only efficient flips.

Lemma 1.
Sφ =⇒ {Sφ[P] | P full assignment}

Going through clauses. Now that each variable is assigned a boolean value, we need
to verify with each clause that this assignment satisfies the formula φ. This is done by
selecting, for each clause, a literal which is true, and testing the corresponding lock. As
in Definition 8, for any i ∈ J1 ; kK we write (ai, bi, ci) the indices such that the i-th
clause of φ is λai ∨ λbi ∨ λci (thus, ai, bi, ci ∈ J1 ; mK).

Definition 10. Let P be a full assignment. A full selection σ is a subset of J1 ; mK such
that, for each i ∈ J1 ; kK, |{ai, bi, ci} ∩ σ| = 1 (hence |σ| = k). A full selection σ
and a full assignment P = (T, F) are compatible, if, for every i ∈ σ, literal λi is true
according to assignment P (that is, λi = xj and j ∈ T , or λi = ¬xj and j ∈ F).
Given a full selection σ and a full assignment P = (T, F) which are compatible, we
define the sequence Sφ[P, σ] by:

∀i ∈ J1 ; lK , V ′i =

{
V 1
i if i ∈ T
V 2
i if i ∈ F ∀i ∈ J1 ; kK , Γ ′i =

Γ 1
i if ai ∈ σ
Γ 2
i if bi ∈ σ
Γ 3
i if ci ∈ σ

O =
⋃
i∈T

Pi ∪
⋃
i∈F

Ni − σ I = σ

Sφ[P, σ] =
〈
V ′1 , . . . , V

′
l , Γ

′
1, . . . , Γ

′
k, D1, . . . , Dl, ∆1, . . . ,∆k, Λ

O
I

〉

Sφ =
〈
ν1, . . . , νl, γ1, . . . , γk, V1, . . . , Vl, Γ1, . . . , Γk, D1, . . . , Dl,∆1, . . . ,∆k, Λ

∅
∅
〉

ν1 V ′
1

ν2 V ′
2

νl V ′
l

γ1 Γ′
1

γ2 Γ′
2

γk Γ′
k

I

Open loks in P1

V1 7→ V ′
1 = V 1

1

Open loks in N1

V1 7→ V ′
1 = V 2

1

Open remainingloks in P1 ∪N1

D1 7→ I...
Open loks in Pl

Vl 7→ V ′
l = V 1

l

Open loks in Nl

Vl 7→ V ′
l = V 2

l

Open remainingloks in Pl ∪Nl

Dl 7→ ITest lok a1
Γ1 7→ Γ′

1 = Γ1
1

Test lok b1
Γ1 7→ Γ′

1 = Γ2
1

Test lok c1
Γ1 7→ Γ′

1 = Γ3
1

Test remainingloks in {a1, b1, c1}
∆1 7→ I...

Test lok ak
Γk 7→ Γ′

k = Γ1
k

Test lok bk
Γk 7→ Γ′

k = Γ2
k

Test lok ck
Γk 7→ Γ′

k = Γ3
k

Test remainingloks in {ak, bk, ck}
∆k 7→ I

Fig. 2. Description of an efficient sorting of Sφ. Circular nodes correspond to head elements or
sequences especially relevant (landmarks). We start with the head element of Sφ: ν1. From each
landmark, one, two or three paths are possible before reaching the next landmark, each path
having its own effects, stated in rectangles, on the sequence. Possible effects are: transforming a
subsequence of Sφ (symbol 7→), opening a lock, testing a lock (such a path requires the lock to
be open).

With the following lemma, we ensure that after the truth assignment, every efficient
path starting from Sφ needs to select a literal in each clause, under the constraint that
the selection is compatible with the assignment.

Lemma 2. Let P be a full assignment. Then

Sφ[P] =⇒ {Sφ[P, σ] | σ full selection compatible with P}

Beyond clauses.

Lemma 3. Let P be a full assignment and σ be a full selection, such that P and σ are
compatible (provided such a pair exists for φ). Then

Sφ[P, σ] =⇒ I1n

Theorem 1.
Sφ =⇒ I1n iff φ is satisfiable.

Proof. Assume first that Sφ =⇒ I1n. By Lemma 1, there exists a full assignment P =
(T, F) such that some path from Sφ to the identity uses Sφ[P]. Note that Sφ[P] =⇒ I1n.
Now, by Lemma 2, there exists a full selection σ, compatible with P , such that some
path from Sφ[P] to the identity uses Sφ[P, σ]. Consider the truth assignment xi :=
True⇔ i ∈ T . Then each clause of φ contains at least one literal that is true (the literal
whose index is in σ), and thus φ is satisfiable.

Assume now that φ is satisfiable: consider any truth assignment making φ true,
write T the set of indices such that xi = True, and F = J1 ; lK − T . Write also σ
a set containing, for each clause of φ, the index of one literal being true under this
assignment. Then σ is a full selection, compatible with the full assignment P = (T, F).
By Lemmas 1, 2 and 3 respectively, there exist efficient paths Sφ =⇒ Sφ[P], Sφ[P] =⇒
Sφ[P, σ] and Sφ[P, σ] =⇒ I1n. Thus sequence Sφ is efficiently sortable.

Using Theorem 1, we can now prove the main result of the paper.

Theorem 2. The following problems are NP-hard:

– Sorting By Prefix Reversals (MIN-SBPR)
– deciding, given a sequence S, whether S can be sorted in db(S) flips

Proof. By reduction from 3-SAT. Given any formula φ, create Sφ (see Definition 8,
the construction requires a linear time). By Theorem 1, the minimum number of flips
necessary to sort Sφ is db(Sφ) iff φ is satisfiable.

4 Conclusion

In this paper, we have shown that the Pancake Flipping problem is NP-hard, thus an-
swering a long-standing open question. We have also provided a stronger result, namely,
deciding whether a permutation can be sorted with no more than one flip per breakpoint
is also NP-hard. However, the approximability of MIN-SBPR is still open: it can be

seen that sequence Sφ can be sorted in db(Sφ) + 2 flips, whatever the formula φ, hence
this construction does not prove the APX-hardness of the problem.

Among related important problems, the last one having an open complexity is now
the burnt variant of the Pancake Flipping problem. An interesting insight into this prob-
lem is given in a recent work from Labarre and Cibulka [13], where the authors charac-
terize a subclass of permutations that can be sorted in polynomial time, using the break-
point graph [1]. Another development consists in trying to improve the approximation
ratio of 2 for the Pancake Flipping problem, both in its burnt and unburnt versions.

References

1. V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals. In FOCS, pages
148–157. IEEE, 1993.

2. P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation algorithm for sorting
by reversals. In R. Möhring and R. Raman, editors, ESA, volume 2461 of Lecture Notes in
Computer Science, pages 200–210. Springer, 2002.

3. P. Berman and M. Karpinski. On some tighter inapproximability results (extended abstract).
In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, ICALP, volume 1644 of
Lecture Notes in Computer Science, pages 200–209. Springer, 1999.

4. B. Chitturi, W. Fahle, Z. Meng, L. Morales, C.O. Shields, I. Sudborough, and W. Voit.
An (18/11)n upper bound for sorting by prefix reversals. Theoretical Computer Science,
410(36):3372–3390, 2009.

5. J. Cibulka. On average and highest number of flips in pancake sorting. Theoretical Computer
Science, 412(8-10):822–834, 2011.

6. D. Cohen and M. Blum. On the problem of sorting burnt pancakes. Discrete Applied Math-
ematics, 61(2):105–120, 1995.

7. H. Dweighter [pseudonym of J. E. Goodman]. American Mathematics Monthly, 82(1), 1975.
8. J. Fischer and S. Ginzinger. A 2-approximation algorithm for sorting by prefix reversals.

In G. S. Brodal and S. Leonardi, editors, ESA, volume 3669 of Lecture Notes in Computer
Science, pages 415–425. Springer, 2005.

9. W. Gates and C. Papadimitriou. Bounds for sorting by prefix reversal. Discrete Mathematics,
27(1):47–57, 1979.

10. S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: polynomial algorithm for
sorting signed permutations by reversals. In STOC, pages 178–189. ACM, 1995.

11. M. Heydari and I. Sudborough. On sorting by prefix reversals and the diameter of pancake
networks. In Proceedings of the First Heinz Nixdorf Symposium on Parallel Architectures
and Their Efficient Use, pages 218–227, London, UK, 1993. Springer-Verlag.

12. M. Heydari and I. Sudborough. On the diameter of the pancake network. Journal of Algo-
rithms, 25(1):67–94, October 1997.

13. A. Labarre and J. Cibulka. Polynomial-time sortable stacks of burnt pancakes. Theoretical
Computer Science, 412(8-10):695–702, 2011.

