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Abstract

Mixtures of probabilistic principal component analyzers (MPPCA) have shown
effective for modeling high-dimensional data sets living on nonlinear manifolds.
Briefly stated, they conduct mixture model estimation and dimensionality reduc-
tion through a single process. This paper makes two contributions: first, we disclose
a Bayesian technique for estimating such mixture models. Then, assuming several
MPPCA models are available, we address the problem of aggregating them into a
single MPPCA model, which should be as parsimonious as possible. We disclose in
detail how this can be achieved in a cost-effective way, without sampling nor access
to data, but solely requiring mixture parameters. The proposed approach is based
on a novel variational-Bayes scheme operating over model parameters. Numerous
experimental results and discussion are provided.

Preprint, to appear in Information Fusion, 2013.

1 Introduction

In the present paper, we provide a significant extension to previous work [1]. While only
a short and preliminary work, covering main ideas and a single experimental setting
(synthetic data set) could be presented in [1], we disclose herein complete technical
details (both in terms of pre-requisites and novel contributions), discussion and numerous
experimental results (synthetic and read data sets). Further, we focused in [1] on the
contribution detailed here in section 5, while the contribution in section 4 could only be
sketched in a few lines.

∗pbruneau@gmail.com
†firstname.lastname@univ-nantes.fr
‡firstname.lastname@univ-nantes.fr
§The work was carried out while P.Bruneau was with LINA.

2



In order to model and analyze high-dimensional data, Probabilistic PCA (PPCA) was
proposed in [2]. The authors put forward several advantages, in comparison to standard
PCA. First, probabilistic modeling enables application of Bayesian inference, which can
identify a suitable dimension for the principal subspace. This was extended by mixtures
of PPCA (MPPCA) [3], which can model nonlinear manifolds. Mixtures of PPCA may
be also viewed as an extension of Gaussian mixtures with improved performance for high-
dimensional data, i.e. better resilience to the curse of dimensionality. MPPCA models,
too, are amenable to Bayesian modeling, determining jointly the suitable subspaces and
the number of components in the mixture. Overall, these properties make mixtures of
PPCA a powerful data modeling tool.

The first contribution of this paper is a cost-effective technique for estimating the
parameters of such a MPPCA model, that improves existing Bayesian approaches. The
second, more important, contribution consists in a novel technique for aggregating sev-
eral MPPCA models. This typically targets scenarii requiring building a global model
over a data set, which is not directly accessible, but is represented by a set of local mod-
els, each of them taking also the form of a MPPCA. This may for instance be encountered
if the data is distributed and one does not wish, or is not able, to centralize the data.
This restriction may arise from performance considerations or on privacy grounds over
individual data entries. The key property of our scheme is that it only needs to access
parameters of the original models, rather than original data, for computing the aggre-
gated model. In this paper, aggregation of a set of MMPCA models consists in their
addition, followed by a compression phase that seeks an optimal combination of mixture
components. A straightforward solution would consist in adding incoming models, sam-
pling data and re-estimating a MPPCA model through the classical scheme [3] or our
alternative proposal disclosed in section 4, which optimizes a Bayesian criterion. Indeed,
a reasonable yardstick for assessing the scheme would consist in estimating a global MP-
PCA model from the whole data set. Our proposal proposes a cost-effective alternative,
that avoids sampling and re-estimation (which is expensive for high-dimensional data).
We demonstrate that one can estimate the desired model directly from the parameters of
local MPPCA models. Along with the crucial issue of determining the suitable number
of components and dimensions of subspaces, the solution is formulated as a Bayesian
estimation problem and solved using an original variational inference scheme, involving
the sole model parameters.

Learning global, concise data models from distributed data sets is of much interest
in a rising number of settings (e.g. learning probabilistic topics over the internet [4],
learning database summaries from partial summaries [5]). Since mixture model posterior
probabilities define a probabilistic partition of data into clusters, the task also tightly
relates to ensemble clustering [6, 7]. In this paper, we focus on identifying a compact
combination of input mixture model components, by optimizing a Kullback-Leibler (KL)
divergence-based loss. Therefore, clustering information preservation is not the main
criterion, even if some clustering experiments are used to illustrate the performance of
our technique. Among closely related works, variational mixture learning, extensively
used throughout this paper, is generalized to the whole exponential family distributions
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in [8]. In contrast to our proposal, it however learns a single common subspace for all
mixture components. In the context of sensor networks, the usage of shared sufficient
statistics, in place of model parameters as in the present work, is emphasized in [9]. In
[10], a similar approach is used, jointly with a variational Gaussian mixture setting. The
present proposal generalizes [11] from Gaussian mixtures to MPPCA, the probabilistic
model and optimization scheme must be designed anew.

Section 2 recalls Probabilistic PCA and an Expectation-Maximization (EM) algo-
rithm for its resolution. The extension to mixtures of PPCA is reviewed in section
3. A variational approach to estimating such a model is derived in section 4. Section
5 is the second, core, contribution and describes an original aggregation scheme for a
set of mixtures of PPCA. We first describe how mixtures of PPCA may be extended
to handle components, and then the variational scheme for this new model estimation.
Section 6 provides experimental results. After a discussion in section 7, conclusions and
perspectives are drawn in section 8.

2 Probabilistic PCA

As contributions exposed in [2] are prerequisites for the present work, this section recalls
the necessary elements to make the present paper self-contained.

2.1 Probabilistic model

Principal Component Analysis (PCA) is a fundamental tool for reducing the dimen-
sionality of a data set. It supplies a linear transform P : R

d → R
q, q < d. For any

d-dimensional observed data set Y = {y1, . . . ,yn, . . . ,yN}, P(Y) is defined to be a
reduced dimensionality representation, that captures the maximal variance of Y.

The q first eigenvectors (i.e. associated to the q first eigenvalues, in descending order)
of the d × d sample covariance matrix of Y were proven to be an orthogonal basis for
P(Y). Let us remark that the sum of the q eigenvalues denotes the amount of variance
captured by the transformation.

Tipping [2] proposed an alternative, probabilistic framework to determine this sub-
space:

Theorem 2.1 Let xn and ε be two normally distributed random variables:

p(xn) = N (xn|0, Iq) (1)

p(ε|τ) = N (ε|0, τ−1Id)

with N the multivariate normal distribution,

and Iq the q × q identity matrix

Then yn = Λxn + µ + ε is marginally and conditionally normally distributed:
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p(yn|µ,Λ, τ) = N (yn|µ,ΛΛT + τ−1Id)

p(yn|xn, µ,Λ, τ) = N (yn|Λxn + µ, τ−1Id) (2)

This model will be further denoted as Probabilistic PCA (PPCA). Indeed, Maximum
Likelihood (ML) estimates for the parameters {Λ, τ} were proven to be [2]:

ΛML = Uq(Lq − τ−1
MLIq)

1

2 R (3)

τ−1
ML =

1

d − q

d
∑

j=q+1

λj (4)

with {λ1, . . . , λd|λi ≥ λi+j , ∀j ≥ 0} the eigenvalues of S, the sample covariance
matrix of Y, Lq the diagonal matrix defined with {λ1, . . . , λq}, Uq the matrix whose
columns contain the corresponding eigenvectors, and R an arbitrary orthonormal ma-
trix. Thus, determining ML estimates for this model is equivalent to performing the
traditional PCA.

In the description above, we notice that ML solutions for the factor matrix Λ are up
to an orthonormal matrix; if the purpose is to have the columns of ΛML matching the
basis of the principal subspace, then R should equal Iq, which is generally not the case.
Fortunately, since:

ΛT
MLΛML = RT (Lq − τ−1

MLIq)R (5)

RT is recognized as the matrix of eigenvectors of the q × q matrix ΛT
MLΛML. Post-

multiplying (3) with RT then recovers the properly aligned ML solution. Let us notice
that the solution is made with unitary basis vectors, scaled by decreasing eigenvalues.
In other words, the columns of ΛML are ordered by decreasing magnitude.

2.2 EM algorithm for Maximum Likelihood solution

Unfortunately, there is no closed form solution to obtain these estimates. By inspection of
the model presented in theorem 2.1, we recognize a latent variable problem, with param-
eters {µ,Λ, τ}, and latent variables X = {xn}. Thus, using (1) and (2), the log-likelihood
of the complete data (i.e. observed and latent variables) LC =

∑N
n=1 ln p(xn,yn|µ,Λ, τ)

is formulated, and an EM algorithm can be proposed for the maximization of this value
[12, 2].
In the remainder of this paper, τ , as a reflection of the minor eigenvalues of the sample
covariance matrix, is considered of less importance, and rather set as a static parame-
ter, using a low value (e.g. 1). Consequently, probability distributions exposed in this
paper are generally implicitly conditioned on τ , e.g. p(xn,yn|µ,Λ, τ) is now written
p(xn,yn|µ,Λ).
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The algorithm starts with randomly initializing Λ (e.g. a random orthogonal matrix).
The ML estimate for µ only depends on Y, and equals the sample mean. The E step
consists in finding the moments of the posterior distribution over the latent variables:

E[xn]p(xn|yn,µ,Λ) = M−1ΛT (yn − µ) (6)

E[xnx
T
n ]p(xn|yn,µ,Λ) = τ−1M−1 + E[xn]E[xn]T (7)

with M = τ−1Iq+ΛTΛ. From now on, we omit the probability distribution subscripts
for moments (e.g. l.h.s of equations (6) and (7)) in the context of an EM algorithm,
implicitly assuming that expectations are taken w.r.t. posterior distributions. The M
step is obtained by maximizing LC w.r.t. Λ:

Λ =

[ N
∑

n=1

(yn − µ)E[xn]

][ N
∑

n=1

E[xnx
T
n ]

]

(8)

Cycling E and M step until convergence of the expected value of LC to a local maxi-
mum provides us with ML values for parameters, and posterior distributions over latent
variables. After convergence, and post-processing as suggested by equation (5), Λ con-
tains a scaled principal subspace basis of the data set Y.

3 Mixtures of PPCA

In this section, we gather and reformulate essential points from [2, 13, 14, 15], on which
the contributions given in the following two sections will be built.

3.1 Model

The probabilistic formulation of the previous section allows an easy extension to mixtures
of such models [2]. Indeed, as stated by theorem 2.1, a sample Y originating from a
PPCA model is normally distributed:

p(yn|µ,Λ) = N (yn|µ,C) (9)

where, for conveniency, we defined C = τ−1Id + ΛΛT .

From now on, let Y originate from a mixture of such distributions (hereafter called
components of the mixture model):

p(yn|ω, µ,Λ) =

K
∑

k=1

ωkN (yn|µk,Ck) (10)

where we used shorthand notations ω = {ωk}, µ = {µk} and Λ = {Λk}. These
last conventions are not to be confused with that used in equation (9), where only one
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component is involved. In the present formulation, for simplicity we assume that the
number of columns per factor matrix equals q for all components. This might not be
the case (i.e. the principal subspace specific to each component might differ in terms of
rank), but then the model and the algorithm for its estimation would be easily extended
to specific qk values. τ is set statically to a small value common to all components, and
thus, without ambiguity, does not require subscripting.

Distribution (10) implicitly refers to zn, a binary 1-of-K latent variable (i.e. if yn

originates from the k-th component, znk = 1, and znj = 0 ∀j &= k). Let us make this
latter variable explicit, by expanding (10):

p(yn|zn, µ,Λ) =

K
∏

k=1

N (yn|µk,Ck)
znk (11)

p(zn|ω) =

K
∏

k=1

ω
znk
k (12)

or, equivalently:

p(yn|znk = 1, µ,Λ) = N (yn|µk,Ck) (13)

p(znk = 1|ω) = ωk (14)

These binary latent variables may latter be collectively denoted by Z = {zn}. Now
let us expand (11) with the latent variables X, thus expressing completely the mixture
of PPCA components:

p(yn|zn,xn, µ,Λ) =
K
∏

k=1

N (yn|Λkxn + µk, τ
−1Id)

znk (15)

p(xn|zn) =

K
∏

k=1

N (xn|0, Iq)
znk (16)

The mixture of PPCA (MPPCA) model is defined by the set of distributions (15),
(16) and (12). These distributions can be used to form a graphical representation, shown
in figure 1.

3.2 EM algorithm for Maximum Likelihood solution

The model presented in section 3.1, and summarized in figure 1, is a latent variable
model, and an EM algorithm for the estimation of its parameters {ω, µ,Λ} and la-
tent variables {X,Z} can be derived [2]. The complete data log-likelihood LC =
∑N

n=1 ln p(yn,xn, zn|ω, µ,Λ) is formed with expressions (15), (16) and (12).
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Figure 1: Directed Acyclic Graph of the MPPCA model. Circles denote random variables
(respectively known and unknown for full and empty circles). Points denote parameters
to be estimated.

The algorithm starts with the initialization of the model parameters. All component
weights ωk are initialized to 1

K , the component means µ are scattered randomly in the
data domain, and the factor matrices Λ are set with random orthogonal vectors.

The E step consists in finding the moments of the posterior distributions over latent
variables X and Z given the current model parameters.

The posterior moments for Z can be interpreted as component responsibilities, and
determined straightforwardly using Bayes’ rule:

E[znk = 1] = rnk ∝ p(znk = 1|ω)p(yn|znk = 1, µ,Λ) (17)

with probabilities given by equations (14), (13). These estimators are then normal-
ized so that

∑K
k=1 rnk = 1.

As reflected by equation (16), posterior moments for X are now conditioned on a
specific component. Actually, their expressions remain very similar to (6) and (7), but
are now derived for each component:

E[xn|znk = 1] = E[xnk] = M−1
k ΛT

k (yn − µk) (18)

E[xnx
T
n |znk = 1] = E[xnkx

T
nk] = τ−1M−1

k + E[xnk]E[xnk]
T (19)

with Mk = τ−1Iq + ΛT
k Λk.

The M step consists in maximizing the expected complete data log-likelihood LC
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w.r.t. the model parameters:

ωk =
1

N

N
∑

n=1

rnk (20)

µk =

∑N
n=1 rnk(yn − ΛkE[xnk])

∑N
n=1 rnk

(21)

Λk =

[ N
∑

n=1

rnk(yn − µk)E[xnk]
T

][ N
∑

n=1

rnkE[xnkx
T
nk]

]−1

(22)

Again, E and M steps are iterated until convergence of LC . Local maxima for
component-specific scaled principal subspace bases are recovered using (5). The EM
algorithm presented in this section was reported for self-containment; if desirable, details
may be found in [2].

4 Extension of the variational method to handle a MPPCA

model

4.1 Motivation

The subspace dimensionality of a PCA transform is usually determined empirically, for
example by using an 80% threshold for the captured variance:

qthreshold = arg min
q

{

( q
∑

i=1

λq

)

> 80%

}

(23)

Minka [16] proposed an alternative Bayesian criterion for the automatic estimation
of q for a given PPCA model. The Laplace method is used in order to derive an asymp-
totical approximation to the posterior probability of q. Efficiency is achieved through
the availability of the criterion in closed form, depending only on the set of eigenvalues.
This can be seen as a rigorous alternative to the usual empirical procedure.

The algorithm presented in section 3.2 relies on the explicit knowledge of the num-
ber of components K and the number of factors per component qk. This information is
generally unknown by advance: but having defined a probabilistic formulation provides
us with tools for the inference of these values. As for the single PPCA case, Bayesian
methods may be employed for this purpose.

The classical solution is to train models of various complexities (i.e. varying K and
qk), and use selection criteria and validation data sets to compare these models. For
example, BIC [17], AIC, or other criteria more adapted to the mixture model case [18]
may be employed. However, this approach requires multiple trainings before selecting
the adequate model structure, which might be prohibitive under some system designs.
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In this section, we rather propose to adapt the variational Bayesian framework to
the MPPCA model. This general purpose technique, specifically designed for rigorous
approximation of posterior probability models, was proposed in [19, 20], and reviewed
in [21, 22]. It was successfully applied to the Gaussian Mixture Model (GMM) case
[19, 20, 21], the PPCA case [13], or to the mixture of factor analyzers case [14, 15]. To
our knowledge, it has not been applied to the MPPCA case yet. Mixture of factor ana-
lyzers and MPPCA models are related, yet differ by the employed noise model (diagonal
for factor analyzers, isotropic for PPCA). Also, the set of sufficient statistics in appendix
A is an algorithmic improvement introduced in this paper.

In the remainder of this section, we extend the probabilistic model from section 3,
in order to apply the variational Bayesian framework. Then, we put forward a EM-like
algorithm for a local optimization of the MPPCA model.

4.2 Probabilistic model

The model exposed in section 3.1 is extended, with parameters modeled as random vari-
ables rather than as point estimates. From the variational point of view, all parameters
and latent variables are random variables, for which we want to determine posterior
distributions.

Thus, expressions (15), (16) and (12) are included as such in this new model, forming
the observation, or likelihood model [22]. Let us define a probabilistic model for the
parameters:

p(ω|α0) = Dir(ω|α0) (24)

p(Λ|ν) =

K
∏

k=1

p(Λk|νk)

=

K
∏

k=1

q
∏

j=1

p(Λ.j
k |νkj) =

K
∏

k=1

q
∏

j=1

N (Λ.j
k |0, ν−1

kj Id) (25)

p(ν|a0, b0) =

K
∏

k=1

p(νk|a0, b0) =

K
∏

k=1

q
∏

j=1

Ga(νkj |a0, b0) (26)

p(µ|µ0, ν0) =
K
∏

k=1

p(µk|µ0k, ν0) =
K
∏

k=1

N (µk|µ0k, ν
−1
0 Id) (27)

with Dir() and Ga() respectively the Dirichlet and gamma distributions, and hyper-
parameters subscripted by 0. This model for the parameters may be interpreted as a
prior, i.e. some clue about the range of values that the real parameters may take. The
objective is then to infer a posterior for these parameters, which is practically a compro-
mise between prior information and evidence from data. The full model is summarized
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under a graphical form in figure 2.

Figure 2: Directed Acyclic Graph of the MPPCA model, with all data and parameters
modeled by random variables.

In this model, hyper-parameters shape the priors, and are statically set with unin-
formative values. As the number of output components may be potentially high, K is
set to some high value, and α0 is set to a low value reflecting our preference towards
simple models; indeed, for α0 < 1, the modes of the Dirichlet distribution nullify at least
one of the ωk. a0 and b0 are set to small values, and a0 = b0, so as to assign equal prior
roles to all columns in factor matrices. These serve as prior information for {νkj}, which
are precision parameters for the columns of the factor matrices. This model setting is
inspired by the Automatic Relevance Determination [23]; in brief, maximizing the likeli-
hood of data under this model conducts some of the νkj to high values. The associated
factor columns then tend to be void, leaving only the effective ones with low νkj values.
µ0k are scattered in the data domain.

Let us remark that the priors over ω and Λ are the keys to Bayesian automatic
complexity determination. In other words, a posterior of the model presented in this
section would naturally have the appropriate number K ′ < K of non-zero ωk posterior
moments, and for each associated factor matrix, the appropriate number q′k < qk of
columns with a posterior νkj set to a low value. Thus qk may be all set to q = d − 1,
and only relevant factors are then extracted.
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4.3 The Variational Bayesian EM algorithm for the MPPCA

As an EM-like approach, the variational method starts with the formulation of the
complete likelihood:

p(Y,X,Z, ω, µ,Λ, ν|α0, a0, b0, µ0, ν0) (28)

= p(Z|ω)p(Y|Z,X,Λ, µ)p(X|Z).

p(ω|α0)p(Λ|ν)p(ν|a0, b0)p(µ|ν0)

Hyper-parameters are only used as a static parameterization, and may be omitted
in this expression. Thus the complete log-likelihood may be written:

LC = ln p(Y,X,Z, ω, µ,Λ, ν) (29)

The true posterior p(X,Z, ω, µ,Λ, ν|Y) that maximizes LC requires intractable inte-
grations. Therefore, there exists no systematic way to obtain it, and its functional form
is undetermined. The purpose of the variational approach is to find an approximation
to this true posterior within a simpler and well-defined family of distributions, so that
the tractability is guaranteed.

A variational distribution set is defined, and factorizes exactly as does the prior
distribution in the model:

q(X,Z, ω, µ,Λ, ν) = q(X,Z)q(ω, µ,Λ, ν) (30)

q(X,Z) =

N
∏

n=1

q(xn|zn)q(zn)

q(ω, µ,Λ, ν) = q(ω)
K
∏

k=1

q(µk)q(Λk|νk)q(νk)

Let us remark that these variational distributions have the same functional form as
their respective prior. Then, the following theorem holds [22] :

Theorem 4.1 Let θ = {θ1, . . . , θm} be any factorized parameter and latent variables
set, and Y an observed data set. The approximate distribution verifying:

q∗(θ) = arg min
q(θ)

KL
[

q(θ)||p(θ|Y)
]

(31)

is obtained when:

q∗(θi) ∝ exp

(

Eq∗(θ/i)[LC ]

)

, i = 1, . . . , q (32)

or equivalently, (33)

ln q∗(θi) = Eq∗(θ/i)[LC ] + const, i = 1, . . . , q (34)
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with KL(.||.) the KL divergence between two probability distributions,
and θ/i the set {θj} in θ for which j &= i,
and q∗(θ/i) =

∏m
j=1,j $=i q

∗(θj)

This theorem provides us with a systematical way to obtain an approximation q∗(X,Z, ω, µ,Λ, ν)
to the true and unknown posterior. The algorithm starts with the initialization of m−1
elements of q∗(), e.g. with their respective prior. The m-th element is updated using
theorem 4.1, followed by the successive updates of the m − 1 first elements. Each such
step (i.e. succession of m updates) was proven to increase the expected value for LC [21].
This property led to the EM-like denomination. Variational updates are performed until
convergence. In other words, an estimate for the optimal q∗() is progressively refined.

Let us remark that E[LC ] can be viewed as a lower bound to a constant, marginalized
likelihood (i.e. integrated over all unknowns) [21]. Thus it can be computed and used
to detect the convergence of the variational algorithm.

Similarly to EM, this scheme performs a local optimization. But variational EM
algorithms perform a functional optimization, as opposed to point-wise for EM. Thus,
some regularity is guaranteed for the solutions, and usual degeneracies of EM schemes
for mixture models are avoided [24, 21].

Using expression (29) for all the terms in LC , and theorem 4.1, we obtain the for-
mulas for the update of the variational distributions, given in appendix A. Let us note
that variational distributions can be characterized either by their first and second order

moments (e.g. E[xnk] or E[Λij
k

2
]), or their shaping hyper-parameters (e.g. αk, bkj). All

are deduced by the usage of theorem 4.1.

In appendix A, we regrouped updates for the variational distributions over latent
variables in the E step. Sufficient statistics are accumulators that are built using the
current estimations for latent variables. Variational distributions over model parameters
are updated using these accumulators. Updates for model parameters are regrouped in
an M step, by analogy to the classic EM formulation. Practically, the algorithm starts
with the initialization of the variational distributions over parameters (i.e. q(ω, µ,Λ, ν))
with their respective prior, and proceeds with the E step.

Convergence may be assessed by monitoring the value of Eq∗[LC ]. The obtained
estimates for Λk are post-processed using (5).

The algorithm outputs a posterior MPPCA:

output MPPCA = {ωk, µk,Λk, τ |αk > α0} (35)

The variational Bayesian algorithm for the mixture of PPCA will be further iden-
tified by VBMPPCA. An analogous application of theorem 4.1 to the GMM case was
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already proposed in the literature [21]. The associated algorithm will be further known
as VBGMM.

As proposed in section 4.2, the algorithm can be run with factor matrices of the
maximal possible size, i.e. q = d − 1 columns, or less if computational time is an issue,
at the risk of some information loss in the posterior. In the same section, we argued that
the model ensures dimensionality reduction with precision parameters over the columns
of the factor matrices. After post-processing, factor matrices are ordered by decreasing
magnitude (see section 2.1): so a systematic way to infer the proper dimensionality
specific to each output component can be proposed:

Data: An output MPPCA
Result: output MPPCA with dimensionality reduced factor matrices
for each component k in the model do1

currentDivergence ← +∞ ;2

curQ ← 0 ;3

while currentDivergence > threshold do4

curQ ← curQ + 1 ;5

Λtemp ← first curQ columns of Λk ;6

currentDivergence ←7

KL

(

N (0,ΛkΛT
k + τ−1Id)||N (0,ΛtempΛT

temp + τ−1Id)

)

;

end8

Λk ← first (curQ − 1) columns of Λk ;9

end10

Algorithm 1: Inference of dimensionality for output factor matrices

The KL divergence between two Gaussians is defined in closed form. The algorithm
1 tries to form the covariance of the marginal for data Y with a limited number of
factors, and stops when the last added factor did not change significantly the shape
of the distribution. This means that factors columns with index greater or equal to
curQ are close to void, and can be pruned from output factor matrices. Subspaces with
reduced dimensionality are thus built.

5 Aggregating mixtures of PPCA

A straightforward way of aggregating MPPCA models separately estimated on different
data sources is to add them. However if sources reflect the same underlying generative
process, the resulting mixture is generally unnecessarily complex, i.e. redundant, with
regard to a model estimated on the union of the data sets. In this section, we show
first how the addition of input MPPCA models can be seen as the limit representation
of a virtual data set [1]. This representation is then inserted into the model described
in section 3, as a substitution for an ordinary data set. The associated variational EM
algorithm is supplied. It outputs the low complexity model that best fits the data which
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would have been generated from the redundant input mixture, without relying either on
the data itself or on any sampling scheme.

5.1 Model

A full sample (i.e. data and indicator variables, all observed) originating from an arbi-
trary and known redundant MPPCA with L components may be denoted by (Y,Z′) =
{yn, z′n}. Let us regroup elements from this sample according to the values taken by z′n,
and define ŷl = {yn|z

′
nl = 1}, and ẑ′l = {z′n|z

′
nl = 1}.

We propose to formulate the likelihood of this sample under an unknown MPPCA
model. This last model will be further known as the target, as opposed to the input
model, that originated Y. To prevent ambiguities, components from the input and
output models will be indexed respectively by l ∈ {1, . . . , L} and k ∈ {1, . . . ,K}.

The (known) indicator variables of the sample according to the input model are
collectively denoted by Z′: this notation is not to be confused with Z, the (unknown)
indicator variables of this same sample according to the output model. In order to keep
notations concise, and without loss of generality, we now assume that all components in
the input model have factor matrices with the same number of columns, q.

The output model should not be more complex than the input model, so the same
q may be used to parameterize the size of factor matrices in the output model. Let us
write the likelihood of the full sample under the output MPPCA model:

p(Y,Z|ω, µ,Λ) = p(Y|Z, µ,Λ)p(Z|ω) (36)

with p(Y|Z, µ,Λ) =

K
∏

k=1

L
∏

l=1

(N (ŷl|µk,Ck))
zlk (37)

and p(Z|θ) =

K
∏

k=1

L
∏

l=1

(ω
|ẑ′l|

k )zlk (38)

where we used expressions (11) and (12). ω, µ and Λ collectively denote the out-
put model parameters. Latent variable X is intentionally left implicit. We assumed
that membership variables for all yi in ŷl are identical, and equal to zl. This hypoth-
esis is generally acceptable, mixture models aggregation being often about combining
components. Let us notice that:

|ẑ′l| = |ŷl| + Nωl (39)

with N the cardinal of the sample considered above. Using this approximation in (38)
replaces the input data by its abstraction (i.e. sample size and input model parameters).
Let us rewrite (37) as follows:
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p(Y|Z, θ) =

K
∏

k=1

L
∏

l=1

(N (ŷl|µk,Ck))
zlk =

K
∏

k=1

L
∏

l=1

p
zlk
lk (40)

Defining Llk = ln plk for a specific term in (40), expanding ŷl, and using approxima-
tion (39) gives:

Llk +

Nωl
∑

j=1

lnN (ylj |ωk, µk,Ck) (41)

+ Nωl

[

−KL
(

N (µl,Cl)||N (µk,Ck)
)

− H
(

N (µl,Cl)
)

]

(42)

where we used the law of large numbers to approximate the KL divergence and the
entropy by a finite sum. As a consequence, N should be sufficiently large for expressions
(39) and (42) to be roughly valid.

Let us underline that the likelihood (i.e. (37) and (38)) has been transformed so that
it depends on the input sample only through the input model parameters. N can then
be chosen arbitrarily. In other words, we use a virtual sample, but only process input
model parameters. This idea was initially formulated in [25, 26] for Gaussian mixtures.
This approximation significantly reduces the complexity of the problem, as it now only
depends on the size of the input mixture L.

The KL divergence between Gaussians and the entropy of a Gaussian both have
closed form expressions. Using these to expand (42) gives:

Llk = Nωl

[

−
d

2
ln(2π) −

1

2
ln det(ΛkΛ

T
k + τ−1Id)

−
1

2
Tr

(

(ΛkΛ
T
k + τ−1Id)

−1[ΛlΛ
T
l + τ−1Id

+ (µl − µk)(µl − µk)
T ]

)

]

(43)

τ is generally a low value, and its influence is discarded in the rest of the section.

As ΛlΛ
T
l =

∑q
j=1 Λ.j

l Λ.j
l

T
, plk can be approximated by the combined likelihoods of the

input means and factor columns. Thus after renormalization:

plk =



N (µl|µk,Ck)

q
∏

j=1

N (Λ.j
l |0,Ck)





Nωl

(44)

Using (44) with (40) and (38), an approximation to the input sample likelihood is
obtained:
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p(Y,Z|ω, µ,Λ) =
L

∏

l=1

K
∏

k=1

[

ω
Nωl
k

(

N (µl|µk,Ck)

.

q
∏

j=1

N (Λ.j
l |0,Ck)

)Nωl
]zlk

(45)

In (45), all terms are members of the exponential family. Such a probability distri-
bution, taken to any power and normalized, is still a member of the exponential family:
thus Nωl can be incorporated into the model parameters, giving:

p(Y,Z|ω, µ,Λ) = p(Z|ω)p({µl,Λl}|Z, µ,Λ) (46)

where we defined:

p(Z|ω) =
L

∏

l=1

K
∏

k=1

(

ω
Nωl
k

)zlk (47)

p({µl,Λl}|Z, µ,Λ) =
L

∏

l=1

K
∏

k=1

(

N (µl|µk, (Nωl)
−1Ck)

.

q
∏

j=1

N (Λ.j
l |0, (Nωl)

−1Ck)

)zlk

(48)

Let us note that on the left hand side of (46), Y still appears, while on the right hand
side, only input model parameters are used. This convention was chosen for homogeneity
to the model presented in section 4.2. Notice that the marginal for the virtual sample
p(Y|ω, µ,Λ), that would be obtained using (46), is a mixture of products of Gaussians.

All Gaussian terms in (46) still depend on Ck, and, using theorem 2.1, can be
extended with x latent variables. As each component of the mixture is made of the
product of 1+ q terms, the size of X is increased accordingly. To prevent any ambiguity,
let us define X = (X1,X2), X1 = {x1l} and X2 = {x2lj |j ∈ 1 . . . q}. The likelihood of
the complete data can then be written as:

p(Y,X,Z|ω, µ,Λ) = p(Z|ω)p({µl,Λl}|Z,X1,X2, µ,Λ)p(X1,X2|Z) (49)

with p({µl,Λl}|Z,X1,X2, µ,Λ)

=
L

∏

l=1

K
∏

k=1

(

N
(

µl|Λkx1l + µk, (Nωlτ)−1Id

)

q
∏

j=1

N
(

Λ.j
l |Λkx2lj, (Nωlτ)−1Id

)

)zlk

and p(X1,X2|Z) =

L
∏

l=1

K
∏

k=1

(

N
(

x1l|(Nωl)
−1Iq

)

q
∏

j=1

N
(

x2lj |(Nωl)
−1Iq

)

)zlk

17



5.2 Variational EM algorithm

In the previous section, we showed how the likelihood of a virtual sample may be ex-
pressed in terms of the sole parameters of a redundant input MPPCA model, without any
actual sampling scheme. Thus by substituting (49) to the terms p(Z|ω)p(Y|Z,X,Λ, µ)p(X|Z)
in (28), we obtain:

p(Y,X,Z, ω, µ,Λ, ν) = p(Z|ω)p({µl,Λl}|Z,X1,X2, µ,Λ)

.p(X1,X2|Z)p(ω|α0)p(Λ|ν)p(ν|a0, b0)p(µ|ν0) (50)

The variational Bayesian algorithm described in section 4.3 can then be extended
straightforwardly. The associated variational distribution follows the factorization sug-
gested by (50), and uses the same functional forms for its terms:

q(X1,X2,Z, ω, µ,Λ, ν) = q(X1,X2,Z)q(ω, µ,Λ, ν) (51)

q(X1,X2,Z) =

L
∏

l=1

(

q(zl)q(x1l|zl)

q
∏

j=1

q(x2lj |zl)

)

q(ω, µ,Λ, ν) = q(ω)
K
∏

k=1

q(µk)q(Λk|νk)q(νk)

Using theorem 4.1 with (50) and (51), EM re-estimation equations can be obtained.
These are given in appendix B. These update expressions are used exactly as already
suggested in section 4.3, until convergence of the modified expected value for LC (i.e.
the log of expression (29)). This new variational algorithm will be further known as
VBMPPCA-A. The variational algorithm for the aggregation of GMM components, al-
ready proposed in [11], is denoted as VBGMM-A, and will be used for comparison in
section 6.

Let us consider a single component from the output model. As stated earlier, after
convergence, its column vectors are ordered by decreasing magnitude. Let us notice that
each dimension of a latent variable x ∈ X can be interpreted as a coefficient for a linear
combination of these column vectors. It seems natural to combine first columns of input
factor matrices to form the first column of a component’s output factor matrix, and so
on. Therefore, during the first E step of the algorithm, instead of performing the update
for x2lj variables, these are initialized with canonical vectors:

x2lj = ej (52)

In the subsequent E steps, the moments for these variables may be updated as usual.
Updating (1 + q) x variables instead of a single one burdens our E step. But this loss is
not critical, as our algorithm now scales with a number of input components, instead of
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a number of data elements.

Moreover, experimentally VBMPPCA-A happened to perform better with no update
of X2. The results presented in this paper used this implementation.

At the beginning of section 5.1, we assumed the same parameter q for all input
components. Let us consider the case where this should not be true: then ql is the factor
matrix size associated with input component l. We set qmax = max ql. Then, appending
qmax − ql void columns to each input factor matrix, and statically setting associated x2lj

to 0 is equivalent to using the same q for all components.

6 Experimental results

We first apply VBGMM and VBMPPC to synthetic data sets that illustrate various
prototypical situations 1, and discuss their relative performances. We then report results
on the same data set, pertaining to the model aggregation task, first comparing GMM
and MPPCA models, then sequentially aggregating MPPCA models. Finally, similar
experiments are reported, on two well-known real data sets.

6.1 Model fitting task : comparison of VBGMM and VBMPPCA

First we propose a thorough comparison of VBGMM and VBMPPCA methods. For this
purpose, we designed the 3 following data generating processes:

• SYN1: this process samples data elements from 4 well-separated 2D Gaussian
components, and linearly transforms them with additive noise to form a data set
with d = 9. An example for the original 2D signal is provided on figure 3.

• SYN2: this process generates elements along a semi-sphere. It is exemplified on
figure 4.

• SYN3: this process samples elements along a 2D circle with additive noise. As
for SYN1, this original signal is transformed to 9D, with additional noise, using a
linear transform. An example of the 2D process is shown on figure 5.

The linear transforms used to generate samples from SYN1 and SYN3 are designed
to produce artificial linearly redundant information. Thus a method like PCA should
recognize the original signal in this context. SYN2 is characterized by a 2D manifold
within a 3D space, which dimensionality reduction methods should also be able to recog-
nize. Employed dimensionalities (up to 9 in our 3 examples) may seem modest, but were
chosen for their clear identifiability and for tractability of VBGMM (which is O(d3)).

1Our open-source implementation in R (optimized and documented) for estimating the models and
aggregating them is available at : http://cran.r-project.org/web/packages/VBmix/index.html.
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Figure 3: Sample from SYN1 Figure 4: Sample from SYN2

Figure 5: Sample from SYN3

These three processes were used to generate training data sets of various sizes, from
50 to 1000 elements. 10 testing sets of 1000 elements were also generated for validation
purpose.

100 training sets were generated for each size, and each was used to estimate a model,
either with VBGMM or VBMPPCA. VBMPPCA was parameterized with the maximal
potential rank for each component, i.e. q = d−1. The quality of each model was assessed
using the following characteristics:

• The effective rank of the component subspaces.

• The effective number of components K ′.

• The average log-likelihoods of the validation data sets. In order to perform this
operation, MPPCA models are transformed to GMM using the identity Ck =
τ−1Id + ΛkΛ

T
k . In the specific case of SYN1 and SYN3, only the 2 relevant dimen-

sions were used.
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These measures were averaged over the training and testing sets, and are reported
in tables 1, 2 and 3. Each measure is associated to its standard deviation (bracketed in
the tables).

training sets size
50 100 200

qoutput (MPPCA) 0.59 [0.29] 0.85 [0.31] 1.13 [0.31]

K ′ (GMM) 3.95 [0.36] 3.84 [0.37] 3.84 [0.37]

K ′ (MPPCA) 5.25 [1.19] 5.37 [1.23] 4.78 [0.91]

likelihood (GMM) -4709 [307] -4527 [104] -4415 [117]

likelihood (MPPCA) -4742 [828] -4417 [43] -4380 [17]

training sets size
500 1000

qoutput (MPPCA) 1.51 [0.21] 1.66 [0.16]

K ′ (GMM) 3.93 [0.26] 3.95 [0.22]

K ′ (MPPCA) 4.15 [0.52] 4.03 [0.36]

likelihood (GMM) -4290 [79] -4239 [91]

likelihood (MPPCA) -4379 [48] -4373 [27]

Table 1: Comparisons between VBGMM and VBMPPCA, SYN1 process. Best results
are bold-faced.

From table 2, we clearly see that the MPPCA model is not suited to a process such
as SYN2. Data sampled from SYN2 lies on a manifold, but is not associated to clear
clusters, which mixture fitting algorithms try to discover (see figure 6). Moreover, the
more dimensions the problem has, the better PPCA performs. On the contrary, in ex-
treme cases (such as principal components of a 3D space, or sparse data), it is almost
equivalent to model data with a linear transformation of a 1D variable with added noise,
or with pure noise. This ambiguity drives VBMPPCA into bad local maxima.

With higher dimensions and more plentiful data, manifold learning by VBMPPCA
can be much more accurate (see table 3 with semi-circle data, and figure 7 for a visual
example). The case of cluster-shaped data with redundant dimensions, such as simulated
by SYN1, is also correctly handled, as table 1 shows similar performance of VBGMM
and VBMPPCA on this data set.

6.2 Model aggregation task : comparison of VBGMM-A and VBMPPCA-

A

The models that were estimated in section 6.1 are then used as pools of input models
for aggregations with VBGMM-A and VBMPPCA-A algorithms. More specifically, a
separate pool is formed with models from each training set size. Pools associated with
training set sizes 100 and 1000 are retained in this section.
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training sets size
50 100 200

qoutput (MPPCA) 0.13 [0.14] 0.15 [0.08] 0.20 [0.10]

K ′ (GMM) 7.01 [1.31] 9.25 [1.23] 10.9 [1.26]

K ′ (MPPCA) 8.75 [1.88] 17.63 [2.51] 25.97 [4.49]

likelihood (GMM) -9321 [583] -8352 [109] -7981 [60]

likelihood (MPPCA) -19882 [4357] -11202 [1008] -8964 [279]

training sets size
500 1000

qoutput (MPPCA) 0.52 [0.25] 1.22 [0.36]

K ′ (GMM) 13.84 [1.27] 16.83 [1.44]

K ′ (MPPCA) 18.72 [7.22] 8.44 [2.70]

likelihood (GMM) -7581 [29] -7321 [20]

likelihood (MPPCA) -8352 [151] -8269 [131]

Table 2: Comparisons between VBGMM and VBMPPCA, SYN2 process. Best results
are bold-faced.

Each experiment is conducted with varying amounts of input models selected ran-
domly in their pool. 10 runs are performed for each possible configuration (i.e. a specific
training set size and amount of input models to aggregate). For a fair comparison, only
input MPPCA models are used: the same selected inputs are used with VBMPPCA-A,
and simply converted to GMM models before using VBGMM-A.

MPPCA model fitting was shown to be irrelevant with SYN2 in section 6.1. Thus
SYN1 and SYN3 processes were solely considered in this section. In tables 4 and 5, av-
eraged quality measures and their standard deviations are indicated. The log-likelihood
values are estimated using the validation data sets presented in section 6.1.

VBMPPCA-A performs slightly better than VBGMM-A (see tables 4 and 5). As
in the previous section, the rank associated to component subspaces tends to be better
recovered when using larger training data sets. Models estimated with VBMPPCA-A
are associated to better likelihoods, at the expense of some model complexity (i.e. K ′

tends to be higher with VBMPPCA-A). Besides, VBMPPCA-A behaves well as a larger
number of input models are aggregated. This may originate from the influence of the
component-wise factor matrix combination (see section 5.2).

Let us note that while VBMPPCA used q = d − 1, VBMPPCA-A is parameterized
according to its input components (see end of section 5.2). Each of these have qoutput <

d − 1 set as a posterior w.r.t. to their respective training set. Thus generally q < d − 1
when using VBMPPCA-A. As the complexity of the latter is O(q3), its computational
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training sets size
50 100 200

qoutput (MPPCA) 0.57 [0.19] 0.69 [0.20] 0.84 [0.21]

K ′ (GMM) 3.66 [1.45] 2.39 [1.36] 1.79 [1.17]

K ′ (MPPCA) 7.55 [1.22] 7.78 [1.41] 7.17 [1.17]

likelihood (GMM) -5882 [263] -6004 [344] -6112 [354]

likelihood (MPPCA) -5546 [420] -5209 [53] -5163 [61]

training sets size
500 1000

qoutput (MPPCA) 1.21 [0.22] 1.49 [0.19]

K ′ (GMM) 1.16 [0.65] 1.03 [0.30]

K ′ (MPPCA) 6.46 [0.85] 6.50 [0.72]

likelihood (GMM) -6294 [214] -6335 [106]

likelihood (MPPCA) -5149 [57] -5138 [48]

Table 3: Comparisons between VBGMM and VBMPPCA, SYN3 process. Best results
are bold-faced.

cost is much lower that VBGMM-A performed over the same inputs, with comparable
results.

6.3 Model aggregation task : incremental aggregation of MPPCA

models

In section 6.2, the input models, i.e. the selection we mean to aggregate in an experiment,
are all available at once. In some distributed computing settings, such as gossip, models
may become available incrementally, as their production and broadcast over a network
progresses. Thus we may consider the possibility to update a reference model (see figure
8).

Let us consider again the input model collection of section 6.2. Specifically, we use
the sub-collection associated with training sets of 1000 elements, for SYN1 and SYN3
processes. We propose to simulate an incremental aggregation, by updating a reference
MPPCA model successively with all 100 input models available for each process. The
quality of the model eventually obtained is then assessed. This experiment is performed
10 times. Averaged measures and standard deviations associated with these runs are
reported in table 6.

Results shown in table 6 indicate that the usage of VBMPPCA-A in an incremental
setting challenges the standard described in section 6.2 (i.e. reported in tables 4 and 5),
either regarding to the number of components or the likelihood of the estimated models.
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Figure 6: A set from SYN2 process (projected on 2 dimensions), used to train a MPPCA
model.

6.4 Experiments on real data sets

The algorithms presented in this paper are also evaluated on the following two real data
sets:

• Pen-based recognition of handwritten digits data set (further denoted as pen) [27]:
this data set was built with measurements of digit drawings on a tablet. Its 10992
elements are described by 16 numeric attributes. These are pretty naturally gath-
ered in 10 classes (i.e. one for each digit).

• MNIST database of handwritten digits (further denoted as hand) [28]: the training
set of this database (60000 elements) was used for these experiments. Each element
is described by a 28x28 image patch of a specific digit (see figure 9); these can be
viewed as numeric 784-dimensional vectors of pixel intensities. As for the pen data
set, the classes are naturally defined as the digit contained in each image patch.

First, training and testing sets are delimited within these data sets:

• The 5000 first elements constitute the training set for pen. The complementary
set is used for validation.

• 10000 elements are randomly selected in hand to form the validation set. The
complementary set of 50000 elements is used for training.
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Figure 7: GMM (left) and MPPCA (right) trained with a data set from SYN3.

Similarly to the experiments on synthetic data, the training data sets are further
divided in subsets (25 subsets of 200 elements for pen, 50 subsets of 1000 elements for
hand). Models are estimated on these subsets using either VBGMM or VBMPPCA.

Measures and comparisons are provided in table 7 for models estimated on subsets
of pen and hand. As VBGMM and GMM likelihood computation are intractable on
784-dimensional data sets, measurements are reported only for VBMPPCA. To limit
the computational load with VBMPPCA, the explicit constraint q < 9 is used for both
data sets. Let us note that this ability of handling intractable mixture problems is an
advantage of the MPPCA model over the GMM, as underlined in the introduction.

Estimating a mixture model on a data set can be interpreted as a clustering task.
Thus the validation subsets, and their associated true labels, are used to compute the
clustering error of each output model. Let us note that pen and hand data sets are
traditionally used in a supervised learning setting [28, 3]. Yet it seemed interesting
to see how an unsupervised approach would perform comparatively. We use the error
function proposed in [29, 30]. This function is specially adapted to the clustering task
because it measures how two label sets are related, and is still meaningful if ground truth
and inferred numbers of clusters and semantics differ.

VBMPPCA leads to more complex models for pen data set. This may be due to the
constraint imposed on q. However, measured clustering errors indicate sensible estima-
tions. Let us note that the output subspace ranks for components reflect the underlying
complexity of each data set: only 2.76 dimensions are used in average among the 8 pos-
sible for pen, while almost all are used for hand.

The clustering performance of VBMPPCA is also illustrated with confusion matrices,
in figure 10 for pen, and figure 11 for hand. These matrices are estimated by the average
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# of input models, using training set size = 100
2 10 50

qoutput (MPPCA) 1.11 [0.19] 1.03 [0.16] 1.18 [0.14]

K ′ (GMM) 4.90 [0.99] 4.30 [0.48] 4.30 [0.68]

K ′ (MPPCA) 4.50 [0.97] 6.30 [1.25] 7.80 [1.23]

likelihood (GMM) -4391 [52] -4356 [8] -4425 [216]

likelihood (MPPCA) -4425 [186] -4334 [6] -4325 [3]

# of input models, using training set size = 1000
2 10 50

qoutput (MPPCA) 1.76 [0.02] 1.80 [0.11] 1.74 [0.15]

K ′ (GMM) 4.00 [0.00] 4.10 [0.32] 4.40 [0.70]

K ′ (MPPCA) 4.10 [0.32] 3.90 [0.32] 4.50 [0.53]

likelihood (GMM) -4368 [4] -4368 [4] -4392 [58]

likelihood (MPPCA) -4366 [4] -4460 [290] -4369 [5]

Table 4: Comparisons between VBGMM-A and VBMPPCA-A, SYN1 process. Best
results are bold-faced.

of 10 experiments on training subsets. The difference between the ground truth and
inferred number of clusters was handled by selecting the 10 most populous clusters of
each estimated model. The selected clusters were then labeled according to the most
frequent ground truth in their associated elements.

In figure 10, we see that 10 estimated clusters are roughly sufficient to explain pen
data. 0’s and 1’s are well recognized, but we see that some digits are often mistaken,
e.g. 7 is interpreted as 6 or 2, and 6 is often interpreted as 5. For the latter case, the
similar shape explains the confusion.

Examination of figure 11 clearly shows that 10 clusters are not sufficient to explain
hand data. Lots of small clusters that were left out (see computed values for K in table
7, largely greater than 10) as required by the confusion matrix representation. These
would greatly help reduce the classification error observed in figure 11. Yet, we can
underline some interesting facts: pixel data also leads to an easy recognition of 0’s and
1’s, while digits from 5 to 9 are difficult to cluster clearly.

In figure 12, we show some examples of means for MPPCA models estimated on
subsets of hand. A label is estimated for each component using the validation data set,
by using a majority vote. The first 4 factors of a component are also presented as an
example. Lighter or darker gray values indicate where the influence of this factor is
located in the image space. We see how each factor embodies different variations of
elements in its associated component.

Aggregations are then performed using all these input models. Results, when avail-
able, are presented in table 8. As in section 6.2, MPPCA input models are used with
both VBMPPCA-A and VBGMM-A. Conversions are performed when appropriate.
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# of input models, using training set size = 100
2 10 50

qoutput (MPPCA) 0.91 [0.11] 1.03 [0.08] 1.17 [0.10]

K ′ (GMM) 6.70 [1.16] 7.30 [0.67] 6.60 [1.26]

K ′ (MPPCA) 6.60 [1.43] 8.30 [1.34] 8.00 [1.15]

likelihood (GMM) -5237 [70] -5220 [87] -5276 [87]

likelihood (MPPCA) -5343 [247] -5156 [47] -5111 [30]

# of input models, using training set size = 1000
2 10 50

qoutput (MPPCA) 1.75 [0.22] 1.88 [0.10] 1.80 [0.14]

K ′ (GMM) 6.30 [0.48] 7.60 [1.43] 6.40 [0.97]

K ′ (MPPCA) 6.30 [0.95] 7.20 [1.03] 8.60 [1.07]

likelihood (GMM) -5259 [90] -5262 [80] -5319 [66]

likelihood (MPPCA) -5270 [84] -5171 [75] -5119 [23]

Table 5: Comparisons between VBGMM-A and VBMPPCA-A, SYN3 process. Best
results are bold-faced.

SYN1 SYN3

qoutput 1.76 [0.02] 1.75 [0.13]

K ′ 4.10 [0.32] 7.10 [0.99]

likelihood -4379 [46] -5240 [45]

Table 6: Results of incremental aggregations with SYN1 and SYN3 processes.

Clustering errors for aggregated MPPCA models tend to be much lower (i.e. better
performance) than what is obtained for GMM aggregation, with similar model com-
plexities. Compared to baseline MPPCA estimation (see table 7), aggregation causes a
slight loss in classification error, associated with a much lower model complexity. Thus
MPPCA aggregations produce good summaries of the input models.

7 Discussion about the MPPCA model

In VBMPPCA and VBMPPCA-A algorithms, the moments of variational distributions
are strongly coupled (see equations (53), (54), (55), (56) and (57)). This may cause
biases, or, from a computational point of view, decreases of the lower bound value as-
sociated with VBMPPCA and VBMPPCA-A algorithms (see section 4.3). Practically,
after a sufficient number of iterations, this bias eventually disappears; but this compro-
mises the usage of the lower bound as a reliable convergence criterion. Instead, measures
of the agitation of Z may be used [15].
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Figure 8: Incremental aggregation in the context of local models broadcasted on a
network

pen hand

qoutput (MPPCA) 2.76 [0.27] 7.17 [0.29]

K ′ (GMM) 12.7 [1.8]

K ′ (MPPCA) 24.2 [3.0] 34.8 [6.1]

error (%, GMM) 12.6 [3.0]

error (%, MPPCA) 9.0 [1.5] 10.8 [1.2]

Table 7: Results for VBGMM and VBMPPCA on pen and hand data sets

8 Conclusion and perspectives

In this paper we proposed a new technique that performs the estimation of MPPCA
models, and their aggregation. A fully probabilistic and Bayesian framework, along with
the possibility to deal with high dimensional data motivated our approach. Theoretical
justifications were developed, and some illustrative results were detailed. Advantages
and limitations of the proposed approach were highlighted.

Results obtained in section 6 show that processing over subspaces and principal axes
provide an interesting guideline to carry out aggregations. Components are fitted ac-
cording to their intrinsic subspace dimensionality, instead of a crisp covariance structure
combination. Furthermore, properties of ML PPCA solutions (and particularly the abil-
ity to recover easily the ordered principal axes set), provide us with some strong prior
knowledge, and a well-defined initialization scheme.

Besides providing building blocks for distributed, incremental and on-line learning,
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Figure 9: Sample image patch from the hand data set

pen hand

qoutput (MPPCA) 3.27 [0.31] 7.12 [0.37]

K ′ (GMM) 13.2 [1.7]

K ′ (MPPCA) 13.0 [1.9] 27.5 [6.3]

error (%, GMM) 16.9 [3.2]

error (%, MPPCA) 11.2 [1.4] 11.7 [1.9]

Table 8: Results for VBGMM-A and VBMPPCA-A on pen and hand data sets

we believe there should be some interesting derivation of the mixture of PPCA in the
domain of semi-supervised clustering. Let us suppose, as formalized and used in [31],
that we have a set of ”must-link” constraints (i.e. pairs of data items that should be
clustered together), and ”must-not-link” constraints (i.e. data that should not be in the
same group). Under the hypothesis of compact clusters (i.e. each cluster should lie on a
compact and approximately linear manifold, see [32] for discussion), we may implement
these as follows :

• must-link : for now, each factor matrix is initialized with a random orthogonal
matrix (e.g. see section 3.2). Data items we believe to be in the same component
may be used to influence this initialization, and guide the algorithm towards a
specific local minimum (as we said earlier, real world data might be strongly non
Gaussian, so there might be several posterior models with similar likelihoods but
significant pairwise KL divergences).

• must-not-link : As we employed a Bayesian integration scheme, this kind of con-
straint might be modeled by some pdf (e.g. as in [33]). This remark is not specific
to the MPPCA model: but we might take advantage of its principal subspace
structures.
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Figure 10: Sample confusion matrix of MPPCA clusterings (pen data), showing the
distribution of 200 data elements.

Appendices

A EM expressions for VBMPPCA

• E step:

Σxk
=

(

Iq + τE[ΛT
k Λk]

)−1

Eq(xn|znk=1)[xn] = E[xnk] = τΣxk
E[ΛT

k ](yn − E[µk])

Eq(xn|znk=1)[xnx
T
n ] = E[xnkx

T
nk] = Σxk

+ E[xnk]E[xnk]
T

rnk ∝ exp

(

ψ(αk) − ψ

( K
∑

j=1

αj

)

−
1

2
Tr(E[xnkx

T
nk])

−
τ

2

[

‖yn‖
2 + E[‖µk‖

2] − 2(yn − E[µk])
T

E[Λk]E[xnk]

− 2yT
n E[µk] + Tr(E[ΛT

k Λk]E[xnkx
T
nk])

]

)

(53)
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Figure 11: Sample confusion matrix of MPPCA clusterings (hand data), showing the
distribution of 1000 data elements.

• Sufficient statistics:

Nk =

N
∑

n=1

rnk y2
k =

N
∑

n=1

rnk||yn||
2

yk =
N

∑

n=1

rnkyn sk =
N

∑

n=1

rnkE[xnk]

syk =

N
∑

n=1

rnkynE[xnk]
T Sk =

N
∑

n=1

rnkE[xnkx
T
nk] (54)

• M step:

αk = α0k + Nk akj = a0 +
d

2

bkj = b0 +
1

2

d
∑

i=1

E[Λij
k

2
] ΣΛk

= (diag(E[νk]) + τSk)
−1

E[Λij
k

2
] = E[Λi.

kΛi.
k

T
]jj Σµk

=

[

ν0 + τNk

]−1

Id (55)
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Figure 12: Mean and factor examples of MPPCA models on the hand data set.

E[ΛT
k Λk] =

d
∑

i=1

E[Λi.
kΛi.

k
T
]

E[Λi.
k ] = ΣΛk

τ

[

syi.
k − E[µi

k]sk

]

E[µk] = Σµk

[

ν0µ0k + τ(yk − E[Λk]sk)

]
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B EM expressions for VBMPPCA-A

• E step:

Σxkl
=
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(56)

• Sufficient statistics:
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∑
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(57)

• M step: as the output model remains identical, with dependence on the same set
of sufficient statistics, update formulae (55) can be used.
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