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émanant des établissements d’enseignement et de
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Abstract

In image processing, the distance transform (DT), in which each object grid
point is assigned the distance to the closest background grid point, is a
powerful and often used tool. In this paper, distance functions defined as
minimal cost-paths are used and a number of algorithms that can be used
to compute the DT are presented. We give proofs of the correctness of the
algorithms.

Keywords: distance function, distance transform, weighted distances,
neighborhood sequences

1. Introduction

In [1], an algorithm for computing distance transforms (DTs) using the
basic city-block (horizontal and vertical steps are allowed) and chessboard
(diagonal steps are allowed in conjunction with the horizontal and vertical
steps) distance functions was presented in [1]. These distance functions are
defined as shortest paths and the corresponding distance maps can be com-
puted efficiently. Since these path-based distance functions are defined by
the cost of discrete paths, we call them digital distance functions.

There are two commonly used generalizations of the city-block and chess-
board distance functions, the weighted distances [2, 3, 4], and distances based
on neighborhood sequences (ns-distances) [5, 6, 7, 8] . The weighted distance
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is defined as the cost of a minimal cost-path and the ns-distance is defined
as a shortest path in which the neighborhood that is allowed in each step
is given by a neighborhood sequence. With weighted distances, a two-scan
algorithm is sufficient for any point-lattice, see [2, 9]. For ns-distances, three
scans are needed for computing correct DTs on a square grid [10].

In this paper, we consider the weighted ns-distance [11, 12, 13] in which
both weights and a neighborhood sequence are used to define the distance
function. By using “optimal” parameters (weights and neighborhood se-
quence), the asymptotic shape of the discs with this distance function is
a twelve-sided polygon, see [11]. The relative error is thus asymptotically
(1/ cos(π/12) − 1)/((1/ cos(π/12) + 1)/2) ≈ 3.5% using only 3 × 3 neigh-
borhoods when computing the DT. In other words, we have a close to ex-
act approximation of the Euclidean distance still using the path-based ap-
proach with connectivities corresponding to small neighborhoods. Some dif-
ferent algorithms for computing the distance transform using the weighted
ns-distance functions are given in this paper.

The paper is organized as follows: First, some basic notions are given and
the definition of weighted ns-distances is given. In Section 3, algorithms us-
ing an additional DT holding the length of the paths that define the distance
values are presented. The notion of distance propagating path is introduced
to prove that correct DTs are computed. In Section 4, a look-up table that
holds the value that should be propagated in each direction is used to com-
pute the DT. The third approach considered here work for metric distance
functions with periodic neighborhood sequences. A large mask that holds all
distance information corresponding to the first period of the neighborhood
sequence is used.

2. Weighted distances based on neighborhood sequences

The distance function considered here is defined by a neighborhood se-
quence using two neighborhoods and two weights. The neighborhoods are
defined as follows

N1 = {(±1, 0), (0,±1)} and N2 = {(±1,±1)} .
Two grid points p1,p2 ∈ Z2 are strict r-neighbors, r ∈ {1, 2}, if p2−p1 ∈ Nr.
Neighbors of higher order can also be defined, but in this paper, we will use
only 1- and 2-neighbors. Let

N = N1 ∪N2.
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The points p1,p2 are 2-neighbors (or adjacent) if p2 − p1 ∈ N , i.e., if
they are strict r-neighbors for some r. A ns B is a sequence B = (b(i))∞i=1,
where each b(i) denotes a neighborhood relation in Z2. If B is periodic, i.e.,
if for some finite, strictly positive l ∈ Z+, b(i) = b(i+ l) is valid for all i ∈ N∗,
then we write B = (b(1), b(2), . . . , b(l)).

The following notation is used for the number of 1:s and 2:s in the ns B
up to position k.

1k
B = |{i : b(i) = 1, 1 ≤ i ≤ k}| and 2k

B = |{i : b(i) = 2, 1 ≤ i ≤ k}|.
A path in a grid, denoted P , is a sequence p0,p1, . . . ,pn of adjacent grid
points. A path is a B-path of length L (P) = n if, for all i ∈ {1, 2, . . . , n},
pi−1 and pi are b(i)-neighbors. The number of 1-steps and strict 2-steps in
a given path P is denoted 1P and 2P , respectively.

Definition 1. Given the ns B, the ns-distance d(p0,pn;B) between the
points p0 and pn is the length of a shortest B-path between the points.

Let the real numbers α and β (the weights) and a B-path P of length
n, where exactly l (l ≤ n) pairs of adjacent grid points in the path are
strict 2-neighbors be given. The cost of the (α, β)-weighted B-path P is
Cα,β (P) = (n − l)α + lβ. The B-path P between the points p0 and pn is
a (α, β)-weighted minimal cost B-path between the points p0 and pn if no
other (α, β)-weighted B-path between the points has lower cost than the
(α, β)-weighted B-path P .

Definition 2. Given the ns B and the weights α, β, the weighted ns-distance
dα,β(p0,pn;B) is the cost of a (α, β)-weighted minimal cost B-path between
the points.

The following theorem is from [11].

Theorem 1 (Weighted ns-distance in Z2). Let the ns B, the weights α, β
s.t. 0 < α ≤ β ≤ 2α, and the point (x, y) ∈ Z2, where x ≥ y ≥ 0, be given.
The weighted ns-distance between 0 and (x, y) is given by

dα,β (0, (x, y);B) = (2k − x− y) · α + (x+ y − k) · β
where k = min

l
: l ≥ max

(
x, x+ y − 2l

B

)
.

Note if B = (1) then k = x + y so d(0, (x, y); (1)) = (x + y)α which
is α times the city-block distance whereas if B = (2) then k = x and
d(0, (x, y); (2)) = (x− y)α+ yβ which is the (α, β)-weighted distance.
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3. Computing the distance transform using path-length informa-
tion

In this section, the computation of DTs using the distance function de-
fined in the previous section will be considered. Since the size of a digital
image when stored in a computer is finite, we define the image domain as
a finite subset of Z2 denoted I. In this paper we use image domains of the
form

I = [xmin, xmax]× [ymin, ymax] (1)

Definition 3. We call the function F : I −→ R+
0 an image.

Note that real numbers are allowed in the range of F . We denote the
object X and the background is X = Z2 \X. We denote the distance trans-
form for path-based distances with DTC, where the subscript C indicates that
costs of paths are computed.

Definition 4. The distance transform DTC of an object X ⊂ I is the map-
ping

DTC : I → R+
0 defined by

p 7→ d
(
p, X

)
, where

d
(
p, X

)
= min

q∈X
{d (p,q)} .

For weighted ns-distances, the size of the neighborhood allowed in each
step is determined by the length of the minimal cost-paths (not the cost).
In the first approach to compute the DT, an additional transform, DTL that
holds the length of the minimal cost path at each point is used.

Definition 5. The set of transforms {DT i
L} of an object X ⊂ Z2 is defined

by all mappings DT i
L that satisfy

DT i
L(p) = d1,1 (p,q;B) , where

q is such that dα,β (q,p;B) = dα,β
(
p, X;B

)
.

See Figure 1 for an example showing DTC and some different DTL (su-
perscipt omitted when it is not explicitly needed) of an object.

When α = β = 1, DTL is uniquely defined and DTC = DTL. Example 1
illustrates that DTL is not always uniquely defined when α 6= β. We will

4
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see that despite this, the correct distance values are propagated by natural
extensions of well-known algorithms when DTC is used together with DT i

L
for any i are used to propagate the distance values.

We now introduce the notion of distance propagating path.
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Figure 1: Distance transforms for B = (2, 1) and α ≤ β ≤ 2α. The background is shown
in white, DTC is shown in (a) and a DTL is shown in (b).

Definition 6. Given an object grid point p ∈ X, a minimal cost B-path
Pq,p = 〈q = p0,p1, . . . ,pn = p〉, where q ∈ X is a background grid point, is
a distance propagating B-path if

(i) Cα,β (〈p0, . . . ,pi〉) = DTC (pi) for all i and

(ii) pi,pi+1 are b
(
DT j

L (pi) + 1
)
− neighbors for all i,

for all j.

If property (i) in the definition above is fulfilled, then we say that Pp,q is
represented by DTC and if property (ii) is fulfilled, then Pp,q is represented
by DT j

L. Note that when α = β, then (i) implies (ii).
If we can guarantee that there is such a path for every object grid point,

then the distance transform can be constructed by locally propagating dis-
tance information from X to any p ∈ X. Now, a number of definitions will
be introduced. Using these definitions, we can show that there is always a
distance propagating path when the weighted ns-distance function is used.
The following definitions are illustrated in Example 1 and 2.

5



191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

Definition 7. Let α, β such that 0 < α ≤ β ≤ 2α, a ns B, an object X, and
a point p ∈ X be given. A minimal cost B-path Pq,p, where q ∈ X, such
that dα,β (p,q;B) = dα,β

(
p, X;B

)
is a minimal cost B-path with minimal

number of 2-steps if, for all paths Qq′,p with q′ ∈ X such that Cα,β (Qq′,p) =
Cα,β (Pq,p), we have

2Pq,p ≤ 2Qq′,p .

In other words, if there are several paths defining the distance at a point
p, the path with the least number of 2-steps is a minimal cost B-path with
minimal number of 2-steps. See Example 1 and 2.

Remark 1. A minimal cost-path with minimal number of 2-steps is a min-
imal cost-path of maximal length.

Definition 8. Let α, β such that 0 < α ≤ β ≤ 2α, a ns B, and points
p,q ∈ Z2 be given. The minimal cost (α, β)-weighted B-path Pp,q = 〈p =
p0,p1, . . . ,pn = q〉 is a fastest minimal cost (α, β)-weighted B-path between
p and q if there is an i, 0 ≤ i ≤ n such that

2〈p0,p1,...,pi〉 = 2i
B and 2〈pi+1,pi+2,...,pn〉 = 0.

In other words, the minimal cost path between two points in which the
2-steps occur after as few steps as possible is a fastest minimal cost (α, β)-
weighted B-path. See Example 1 and 2.

Example 1. This example illustrates that a path that is not a fastest path
is not necessarily represented by DT i

L for some i. Consider the (part of
the) object showed in Figure 2(a)–(f). The parameters (α, β) = (2, 3) and
B = (2, 2, 1) are used. In (d)–(f), some DT i

L:s are shown. The path in
(a) has minimal number of 2-steps, but it is not a fastest path and is not
represented by the DTL in (e). The path in (b) has not minimal number of
2-steps. The path in (c) is a fastest path with minimal number of 2-steps
and is also represented by all DTL in (d)–(f). The paths shown in (b) and
(c) are distance propagating paths, and the path in (a) is not a distance
propagating path for DTL in (e).

Example 2. In Figure 3(a)–(c), B = (2, 2, 1) and (α, β) = (3, 4) are used.
In (a), the DTC of an object and a minimal cost (α, β)-weighted B-path
with minimal number of 2-steps that is not distance propagating is shown.
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Figure 2: Distance transform using (α, β) = (2, 3) and B = (2, 2, 1) for a part of an object
in Z2, see Example 1.
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Figure 3: Distance transform using (α, β) = (3, 4) and B = (2, 2, 1) for a part of an object
in Z2, see Example 2.

A distance propagating fastest minimal cost (α, β)-weighted B-path with
minimal number of 2-steps is shown in (b). The DTL that corresponds to
DTC in (a)–(b) is shown in (c).

The following theorem says that a path satisfying Definition 7 and 8 is a
distance propagating path as defined in Definition 6. The theorem is proved
in Lemma 2 and Lemma 3 below.

Theorem 2. If the B-path Pq,p (p ∈ X, q ∈ X such that dα,β
(
p, X

)
=

Cα,β (Pq,p)) is a fastest minimal cost B-path with minimal number of 2-steps
then Pq,p is a distance propagating B-path.
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Intuitively, we want the path to be of maximal length (B-path with min-
imal number of 2-steps, see Remark 1) and among the paths with this prop-
erty, the path such that the 2-steps appear after as few steps as possible
(fastest B-path). The algorithms we present will always be able to propagate
correct distance values along such paths.

Lemma 1 will be used in the proofs of Lemma 2 and Lemma 3. It is a
direct consequence of Theorem 1. In Lemma 1, B(k) = (b(i))∞i=k

Lemma 1. Given α, β such that 0 < α ≤ β ≤ 2α, the ns B, the points p,q,
and an integer k ≥ 1, we have

dα,β(p,q;B) ≤ dα,β(p,q;B(k)) + (2α− β)(k − 1).

We consider the case α < β. Lemma 2 and Lemma 3 gives the proof of
Theorem 2 for weighted ns-distances.

Lemma 2. Let the weights α, β such that 0 < α < β ≤ 2α, the ns B, and
the point p ∈ X be given. Any fastest minimal cost (α, β)-weighted B-path
Pq,p = 〈q = p0,p1, . . . ,pn = p〉 (for some q ∈ X such that dα,β

(
p, X

)
=

Cα,β (Pq,p)) satisfies (i) in Definition 6, i.e.,

dα,β
(
pi, X;B

)
= Cα,β (Pp0,pi

) ∀i : 0 ≤ i ≤ n. (2)

Proof. First we note that there always exists a q ∈ X such that there is a
fastest minimal cost (α, β)-weighted B-path Pq,p = 〈q = p0,p1, . . . ,pn = p〉.
To prove (2), assume that there is a q′ ∈ X and a path Qq′,p = 〈q′ =
p′
0,p

′
1, . . . ,p

′
k = pi,p

′
k+1, . . . ,p

′
m = p〉 for some i such that

Cα,β (Pq,pi
) > Cα,β (Qq′,pi

)

Case i: L (Qq′,pi
) < L (Pq,pi

)
Case i(a): 2Qq′,pi

> 2Pq,pi

Since Pq,p is a fastest path, 2Ppi,p
= 0. This implies that Ppi,p is a minimal

cost (α, β)-weighted B-path for B = (1) and since, by Theorem 1, any ns gen-
erates distances less than (or equal to) B = (1), Cα,β (Qpi,p) ≤ Cα,β (Ppi,p).
Thus, Cα,β (Qq′,p) = Cα,β (Qq′,pi

)+ Cα,β (Qpi,p) < Cα,β (Pq,pi
)+ Cα,β (Ppi,p) =

Cα,β (Pq,p). This contradicts that Pq,p is a minimal cost-path, so this case
can not occur.
Case i(b): 2Qq′,pi

≤ 2Pq,pi

Since L (Qq′,pi
) = L (Pq,pi

)− L for some positive integer L, we have

1Qq′,pi
+ 2Qq′,pi

= L (Qq′,pi
) = L (Pq,pi

)− L = 1Pq,pi
+ 2Pq,pi

− L.

8
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Using 2Qq′,pi
≤ 2Pq,pi

and α ≤ β, we get

1Qq′,pi
α + 2Qq′,pi

β ≤ 1Pq,pi
α + 2Pq,pi

β − Lα.

Thus, Cα,β (Qq′,pi
) ≤ Cα,β (Pq,pi

)−Lα. By Lemma 1, Cα,β (Qpi,p) ≤ Cα,β (Ppi,p)+
(2α− β)L.

We use these results and get Cα,β (Qq′,p) = Cα,β (Qq′,pi
) + Cα,β (Qpi,p) ≤

Cα,β (Pq,pi
) − Lα + Cα,β (Ppi,p) + (2α− β)L = Cα,β (Pq,pi

) + Cα,β (Ppi,p) +
(α− β)L < Cα,β (Pq,p) .
This contradicts that Pq,p is a minimal cost-path.
Case ii: L (Qq′,pi

) ≥ L (Pq,pi
)

Now, 2Qq′,pi
< 2Pq,pi

≤ 2i
B.

Construct the path (not a B-path) Q′
q′,p = 〈q′ = p′

0,p
′
1, . . . ,p

′
k =

pi,pi+1, . . . ,pn = p〉 of length n′ = L (Qq′,pi
) + L (Ppi,pn) ≥ L (Pq,pn) = n.

We have 2Q′
q′,pn

= 2Qq′,pi
+ 2Ppi,pn

< 2i
B + 2n−i

B(i+1) = 2n
B ≤ 2n′

B . This means

that there is a B-path Q′′
q′,pn

(obtained by permutation of the positions of

the 1-steps and 2-steps in Q′
q′,pn

) of length n′ such that Cα,β
(
Q′′

q′,pn

)
<

Cα,β (Pq,pn), which contradicts that Pq,pn is a minimal cost path.
The assumption is false, since a contradiction follows for all cases.

Left to prove of Theorem 2 is that there is a path fulfilling the previous
lemma that is represented by DTL. This is necessary for the path to be
propagated correctly by an algorithm.

Lemma 3. Let the weights α, β such that 0 < α < β ≤ 2α, the ns B, and
the point p ∈ X be given. Any fastest minimal cost (α, β)-weighted B-path
with minimal number of 2-steps Pq,p = 〈q = p0,p1, . . . ,pn = p〉 (for some
q ∈ X such that dα,β

(
p, X

)
= Cα,β (Pq,p)) satisfies (ii) in Definition 6,

i.e.,
pi,pi+1 are b (DTL (pi) + 1)− neighbors for all i.

Proof. Given a p ∈ X, assume that there is a fastest minimal cost (α, β)-
weighted B-path Pq,p with minimal number of 2-steps such that Cα,β (Pq,p) =
dα,β(p, X) and a K < n such that Pq,pK

is not represented by DTL, i.e.,
that pK−1,pK are not b(DTL(pK−1) + 1)-neighbors. (Otherwise the value
Cα,β (Pq,pK

) is propagated from DTC(pK−1).) It follows that the values of
DTC(pK−1) andDTL(pK−1) are given by a pathQq′,p = 〈q′ = p′

0,p
′
1, . . . ,p

′
k =

pi,p
′
k+1, . . . ,p

′
n = p〉 for some i and some q′ ∈ X such that

Cα,β
(
Pq,pK−1

)
= dα,β (pK−1,q;B) = dα,β (pK−1,q

′;B) = Cα,β
(
Qq′,pK−1

)
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and
L
(
Pq,pK−1

)
6= L

(
Qq′,pK−1

)
.

We follow the cases in the proof of Lemma 2:
Case i: L

(
Qq′,pK−1

)
< L

(
Pq,pK−1

)

Case i(a): 2Qq′,pK−1
> 2Pq,pK−1

We get Cα,β (Qq′,p) = Cα,β (Pq,p) from the proof of Lemma 2 and Cα,β
(
Qq′,pK−1

)
=

Cα,β
(
Pq,pK−1

)
by construction. Since Pq,p is a fastest path, pK−1,pK is

a 1-step, so it is also a b(DTL(pK−1) + 1)-step. Therefore, pK−1,pK are
b(DTL(pK−1) + 1)-neighbors. Contradiction.
Case i(b): 2Qq′,pK−1

≤ 2Pq,pK−1

Following the proof of Lemma 2, we get Cα,β (Qq′,p) < Cα,β (Pq,p).
Case ii: L

(
Qq′,pK−1

)
> L

(
Pq,pK−1

)

This leads to a longer B-path Q′′
q′,p with lower (or equal) cost by the con-

struction in the proof of Lemma 2, so this case leads to a contradiction since
Pq,p is a B-path of maximal length (see Remark 1) by assumption.

3.1. Algorithms

In this section, algorithms for computing DTs using the additional trans-
form DTL are presented. First, we focus on a wavefront propagation algo-
rithm. By Theorem 2, there is a distance propagating path for each p ∈ X.
This proves the correctness of Algorithm 1.
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Algorithm 1: Computing DTC and DTL for weighted ns-distances by
wave-front propagation.

Input: B, α, β, neighborhoods N1 and N2, and an object X ⊂ Z2.

Output: The distance transforms DTC and DTL.

Initialization: Set DTC(p) ← 0 for grid points p ∈ X and
DTC(p) ← ∞ for grid points p ∈ X. Set DTL = DTC. For all grid
points p ∈ X adjacent to X: push (p, DTC(p)) to the list L of
ordered pairs sorted by increasing DTC(p).
Notation: ωv is α if v ∈ N1 and β if v ∈ N2.
while L is not empty do

foreach p in L with smallest DTC(p) do
Pop (p, DTC(p)) from L;
foreach q: q,p are b(DTL(p) + 1)-neighbors do

if DTC(q) > DTC(p) + ωp−q then
DTC(q) ← DTC(p) + ωp−q;
DTL(q) ← DTL(p) + 1;
Push (q, DTC(q)) to L;

end
end

end
end

Now, the focus is on the raster-scanning algorithm. We will see that the
DT can be computed correctly in three scans. Since a fixed number of scans
is used and the time complexity is bounded by a constant for each visited
grid point, the time complexity is linear in the number of grid points in the
image domain.

We recall the following lemma from [14]:

Lemma 4. When α < β ≤ 2α, any minimal cost-path between (0, 0) and
(x, y), where x ≥ y ≥ 0, consists only of the steps (1, 0), (1, 1), and (0, 1).

Since we consider only “rectangular” image domains, the following lemma
holds.

Lemma 5. Given two points p,q in I, a ns B and weights β > α. Any
point in any minimal cost (α, β)-weighted B-path between p and q is in the
image domain.

11



419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

Proof. Consider the point p = (x, y), where x ≥ y ≥ 0. By Lemma 4, any
(α, β)-weighted B-path of minimal cost from 0 to p consists only of the local
steps (0, 1), (1, 1), (1, 0). The theorem follows from this result.

LetN 1 = {(1, 0), (1, 1)} ,N 2 = {(1, 1), (0, 1)} , . . . ,N 8 = {(1,−1), (1, 0)}.
In other words, the set N is divided into set according to which octant they
belong.

Lemma 6. Let γ be any permutation of 1, 2, . . . , 8. Between any two points,
there is a distance propagating B-path Pq,p = 〈q = p0,p1, . . . ,pn = p〉 and
integers 0 ≤ K1 ≤ K2 ≤ · · · ≤ K8 = n such that

pi − pi−1 ∈ N γ(1) if i ≤ K1

pi − pi−1 ∈ N γ(2) if i > K1 and i ≤ K2

...

pi − pi−1 ∈ N γ(8) if i > K7 and i ≤ K8.

Proof. Consider q = 0 and p = (x, y) such that x ≥ y ≥ 0. Any minimal
minimal cost B-path consists only of the local steps (1, 0), (1, 1), (0, 1) by
Lemma 4. Reordering the 1-steps does not affect the cost of the path. The
path obtained by reordering the 1-steps in a fastest minimal cost (α, β)-
weighted B-path with minimal number of 2-steps is still a fastest minimal
cost (α, β)-weighted B-path with minimal number of 2-steps. Therefore,
there are distance propagating B-path such that

pi − pi−1 ∈ N 1 if i ≤ K1

pi − pi−1 ∈ N 2 if i > K1 and i ≤ K2

for some integers 0 ≤ K1 ≤ K2 = n and

pi − pi−1 ∈ N 2 if i ≤ K1

pi − pi−1 ∈ N 1 if i > K1 and i ≤ K2

for some integers 0 ≤ K1 ≤ K2 = n. The general case follows from transla-
tion and rotation invariance.

Definition 9. A scanning mask is a subset M ⊂ N .

Definition 10. A scanning order (so) is an enumeration of the M = card(I)
distinct points in I, denoted p1,p2, . . . ,pM .
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Definition 11. Let p1,p2, . . . ,pM ∈ I be a scanning order and M a scan-
ning mask. The scanning mask M supports the scanning order if

∀pi,∀v ∈ M, ((∃i′ > i : pi′ = pi + v) or (pi + v /∈ IG)) .

Algorithm 2: Computing DTC and DTL for weighted ns-distances by
raster scanning.

Input: B, α, β, scanning masks Mi, and an object X ⊂ Z2.

Output: The distance transforms DTC and DTL.

Initialization: Set DTC(p) ← 0 for grid points p ∈ X and
DTC(p) ← ∞ for grid points p ∈ X. Set DTL = DTC.
Comment: The image domain I defined by eq. 1 is scanned L
times using scanning orders such that the scanning mask Mi

supports the scanning order soi, i ∈ {1, . . . , L}.
Notation: ωv is α if v ∈ N1 and β if v ∈ N2.
for i = 1 : L do

foreach p ∈ I following soi do
if DTC(p) < ∞ then

foreach v ∈ Mi do
if p and p+ v are b (DTL(p) + 1)-neighbors then

if DTC(p+ v) > DTC(p) + ωv then
DTC(p+ v) ← DTC(p) + ωv;
DTL(p+ v) ← DTL(p) + 1;

end
end

end
end

end
end

Theorem 3. If

• each of the sets N 1,N 2, . . . ,N 8 is represented by at least one scanning
mask and

• the scanning masks support the scanning orders,

then Algorithm 2 computes correct distance maps.
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Proof. Any distance propagating path between any pair of grid points in I
is also in I by Lemma 5. Since the scanning masks support the scanning
orders, there is, by Lemma 6, a distance propagating path that is propagated
by the scanning masks.

Corollary 1. Algorithm 2 with, e.g., the masks

M1 = {(−1, 1), (−1, 0), (−1,−1), (0,−1)} ,
M2 = {(0,−1), (1,−1), (1, 0), (1, 1)} , and

M3 = {(−1, 1), (0, 1), (1, 1)} ,

see Figure 4, gives correct distance transforms.

(a) (b) (c)

Figure 4: Masks that can be used with Algorithm 2. The white pixel is the center of the
mask and the two grey levels correspond to the elements in N1 and N2, respectively.

4. Computing the distance transform using a look-up table

The look-up table LUTv(k) gives the value to be propagated in the di-
rection v from a grid point with distance value k. We will see that by using
this approach, the additional distance transform DTL is not needed for com-
puting DTC. Thus, we get an efficient algorithm in this way. In this section,
we assume that integer weights are used.

The LUT-based approach to compute the distance transform first ap-
peared in [15]. The distance function considered in [15] uses neighborhood
sequences, but is non-symmetric. The non-symmetry allows to compute the
DT in one scan. The same LUT-based approach is used for binary mathe-
matical morphology with convex structuring elements in [16]. This approach
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is efficient for, e.g., binary erosion in one scan with a computational per-pixel
cost independent of the size of the structuring element.

For the algorithm in [15, 16] the following formula is used in one raster
scan:

DTC (p) = min
v∈N

(LUTv (DTC (p+ v))) ,

where N is a non-symmetric neighborhood. In this section, we will extend
this approach and allow the (symmetric) weighted ns-distances by allowing
more than one scan.

4.1. Construction of the look-up table

Given a distance value k, the look-up table at position k with subscript-
vector v, LUTv(k), holds information about the maximal distance value that
can be found in a distance map in direction v. See Example 3 and 4.

Example 3. For a distance function on Z2 defined by α = 2, β = 3 and
B = (1, 2), the LUT with Dmax = 10 is the following:

j 0 1 2 3 4 5 6 7 8 9 10
v ∈ N1 LUTv(j) 2 3 4 5 6 7 8 9 10 11 12
v ∈ N2 LUTv(j) 4 4 5 6 7 9 9 10 11 12 14

Only the values that are underlined are attained by the distance functions.
See also Figure 5. The values in the look-up tables can be extracted from
these DTs by, for each distance value 0 to 10, finding the corresponding
maximal value in the subscript-direction.

Example 4. For a distance function on Z2 defined by α = 4, β = 5 and
B = (1, 2, 1, 2, 2), the LUT (only showing values that are attained by the
distance function) with Dmax = 23 is the following:

j 0 4 8 9 12 13 16 17 18 20 21 22 23
v ∈ N1 LUTv(j) 4 8 12 13 16 17 20 21 22 24 25 26 27
v ∈ N2 LUTv(j) 8 9 13 17 17 18 21 22 23 25 26 27 31

The values in the LUT are given by the formula in Lemma 7.
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Figure 5: Each pixel above is labeled with the distance to the pixel with value 0. The
parameters B = (1, 2), (α, β) = (2, 3) are used. See also Example 3.

Lemma 7. Let α, β such that 0 < α ≤ β ≤ 2α, the ns B, and the integer
value k be given. Then

max
8

<

:

v∈N1

p: dα,β(0,p;B)=k

9

=

;

(dα,β (0,p+ v;B)− k) = α and

max
8

<

:

v∈N2

p: dα,β(0,p;B)=k

9

=

;

(dα,β (0,p+ v;B)− k) =





2α
if ∃n : b(n+ 1) = 1
and k = 1n

Bα + 2n
Bβ

β else.

Proof. When v is a 1-step, then the maximum difference between dα,β (0,p+ v;B)
and dα,β (0,p;B) is α by definition. There is a local step v ∈ N1 that in-
creases the length of the minimal cost B-path (for any B) by 1, so the
maximum difference α is always attained.

When v is a strict 2-step, v ∈ N2 is the sum of two local steps from N1.
Intuitively, if there are “enough” 2s in B, then the maximum difference is β.
Otherwise, two 1-steps are used and the maximum difference is 2α. To prove
this, let P0,p = 〈0 = p0,p1, . . . ,pn = p〉 be a minimal cost B-path and let
p = (x, y) be such that x ≥ y ≥ 0. We have the following conditions on B:
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(i) b(n+ 1) = 1 and

(ii) dα,β (0,p;B) = 1n
Bα + 2n

Bβ.

We note that (i) implies that P0,p · 〈p + w〉 is a B-path iff w ∈ N1 and a
minimal cost B-path if w is either (1, 0) or (0, 1). Also, (ii) implies that the
number of 2:s in B up to position n equals the number 2-steps in P0,p.

If both (i) and (ii) are fulfilled, since b(n + 1) = 1, the 2-step v = (1, 1)
is divided into two 1-steps (1, 0) and (0, 1) giving a minimal cost B-path, so
dα,β (0,p+ v;B) = dα,β (0,p;B) + 2α.

If (i) is not fulfilled, then there is a 2-step v such that P0,p · 〈p+ v〉 is a
minimal cost B-path of cost dα,β (0,p+ v;B) = dα,β (0,p;B) + β.

If (i), but not (ii) is fulfilled, then for any minimal cost B-path Q0,p, we
have

k = 1Q0,pα + 2Q0,pβ 6= 1
L(Q0,p)
B α + 2

L(Q0,p)
B β.

It follows that 2Q0,p < 2
L(Q0,p)
B . Therefore, there is a 1-step in Q0,p that

can be swapped with the 2-step v giving a minimal cost B-path of cost
dα,β (0,p;B) + β.

The formula in Lemma 7 gives an efficient way to compute the look-up
table, see Algorithm 3. The algorithm gives a correct LUT by Lemma 7. The
output of Algorithm 3 for some parameters is shown in Example 3 and 4.
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Algorithm 3: Computing the look-up table for weighted ns-distances.

Input: Neighborhoods N1, N2, weights α and β (0 < α ≤ β ≤ 2α), a
ns B, and the largest distance value Dmax.

Output: The look-up table LUT .

for k = 1 : Dmax do
foreach v ∈ N1 do

LUTv(k) ← k + α;

end
foreach v ∈ N2 do

LUTv(k) ← k + β;

end
end
n ← 0;
while 1n

Bα + 2n
Bβ ≤ Dmax do

if b(n+ 1) == 1 then
LUTv(1

n
Bα + 2n

Bβ) ← (1n
B + 2)α + 2n

Bβ;

end
n ← n+ 1;

end

Lemma 8 shows that the distance values are propagated correctly along
distance propagating paths by using the look-up table.

Lemma 8. Let Pp0,pn = 〈p0,p1, . . . ,pn〉 be a distance propagating B-path.
Then

Cα,β (〈p0,p1, . . . ,pi+1〉) = LUTpi+1−pi
(Cα,β (〈p0,p1, . . . ,pi〉)) ∀i < n.

Proof. Assume that the lemma is false and let i be the minimal index such
that

Cα,β
(
Pp0,pi+1

)
6= LUTpi+1−pi

(Cα,β (Pp0,pi
)) .

Then there is a path Qq0,qj
= 〈q0,q1, . . . ,qj〉 such that

Cα,β (Pp0,pi
) = Cα,β

(
Qq0,qj

)
and L (Pp0,pi

) 6= L
(
Qq0,qj

)

defining the value in the LUT, i.e.,

Cα,β
(
Qq0,qj

· 〈qj + v〉
)
= LUTv (Cα,β (Pp0,pi

)) ,
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where v = pi+1 −pi. Since the LUT stores the maximal local distances that
are attained,

Cα,β
(
Qq0,qj

· 〈qj + v〉
)
> Cα,β

(
Pp0,pi+1

)
.

It follows from Lemma 7 that v is a strict 2-step and that LUTv (Cα,β (Pp0,pi
)) =

2α and
Cα,β

(
Pp0,pi+1

)
− Cα,β (Pp0,pi

) = β.

Since Pp0,pi
is a distance propagating B-path and v is a strict 2-step,

2
L(Pp0,pi)
B = 2Pp0,pi

(3)

and 2
L(Pp0,pi+1)
B = 2Pp0,pi+1

.

case i L (Pp0,pi
) > L

(
Qq0,qj

)

It follows that 2Pp0,pi
< 2Qq0,qj

≤ 2
L(Qq0,qj)
B ≤ 2

L(Pp0,pi)
B which contradicts

(3).
case ii L (Pp0,pi

) < L
(
Qq0,qj

)

This implies that 2Pp0,pi
> 2Qq0,qj

. Then Qq0,qj
· 〈qj + v〉 is not a distance

propagating path (there are more elements 2 in B than 2-steps in the path).
It follows from Lemma 7 that there is a distance propagating path from q0

to qj + v of cost Cα,β
(
Qq0,qj

)
+ β. Since Qq0,qj

is arbitrary, it follows that
LUTv (Cα,β (Pp0,pi

)) = LUTv

(
Cα,β

(
Qq0,qj

))
= β. Contradiction.

4.2. Algorithms for computing the DT using look-up tables

In this section, we give algorithms that can be used to compute the dis-
tance transform using the LUT-approach. By Lemma 8, distance values
are propagated correctly along distance propagating paths, so Algorithm 4
produces correct distance maps.
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Algorithm 4: Computing DTC for weighted ns-distances by wave-front
propagation using a look-up table.

Input: LUT and an object X ⊂ Z2.

Output: The distance transform DTC.

Initialization: Set DTC(p) ← 0 for grid points p ∈ X and
DTC(p) ← ∞ for grid points p ∈ X. For all grid points p ∈ X
adjacent to X: push (p, DTC(p)) to the list L of ordered pairs sorted
by increasing DTC(p).
while L is not empty do

foreach p in L with smallest DTC(p) do
Pop (p, DTC(p)) from L;
foreach v ∈ N do

if DTC(p+ v) > LUTv (DTC(p)) then
DTC(p+ v) ← LUTv (DTC(p));
Push (p+ v, DTC(p+ v)) to L;

end
end

end
end

Theorem 4. If

• each of the sets N 1,N 2, . . . ,N 8 is represented by at least one scanning
mask and

• the scanning masks support the scanning orders,

then Algorithm 5 computes correct distance maps.

Proof. Since the same paths are propagated using this technique, the same
conditions on the masks, scanning orders, and image domain are needed
for Algorithm 5 to produce distance transforms without errors as when the
additional distance transform DTL is used.

Note that Algorithm 4 and 5 derive from the work in [15, 16], but here,
symmetrical distance functions are allowed due to the increased number of
scans.
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Algorithm 5: Computing DTC for weighted ns-distances by raster scan-
ning using a look-up table.

Input: LUT, scanning masks Mi, scanning orders soi and an object
X ⊂ Z2.

Output: The distance transform DTC.

Initialization: Set DTC(p) ← 0 for grid points p ∈ X and
DTC(p) ← ∞ for grid points p ∈ X.
Comment: The image domain I defined by eq. 1 is scanned L
times using scanning orders such that the scanning masks Mi

supports the scanning order soi, i ∈ {1, . . . , L}
for i = 1 : L do

foreach p ∈ I following soi do
if DTC(p) < ∞ then

foreach v ∈ N i do
if DTC(p+ v) > LUTv (DTC(p)) then

DTC(p+ v) ← LUTv (DTC(p));

end
end

end
end

end

We remark that the computational cost of Algorithm 3 is linear with
respect to the maximal radius Dmax and that the LUT can be computed on
the fly when computing the DT. In other words, if it turns out during the
DT computation that the LUT is too short, it can be extended by using
Algorithm 3 with the modification that the loop variable starts from the
missing value. Note also that for short neighborhood sequences, the LUT can
sometimes be replaced by a modulo operator. For example, when (α, β) =
(4, 5) and B = (1, 2), then by propagating distances to 2-neighbors only when
DTC (p) is not divisible by nine gives a very fast algorithm the computes a
DT with low rotational dependency.

5. Computing the distance transform in two scans using a large
mask

In [6], it is proved that if the weights and neighborhood sequence are such
that the generated distance function is a metric, then the distance function
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is generated by constant neighborhood using a (large) neighborhood. This
implies that the 2-scan chamfer algorithm can be used to compute the DT
in Z2, see [12].

The following theorem is proved in [11]:

Theorem 5. If

N∑

i=1

b(i) ≤
j+N−1∑

i=j

b(i) ∀j,N ≥ 1 and (4)

0 < α ≤ β ≤ 2α (5)

then dα,β(·, ·;B) is a metric.

In [11], the distance function generated by B = (1, 2, 1, 2, 2), (α, β) =
(4, 5) is suggested. In Figure 6, the masks that can be used by a two-scan
algorithm to compute the DT with this distance function are shown.
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Figure 6: Masks that can be used by a two-scan algorithm to compute a DT using the
weighted ns-distance defined by B = (1, 2, 1, 2, 2), (α, β) = (4, 5).

In this section we assume that the weights α and β and the ns B are such
that

• B is periodic and

• the distance function generated by α, β, and B is a metric.

For this family of distance functions, a two-scan chamfer algorithm with
large scanning masks can be used instead of the three-scan algorithm with
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small scanning masks using DTlength or the three-scan algorithm with small
scanning mask using a LUT.

Let N be the set of grid points such that the distance value from 0 is
defined by the first period of B.

We now define two sets that are used in Algorithm 6.

M1 = N ∩ {(x, y) : y < 0 or y = 0 and x ≥ 0} and

M2 = N ∩ {(x, y) : y > 0 or y = 0 and x ≤ 0} .

The following theorem is proved in [6]:

Theorem 6. If dα,β (·, ·;B) is a metric, then the weighted ns-distance defined
by B and (α, β) defines the same distance function as the weighted distance
defined by the weighted vectors

{(
v, dα,β (0,0+ v;B)

)
: v ∈ N

}

Algorithm 6: Computing DTC for weighted ns-distances by wave-front
propagation using a large weighted mask.

Input: The mask N , and an object X ⊂ Z2.

Output: The distance transform DTC.

Initialization: Set DTC(p) ← 0 for grid points p ∈ X and
DTC(p) ← ∞ for grid points p ∈ X. For all grid points p ∈ X
adjacent to X: push (p, DTC(p)) to the list L of ordered pairs sorted
by increasing DTC(p).
while L is not empty do

foreach p in L with smallest DTC(p) do
Pop (p, DTC(p)) from L;
foreach v ∈ N do

if DTC(p+ v) > DTC(p) + ωv then
DTC(p+ v) ← DTC(p) + ωv;
Push (p+ v, DTC(p+ v)) to L;

end
end

end
end
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Algorithm 7: Computing DTC for weighted ns-distances by two scans
using a large weighted mask.

Input: Scanning masks Mi, scanning orders soi, weights, and an ob-
ject X ⊂ Z2.

Output: The distance transform DTC.

Initialization: Set DTC(p) ← 0 for grid points p ∈ X and
DTC(p) ← ∞ for grid points p ∈ X.
Comment: The image domain I defined by eq. 1 is scanned two
times using scanning orders such that the scanning mask defined by
Mi supports the scanning order soi, i ∈ {1, . . . , 2}
for i = 1 : 2 do

foreach p ∈ I following soi do
foreach v ∈ Mi do

if DTC(p+ v) > DTC(p) + ωv then
DTC(p+ v) ← DTC(p) + ωv;

end
end

end
end

Theorem 7. If the scanning masks M1 and M2 support the scanning orders
then Algorithm 6 and 7 compute correct distance maps.

Proof. Any path consists of steps from N and the order of the steps is arbi-
trary. Consider the point p = (x, y) such that x ≥ y ≥ 0. All points in any
minimal cost path between 0 and p have non-negative coordinates. Also, all
local steps are in M2 except (1, 0). Thus, the local steps in any minimal
cost path between 0 and p can be rearranged such that the steps from M1

are first and the the steps from M2 are last or vice-versa. It follows that a
minimal cost path is propagated from 0 to each point p such that x ≥ y ≥ 0.
The theorem holds by translation and rotation invariance.

6. Conclusions

We have examined the DT computation for weighted ns-distances. Three
different, but related, algorithms have been presented and we have proved
that the resulting DTs are correct.
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We have shown that using the additional transform DTL is not needed
for computing the DT DTC. This extra information can, however, be useful
when extracting medial representations, see [14].

We note that when the LUT-approach is used, a fast and efficient al-
gorithm is obtained. This approach can also be used for computing the
constrained DT. When the constrained DT is computed, there are obstacle
grid points that are not allowed to intersect with the minimal cost paths that
define the distance values. The path-based approach is well-suited for such
algorithms. When the Euclidean distance is used, the corresponding algo-
rithm must keep track of visible point, i.e., points which can be given the
distance value by adding the length of the straight line segment between al-
ready visited points. Such algorithms, see [17], are slow and computationally
heavy compared to the distance functions used in this paper.

For short sequences, the LUT can be replaced by a modulo function:
consider B = (1, 2) and weights (α, β), then β is propagated to a two neighbor
only from grid points with distance values that are divisible by α + β. This
approach gives a fast and efficient algorithm.

The LUT can be computed “on-the-fly” by using Algorithm 3. In other
words, if it turns out during the DT computation that the LUT is too short,
Algorithm 3 can be used to find the missing values in time that is proportional
to the number of added values.

For long sequences, the two-scan Algorithm 6 and 7 is not efficient since
the size of the masks depend on the length of the sequence. Also, this
approach is valid only for metric distance functions.

Due to the low rotational dependency and the efficient algorithms pre-
sented here, we expect that the weighted ns-distance has the potential of
being used in several image processing-applications where the DT is used:
matching [18], morphology [19], and more recent applications such as separat-
ing arteries and veins in 3-D pulmonary CT, [20] and traffic sign recognition,
[21].
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