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1 Introduction

A Poisson structure on a commutative algebra A is a Lie algebra structure on A given by a Lie
bracket

{−,−} : A×A 7→ A,

which is a derivation of A i.e. satisfies the Leibniz rule

{a, bc} = {a, b}c + b{a, c}, a, b, c ∈ A,

for the right (and, hence, for the left) argument.

It is well-known (see the discussion in [12]) that a naive translation of this definition to

the case of a non-commutative associative algebra A is not very interesting because of lack of
examples different from the usual commutator (for prime rings it was shown in [13]).

It turns out [12, 17] that a natural generalization of Poisson structures on comutative asso-

ciative algebras to a non-commutative case is a Lie structure on the vector space H0(A,A) =

A/[A,A], where [A,A] is the vector space spaned by all comutators ab− ba where a, b ∈ A. The
elements of this space are 0−dimensional cyclic homology classes of A and they are represented

by ”cyclic words” whose letters are the elements of A [5]. In [12] such a structure was called an
H0−Poisson structure while in [10] the terminology a ”non-abelian Poisson bracket” was used.

Both names are somehow misleading to our mind (because one deals with a Lie structure with
no multiplication structure on H0(A,A)). Therefore we would suggest to call it a trace bracket

by the following reason.

Let A be a (unital) associative algebra over C. For a fixed natural n we denote by

Repn(A) := Hom(A,Matn(C))

the space of n−dimensional representations of A, and by C[Repn(A)] the coordinate ring of

this affine scheme Repn(A). Let tr : A→ C[Repn(A)] be the trace map. It is clear that tr(a) is

a GLn(C)−invariant element for any a ∈ A.

Since the map tr is well defined also on elements of A/[A,A], any trace bracket {} induces

the following genuine Poisson bracket on the representation space function algebras:

{tr(a), tr(b)} = tr({a, b})

on Im(tr). This bracket (according to results from [16, 21]) can be extended to the subalgebra
of all GLn(C)−invariant elements of C[Repn(A)] and, in certain important cases, even to the

whole algebra C[Repn(A)]. We shall refer such brackets on C[Repn(A)] and C[Repn(A)]
GLn(C)

as trace Poisson brackets.

In this paper we shall consider as a basic example the case of free associative algebra
A = C < x1, . . . , xm > .
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The coordinate algebra C[Repn(A)] in this case is the polynomial ring of mn2 variables xji,α,
where

xα → Mα =





x11,α · xn1,α
· · ·

x1n,α · xnn,α



 , 1 ≤ α ≤ m.

The map tr gives the following interpretation of the variables xji,α : if Ej
i denotes the

(i, j)−matrix unit (i.e. the n × n matrix with 0 everywhere except the i−th row and j−th

column) then xji,α = tr(Ei
jMα).

The group GLn(C) acts on M1, ...,Mm by the conjugations. Any trace bracket on the free

algebra A is extended on C[Repn(A)] and it yields a usual GLn(C)− invariant Poisson bracket
such that the bracket between traces of any two matrix polynomials Pi(M1, ...,Mm), i = 1, 2 is

a trace of some matrix polynomial P3. Notice that not any GLn(C)−invariant Poisson bracket
on C[Repn(A)] is a trace Poisson.

There are two different ways to represent explicitely the same trace brackets in the free
algebra case. One is a standard way used in the Integrable System theory (see [8]), where

brackets are given by

{a, b} =< grad a, Θ(grad b) >, a, b ∈ A/[A,A],

for some Hamiltonian operator Θ, a skew-symmetric operator expressed via left and right

multiplication operators on A. The trace brackets define a Hamiltonian formalism for integrable
models with matrix variables [8]. In particular, some of such models are bi-Hamiltonian with

respect to compatible linear and quadratic trace Poisson brackets [10].

Another approach can be developped in terms of double Poisson brackets introduced in [17].

We shall remind their definition.

Definition (M. Van den Bergh). A double Poisson bracket on an associative algebra A is

a C-linear map {{, }} : A⊗ A 7→ A⊗ A satisfying the following conditions:

{{u, v}} = −{{v, u}}◦, (1.1)

{{u, {{v, w}}}}l + σ{{v, {{w, u}}}}l + σ2{{w, {{u, v}}}}l = 0, (1.2)

and
{{u, vw}} = (v ⊗ 1){{u, w}}+ {{u, v}}(1⊗ w). (1.3)

Here (u⊗ v)◦ := v ⊗ u; {{v1, v2 ⊗ v3}}l := {{v1, v2}} ⊗ v3 and σ(v1 ⊗ v2 ⊗ v3) := v3 ⊗ v1 ⊗ v2.

Notice that very similar relations but with a different bi-module structure in (1.3) have
appeared in [4].

The relations between double and trace Poisson brackets are established by M.Van den
Bergh [17] as follows. Let µ denote the multiplication map µ : A⊗ A→ A i.e. µ(u⊗ v) = uv.

We define a C−bilinear bracket operation in A by {−,−} := µ({{−,−}}).
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Proposition 1. Let {{−,−}} be a double Poisson bracket on A. Then {−,−} is a trace
bracket on A/[A,A] which is defined as

{ā, b̄} = µ({{a, b}}, (1.4)

ou ā means the image of a ∈ A under the natural projection A→ A/[A,A].

If A = C < x1, . . . , xm > is the free associative algebra, then C[Repn(A)] = C[xji,α] where

1 ≤ α ≤ m.

If {{xα, xβ}} is a double Poisson bracket on A = C < x1, . . . , xm >, then, using the Sweedler

convention and drop the sign of sum, we obtain the trace Poisson brackets on C[Repn(A)]:

{xji,α, x
l
k,β} = {{xα, xβ}}

′j
k {{xα, xβ}}

”l
i

In this paper we shall consider linear and quadratic double Poisson brackets on free asso-

ciative algebras. It turns out that linear double brackets are in one-to-one correspondence with
m-dimensional associative algebra structures [18]. We establish relations between a class of

quadratic double brackets and constant solutions of classical associative Yang-Baxter equation
on Matm(C) introduced in [1]. The examples of double brackets related to non-constant solu-

tions of various associative Yang-Baxter equations will be discussed in the forthcoming paper
[11].

2 Quadratic double Poisson brackets

Let A = C < x1, . . . , xm > be the free associative algebra. If double brackets {{xi, xj}} between
all generators are fixed, then the bracket between two arbitrary elements of A is uniquely

defined by identities (1.1) and (1.3). It follows from (1.1) that constant, linear, and quadratic
double brackets are defined by

{{xi, xj}} = cij1⊗ 1, ci,j = −cj,i, (2.5)

{{xi, xj}} = bkijxk ⊗ 1− bkji1⊗ xk, (2.6)

and

{{xα, xβ}} = ruvαβ xu ⊗ xv + avuαβ xuxv ⊗ 1− auvβα 1⊗ xvxu, (2.7)

where

rσǫαβ = −rǫσβα, (2.8)

correspondingly. The summation with respect to repeated indexes is assumed.

It is easy to verify that the bracket (2.5) satisfies (1.2) for any skew-symmetric tensor cij.
For the bracket (2.6) the condition (1.2) is equivalent to the identity

bµαβb
σ
µγ = bσαµb

µ
βγ , (2.9)
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which means that bσαβ are structure constants of an associative algebra A.

Proposition 2. The bracket (2.7) satisfies (1.2) iff the following relations hold:

rλσαβr
µν
στ + rµσβτ r

νλ
σα + rνσταr

λµ
σβ = 0, (2.10)

aσλαβa
µν
τσ = aµσταa

νλ
σβ , (2.11)

aσλαβa
µν
στ = aµσαβr

λν
τσ + aµνασr

σλ
βτ (2.12)

and

aλσαβa
µν
τσ = aσναβr

λµ
στ + aµνσβr

σλ
τα. (2.13)

The trace Poisson bracket corresponding to any double Poisson bracket (2.7) can be defined

on C[Repn(A)] by the following way [10]:

{xji,α, x
j′

i′,β} = rγǫαβx
j′

i,γx
j
i′,ǫ + aγǫαβx

k
i,γx

j′

k,ǫδ
j
i′ − aγǫβαx

k
i′,γx

j
k,ǫδ

j′

i (2.14)

where xji,α are entries of the matrix xα and δji is the Kronecker delta-symbol. Relations (2.8),
(2.10)-(2.13) hold iff (2.14) is a Poisson bracket.

Under a linear change of the generators xα → gβαxβ the coefficients of tensors r and a are
transformed in the standard way:

rγσαβ → gλαg
µ
βh

γ
νh

σ
ǫ r

νǫ
λµ, aγσαβ → gλαg

µ
βh

γ
νh

σ
ǫ a

νǫ
λµ, (2.15)

Here gβαh
γ
β = δγα.

The system of algebraic equations (2.8), (2.10)-(2.13) admits the following involution:

rγσαβ → rσγαβ , aγσαβ → −aσγβα. (2.16)

Given a solution r of (2.8), (2.10), one can put aijuv = 0 to satisfy equations (2.11)-(2.13).
Note that the algebraic system of equations (2.8), (2.10) besides (2.16) admits the involution

rγσαβ → rαβγσ . (2.17)

Some examples of double Poisson brackets with zero tensor a can be found using the one-
to-one correspondence [1] between solutions of (2.8), (2.10) up to equivalence (2.15) and exact

representations of anti-Frobenius algebras up to isomorphisms.

Recall that an anti-Frobenius algebra is an associative algebra J (not necessarily with unity)

with non-degenerate anti-symmetric bilinear form ( , ) satisfying the following relation

(x, yz) + (y, zx) + (z, xy) = 0 (2.18)

for all x, y, z ∈ J .
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Construction. Let J be a p-dimensional associative anti-Frobenius subalgebra in Matm(C)
with a basis yi = (yαγ,i), i = 1, ..., p. Let G = (gij) be the matrix of the form. Then the tensor

rαβγδ = gijyαγ,iy
β
δ,j, where G

−1 = (gij), satisfies (2.8), (2.10).

Example 1. Let J be the associative algebra of all m ×m matrices with zero m-th row,
(x, y) = trace([x, y] kT ), where k ∈ J is a fixed generic element. The corresponding bracket up

to equivalence (2.15) is given by a tensor r with the following non-zero components

rαβαβ = rβααβ = rααβα = −rαααβ =
1

λα − λβ
, α 6= β. (2.19)

Here λ1, . . . , λN are arbitrary pairwise distinct parameters. The generalization of (2.19) to the

case k zero rows, where k is any divisor of m, can be found in [20]. �

It would be interesting to find an algebraic structure generalizing the anti-Frobenius algebras

that corresponds to the whole set of relations (2.8), (2.10)-(2.13).

We may interpret the four index tensors r and a as:

1) operators on V ⊗ V , where V is an m-dimensional vector space;

2) elements of Matm(C)⊗Matm(C);

3) operators on Matm(C).

For the first interpretation let V be a linear space with a basis eα, α = 1, ..., m. Define
linear operators r, a on the space V ⊗ V by

r(eα ⊗ eβ) = rσǫαβeσ ⊗ eǫ, a(eα ⊗ eβ) = aσǫαβeσ ⊗ eǫ.

Then the identities (2.8), (2.10)-(2.13) can be written as

r12 = −r21, r23r12 + r31r23 + r12r31 = 0,

a12a31 = a31a12,

σ23a13a12 = a12r23 − r23a12,

a32a12 = r13a12 − a32r13.

(2.20)

Here all operators act in V ⊗ V ⊗ V , σij means the transposition of i-th and j-th components

of the tensor product, and aij , rij mean operators a, r acting in the product of the i-th and
j-th components.

Note that first two relations mean that the tensor r should be skew-symmetric solution of
the classical associative Yang-Baxter equation [1].

In the second interpretation we consider the following elements from Matm(C)⊗Matm(C):
r = rkmij e

i
k ⊗ ejm, a = akmij e

i
k ⊗ ejm, where e

i
j are the matrix unities: ejie

m
k = δjke

m
i . Then (2.8),
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(2.10)-(2.13) are equivalent to (2.20), where tensors belong to Matm(C)⊗Matm(C)⊗Matm(C).
Namely, r12 = rmk

ij e
i
k ⊗ ejm ⊗ 1 and so on. The element σ is given by σ = eji ⊗ eij .

For the third interpretation, we shall define operators r, a, r̄, r∗, a∗ : Matm(C) → Matm by
r(x)pq = rmp

nq x
n
m, a(x)pq = amp

nq x
n
m, r̄(x)

p
q = rpmnq x

n
m, r∗(x)pq = rpmqn x

n
m, a∗(x)pq = apmqn x

n
m.

Then (2.8), (2.10)-(2.13) provide the following operator identities:

r(x) = −r∗(x), r(x)r(y) = r(xr(y)) + r(x)y),

r̄(x) = −r̄∗(x), r̄(x)r̄(y) = r̄(xr̄(y)) + r̄(x)y),

a(x)a∗(y) = a∗(y)a(x),

a∗(ya(x)) = r(xa∗(y))− r(x)a∗(y),

a(x)a(y) = −a(r(y)x)− a(yr(x)),

a∗(a(x)y) = r(a∗(y)x)− a∗(y)r(x),

a(ya∗(x)) = −r̄(xa(y)) + r̄(x)a(y),

a∗(x)a∗(y) = a∗(r̄(y)x) + a∗(yr̄(x)),

a(a∗(x)y) = −r̄(a(y)x) + a(y)r̄(x)

for any x, y. First two of these identities mean that operators r and r̄ satisfies the Rota-Baxter

equation [7] and this fact implies also that the new matrix multiplications ◦r and ◦r̄ defined by

x ◦r y = r(x)y + xr(y), x ◦r̄ y = r̄(x)y + xr̄(y)

are associative.

2.1 Examples and classification of low dimensional quadratic double

Poisson brackets

It is easy to see that for m = 1 non-zero quadratic double Poisson brackets does not exist. In

the simplest non-trivial case m = 2 the system of algebraic equations (2.8), (2.10)-(2.13) can
be solved straightforwarly.

Theorem 1. Let m = 2. Then the following Cases 1-7 form a complete list of quadratic
double Poisson brackets up to equivalence (2.15). We present non-zero components of the

tensors r and a only.

Case 1. r2122 = −r1222 = 1. The corresponding (non-zero) double brackets read

{{v, v}} = v ⊗ u− u⊗ v;

Case 2. r2122 = −r1222 = 1, a1121 = a1222 = 1. The corresponding (non-zero) double brackets:

{{v, v}} = v ⊗ u− u⊗ v + vu⊗ 1− 1⊗ vu, {{v, u}} = u2 ⊗ 1, {{u, v}} = −1⊗ u2;
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Case 3. r2122 = −r1222 = 1, a1112 = a2122 = 1. The corresponding (non-zero) double brackets:

{{v, v}} = v ⊗ u− u⊗ v + uv ⊗ 1− 1⊗ uv, {{u, v}} = u2 ⊗ 1, {{v, u}} = −1⊗ u2;

Case 4. r2221 = −r2212 = 1. The corresponding (non-zero) double brackets:

{{v, u}} = v ⊗ v, {{u, v}} = −v ⊗ v;

Case 5. r2221 = −r2212 = 1,; a2111 = a2212 = 1. The corresponding (non-zero) double brackets:

{{v, u}} = v ⊗ v − 1⊗ v2, {{u, v}} = −v ⊗ v + v2 ⊗ 1, {{u, u}} = uv ⊗ 1− 1⊗ uv;

Case 6. r2221 = −r2212 = 1,; a1211 = a2221 = −1. The corresponding (non-zero) double brackets:

{{v, u}} = v ⊗ v − v2 ⊗ 1, {{u, v}} = −v ⊗ v + 1⊗ v2, {{u, u}} = −vu⊗ 1 + 1⊗ vu;

Case 7. a1122 = 1. The corresponding (non-zero) double brackets:

{{v, v}} = u2 ⊗ 1− 1⊗ u2.

Proof. Solving the system (2.10) for six components of the skew-symmetric tensor r, we
obtain the following two solutions (we present non-zero components of the tensor r only):

r2122 = −r1222 = x2, r2111 = −r1211 = y2, r2112 = r2121 = −r1221 = −r1212 = xy (2.21)

and

r2221 = −r2212 = x2, r1121 = −r1112 = y2, r1221 = r2121 = −r2112 = −r1212 = xy, (2.22)

where x and y are arbitrary parameters. Under the transformation (2.15) the parameters in
(2.21) are changed as follows:

x→
1

∆
(xg22 + yg12), y →

1

∆
(xg21 + yg11),

where ∆ = g22g11 − g12g21. For solution (2.22) we have

x→
1

∆
(−xg11 + yg21), y →

1

∆
(xg12 − yg22).

For non-zero solution (2.21) the remaining system (2.11)-(2.13) for the tensor a besides for

zero solution has the following two solutions:

a1121 = a1222 = x2, a2111 = a2212 = −y2, a1111 = a1212 = −a2121 = −a2222 = xy, (2.23)
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and

a1112 = a2122 = x2, a1211 = a2221 = −y2, a1111 = a2121 = −a1212 = −a2222 = xy. (2.24)

For (2.22) the system (2.11)-(2.13) has the following two solutions:

a2111 = a2212 = x2, a1121 = a1222 = −y2, a1111 = a1212 = −a2121 = −a2222 = xy, (2.25)

and

a1211 = a2221 = −x2, a1112 = a2122 = y2, a1212 = a2222 = −a1111 = −a2121 = xy. (2.26)

In the case of zero tensor r the remaining system (2.11)-(2.13) has the following solution:

a1122 = x4, a1112 = a1121 = −a1222 = −a2122 = x3y,

a1111 = a2222 = −a1212 = −a1221 = −a2112 = −a2121 = x2y2,

a2212 = a2221 = −a1211 = −a2111 = xy3, a2211 = y4

with the transformation rule

x→
1

∆2
(xg22 + yg12), y →

1

∆2
(xg21 + yg11).

Using (2.15), we normalize the solutions obtained above by x = 1, y = 0 and arrive at the
statement of Theorem 1.

Remark 1. Cases 2 and 3 as well as Cases 5 and 6 are linked via involution (2.16).

Remark 2. Case 1 is equivalent to the double bracket from Example 1 with m = 2.

Remark 3. It is easy to verify (see [1]) that there exist only two non-isomorphic anti-

Frobenius subalgebras in Mat2(C). They are matrices with one zero column and matrices with
one zero row. Cases 1 and 4 correspond to them.

Remark 4. Notice that the trace Poisson brackets for cases 2 and 4 are non-degenerate.
Corresponding symplectic forms can be found in [2] (Example 5.7 and Lemma 7.1).

Remark 5. The corresponding Lie algebra structures on the trace space A/[A,A] defining
by 1.4 are trivial (abelian) in all cases, except the cases 2, 3 and 4 :

[ū, v̄] = −ū2 (Case 2), [ū, v̄] = ū2 (Case 3), [ū, v̄] = −v̄2 (Case 4).

This cases give the isomorphic Lie algebra structures on A/[A,A] with respect to the involutions

u→ v, v → u and u→ u v → −v.

Example 2. Consider the trace Poisson bracket (2.14) corresponding to Case 6. Its

Casimir functions are given by

tr vk, truvk, k = 0, 1, ...

9



where u = x1, v = x2. Functions trui and tr vui, where i = 2, 3, ... commute each other with
respect to this bracket.

The simplest integrable ODE system with matrix variables corresponds to the Hamiltonian
H = 1

2
tru2. This system has the following form

ut = vu2 − uvu, vt = −uv2 + vuv. (2.27)

The matrix v−1u is an integral of motion for this system. The corresponding reduction u = vC,
where C is arbitrary constant matrix, gives rise to known integrable model [8]

vt = v2Cv − vCv2.

The cyclic reduction of the latter equation yields the non-abelian modified Volterra equation.

To study symplectic leaves for this bracket we show that the bracket is equivalent to a pencil

of compatible linear Poisson brackets.

Let

v = TΛT−1, u = TY T−1,

where Y is a generic matrix, Λ = diag(λ1, ..., λm), where λi 6= λj and λi 6= 0, and T is a generic
invertible matrix with t1,j = 1. If we fix values of the Casimir functions tr vk then λi become

constants.

Consider yi,j and ti,j, i > 1 as coordinates on the corresponding (2n2 − n)- dimensional

Poisson submanifold. Then in this coordinates the restriction of the initial quadratic Poisson

bracket {, } has the form

{, } =

m
∑

i=1

λi {, }i,

where {, }i are some linear Poisson brackets.

Describe the structure of the Lie algebra G corresponding to the pencil. It turns out that

G = Y ⊕ T ,

where [Y ,Y ] ⊂ Y , [Y , T ] ⊂ T , [T , T ] = {0}. The subalgebra Y of dimension n2 is generated
by yij and the Y-module T of dimension n(n− 1) is generated by ti,j, i > 1.

As an algebra Y can be considered as a trivial central extension of the algebra Z spanned
by zi,j = yi,j − yi,i, where i 6= j by by y1,1, ..., yn,n.

The radical of Z is spanned by ri =
∑

j 6=i
1
λj
zj,i.

The centralizer S of r1 is isomorphic to gln−1(C) with r1 being central. The isomorphism
between S and Matn−1(C) is given by

eij →
1

λj
(zj+1,1 − zj+1,i+1), i, j = 1, ..., n− 1,
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where zk,k = 0 for any k. Here eij are the matrix unities.

The radical of Z is the direct sum of two commutative S-modules of dimensions n− 1 and

1. The first one is spanned by vi = ri − r1. The second is generated by r1. The commutator
relations between the modules is given by [r1, vi] = vi.

The module T is a direct sum of n-dimensional submodules Ti spanned by ti,k, i > 1. The
commutator relations are

[yi,j, tk,l] = δilλi(tk,i − tk,j). �

A complete classification in the case m = 3 based on a straightforward analysis of equa-

tions (2.8), (2.10)-(2.13) seems to be a solvable but very tedious task. However, additional
assumptions that are equivalent to a system of linear equations for components of tensors r

and a simplifies the problem. For example, we can easily obtain several new examples of double
Poisson brackets assuming that trxk2 and trxk3, where k = 1, 2, ... are Cazimir functions. One

of such brackets is given by

r2221 = r2331 = r3231 = −r2212 = −r3213 = −r2313 = 1, a1211 = a2221 = a2311 = a3231 = −a2313 = −1.

The corresponding (non-zero) double Poisson brackets:

{{y, x}} = y ⊗ y − y2 ⊗ 1, {{x, y}} = −y ⊗ y + 1⊗ y2,

{{z, x}} = y ⊗ z + z ⊗ y − zy ⊗ 1− 1⊗ yz, {{x, z}} = −y ⊗ z − z ⊗ y + yz ⊗ 1 + 1⊗ zy;

{{x, x}} = −yx⊗ 1 + 1⊗ yx− zy ⊗ 1 + 1⊗ zy.

Taking H = 1
2
trx21 as a Hamiltonian for the corresponding trace Poisson bracket (2.14), we

arrive at an integrable system

ut = vu2 − uvu+ wvu− uwv, vt = −uv2 + vuv, wt = [w, [u, v]],

where u = x1, v = x2, w = x3. After the reduction w = 0 this system coincides with (2.27).

Another way to construct new examples is to consider brackets homogenious with respect to
any rescaling xi → µixi, µi ∈ C. Notice that all canonical forms Case 1-Case 7 in Theorem

1 are homogeneous. When m = 3 one of the simplest homogeneous brackets is given by

r3122 = −r1322 = α, a1322 = β, a3122 = γ.

for some constant α, β, γ. The corresponding family of (non-zero) double Poisson brackets reads

as:
{{y, y}} = α(z ⊗ x− x⊗ z) + β(xz ⊗ 1− 1⊗ xz) + γ(zx⊗ 1− 1⊗ zx).
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3 Compatible linear and quadratic double Poisson bracket

The bi-Hamiltonian approach to integrability has been developed by F.Magri and his group
[3]. It is based on the notion of compatible Poisson brackets. By analogy we define compatible

double Poisson brackets as follows.

Definition. Double Poisson brackets {{u, v}}1 and {{u, v}}2 on an associative C− algebra A

are called compatible if
{{u, v}}1 + λ{{u, v}}2

is a double Poisson bracket on A for any λ ∈ C

The compatibility criteria for a pair of double Poisson brackets is quite similar to the usual
one:

{{u, {{v, w}}2}}1 + σ{{v, {{w, u}}2}}1 + σ2{{w, {{u, v}}2}}1+

+{{u, {{v, w}}1}}2 + σ{{v, {{w, u}}1}}2 + σ2{{w, {{u, v}}1}}2 = 0.

It is clear that compatible double Poisson brackets induce (see Proposition 1) compatible trace
Poisson brackets.

Consider the case when one of the brackets is a linear double bracket and another is a

quadratic.

Proposition 3. Let A = C < x1, . . . , xn >. Consider the linear and the quadratic double

Poisson brackets given by the (2.6) and (2.7). Then their compatibility conditions have the

following form:
bsαγa

vu
sβ − bsγβa

vu
αs + busβa

vs
αγ − bvαsa

su
γβ = 0 (3.28)

bsβαr
uv
sγ − buβsr

sv
αγ − bvsαr

us
βγ − bvγsa

us
βα + busγa

sv
βα = 0. (3.29)

Proof. Straightforward verification.

Let A be an m-dimensional associative algebra with the multiplication law eiej = bkijek.

Define linear operators r, a on the space A⊗A by

r(eα ⊗ eβ) = rσǫαβeσ ⊗ eǫ, a(eα ⊗ eβ) = aσǫαβeσ ⊗ eǫ.

In terms of these operators acting on A the compatibility conditions (3.28), (3.29) can be
rewritten as

a(xz ⊗ y)− a(x⊗ zy) + a(x⊗ z)(1⊗ y)− (x⊗ 1)a(z ⊗ y) = 0, (3.30)

and

r(yx⊗ z)− (y ⊗ 1)r(x⊗ z)− r(y ⊗ z)(1⊗ x)− (1⊗ z)a(y ⊗ x) + a(y ⊗ x)(z ⊗ 1) = 0. (3.31)

The relation (3.30) is nothing but the cocycle condition for the Hochschild cochains C2(A,A⊗

A). Here we consider the outer bimodule structure in A⊗ A.

12



Consider the class of associative algebras A such that the first and second Hochschild coho-
mologies with coefficients in the outer bimodule A ⊗ A are trivial. In particular, semi-simple

associative algebras belong to this class. If H2(A,A⊗A) = 0, then

a(x⊗ y) = φ(xy)− (x⊗ 1)φ(y)− φ(x)(1⊗ y) (3.32)

for some φ : A→ A⊗A. The operator φ is defined up to the double derivations

ds : x → (x⊗ 1) s− s (1⊗ x),

where s ∈ A⊗ A is an arbitrary element.

Proposition 4. Suppose that the tensor a is defined by (3.32). If H1(A,A⊗A) = 0, then
any solution of (3.31) has the form

r(x⊗ y) = (x⊗ 1)ψ(y)− ψ(y)(1⊗ x) + (1⊗ y)φ(x)− φ(x)(y ⊗ 1) (3.33)

for some ψ : A→ A⊗ A.

Proof. Let

r(x⊗ y) = r̃(x⊗ y) + (1⊗ y)φ(x)− φ(x)(y ⊗ 1).

It follows directly from (3.31) and (3.32) that

r̃(yx⊗ z)− (y ⊗ 1)r̃(x⊗ z)− r̃(y ⊗ z)(1 ⊗ x) = 0

If H1(A,A⊗ A) = 0, then

r̃(x⊗ y) = (x⊗ 1)ψ(y)− ψ(y)(1⊗ x)

for some ψ : A→ A⊗ A.

We denote as usual by σ the flip σ(x⊗ y) = y⊗ x. It follows from r(x⊗ y) = −σ ◦ r(y⊗ x)

that
(1⊗ y)µ(x)− µ(x)(y ⊗ 1) + (x⊗ 1)(σ ◦ µ(y))− (σ ◦ µ(y))(1⊗ x) = 0, (3.34)

where µ(x) = φ(x) + σ ◦ ψ(x).

We are searching all candidates for µ : A→ A⊗A to be a solution of 3.34 for any x, y ∈ A.

The trivial solution µ = 0 and hence, ψ = −σφ implies the solution for r(x⊗ y) in the form

r(x⊗ y) = (σ ◦ φ(y))(1⊗ x)− (x⊗ 1)(σ ◦ φ(y)) + (1⊗ y)φ(x)− φ(x)(y ⊗ 1). (3.35)

If we take µ in the form
µ(x) = (x⊗ 1)s− s(1⊗ x),

where s ∈ A⊗ A is an arbitrary skew-symmetric element : σ(s) = −s. Then we can straight-
forwardly verify that µ(x) is a solution of 3.34.
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In this case
φ+ σψ = (x⊗ 1)s− s(1⊗ x)

and we can choose φ̃ = φ+ (x⊗ 1)s− s(1⊗ x) such that ψ = −σφ̃ and the answer for r(x⊗ y)
is again given by 3.35.

Conjecture. If A is a finite unital associative algebra such that H1(A,A⊗A) = H2(A,A⊗
A) = 0, then all solutions of 3.34 have the form (x⊗ 1)s− s(1⊗ x) for some s ∈ Λ2(A).

We have checked the conjecture in the case of matrix associative algebra.

The case a(x⊗ y) = 0 corresponds to

φ : x→ (x⊗ 1) s− s (1⊗ x), (3.36)

where s ∈ A ⊗ A is any fixed element. Define a tensor r by formulas (3.35) and (3.36).

Explicitely, up to a constant multiplier,

r(x⊗ y) = s(y ⊗ x) + (x⊗ y)s− (1⊗ y)s(1⊗ x)− (x⊗ 1)s(y ⊗ 1). (3.37)

Theorem 2. Ler r is defined by (3.37) and s ∈ A⊗A satisfies the associative Yang-Baxter

equation on A:
s12 = −s21, s23s12 + s31s23 + s12s31 = 0. (3.38)

Then
{{xα, xβ}} = ruvαβ xu ⊗ xv

is a quadratic double Poisson bracket on T (A) = C < x1, . . . , xm > compatible with the linear
bracket

{{xi, xj}} = bkijxk ⊗ 1− bkji1⊗ xk,

where ruvαβ are components of σr and bkij are structure constants of A.

Remark 1. We observe that in the case a = 0 the condition 3.31 is the outer bimodule
derivation property in the first argument. That is why the quadratic double Poisson bracket

from the theorem 2 can be written in following way:

{{u, v}} = σr(u⊗ v), u, v ∈ A. (3.39)

Then σr obviously satisfies the outer bimodule derivation property in the second argument

which guaranties the Leibniz property 1.3 for the double bracket defined by 3.39. In other
words the tensor R := σr : A⊗ A→ A⊗ A satisfies to T. Schedler conditions ([19]):

• R(u⊗ v) = −σRσ(u⊗ v);

• R12R13 +R13R23 − R23R12 = 0;
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• R can be considered as a derivation of Ae ⊗ Ae−action on (A ⊗ A)l,r with values in
(A ⊗ A)i,o where (A ⊗ A)l,r means that Ae ⊗ Ae acts on the left factor of A ⊗ A by the

first (left) Ae and on the right factor - by the second Ae :

(u⊗ uo)⊗ (v ⊗ vo)(a⊗ b) = (uauo)⊗ (vbvo).

Analogously, (A⊗A)i,o means that Ae ⊗Ae acts on the left factor of A⊗A by the inner
action and on the right factor - by the outer action:

(u⊗ uo)⊗ (v ⊗ vo)(a⊗ b) = (vauo)⊗ (ubvo).

Remark 2. The conditions of the Theorem 2 are satisfied for the case of finitely dimenisonal

quasi-triangular coboundary infinitesimal bialgebra ([1]). The conditions 3.38 mean that the
algebra A has also a compatible coalgebra sructure ∆s : A → A ⊗ A such that ∆s(x) =

(x⊗ 1)s− s(1⊗ x) for s ∈ Λ2(A).

Remark 3. We observe that there is a natural class of skew-symmetric 2-tensors s ∈ Λ2(A).

Namely, M. Van den Bergh [17] had introduce a notion of a ”momentum” map in the case of
double Poisson brackets. Let us remind that there is a distinguish double derivation ∆ : A →

A⊗A such that ∆(a) = a⊗1−1⊗a for any a ∈ A. Then the moment map for A is an element
m ∈ A such that {{m, a}} = ∆(a). Sometimes the double derivation Hm := {{m,−}} is called a

Hamiltonian double vector field. The image of the moment map is evidently a skew-symmetric
tensor so we can take as a particular case of the previous remark the solution

µm(x) = (x⊗ 1){{m, b}} − {{m, b}}(1⊗ x) = (x⊗ 1)Hm(b)−Hm(b)(1 ⊗ x)

for any b ∈ A.

Example 3. Let A = Mat2(C) = C < x, y, z, t > . Then there exists a unique (up to

equivalence) quadratic bracket with a = 0 compatible with the corresponding linear one. This
bracket has the following form:

r1223 = r1333 = r1443 = r2212 = r2224 = r4131 = r4232 = r4333 = 1.

The remaining non-zero components of tensor r are defined by the skew-symmetricity of r :

rijpq = −rjiqp.

The corresponding (non-zero) double Poisson brackets can be expressed as

{{x, y}} = y ⊗ y; {{x, z}} = −x⊗ t; {{y, z}} = x⊗ y − y ⊗ t;

{{y, t}} = y ⊗ y; {{z, z}} = x⊗ z + t⊗ z − z ⊗ x− z ⊗ t;

{{z, t}} = −t⊗ x.
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It is a straightforward verification that a Casimir element is given by C = x + t but it is
impossible to restrict the brackets to the ”Casimir zero level” (the traceless matrices in the

representation A = Mat2(C) = {

(

x y
z t

)

} :

{{x, y}} = y ⊗ y; {{x, z}} = x⊗ x; {{y, z}} = x⊗ y + y ⊗ x;

{{y, x}} = y ⊗ y; {{z, z}} = 0; {{z, x}} = x⊗ x

(the ”restricted” brackets are not skew-symmetric).

4 Conclusions and perspectives

We have discussed an analogue of the Lenard- Magri compatibility for linear and quadratic
double Poisson brackets in free associative algebras. We have interpreted this conditions in

terms of Hochchild cochains and we have proposed few examples of solutions to these conditions.
We have classified all double Poisson brackets in the case of the free associative algebra with

two generators. Our interest to the double Poisson structures was initially motivated by some
examples of a non-commutative integrability dicussed previously in [8] and [10]. We are going

to review a version of non-commutative Hamiltonian formalism connected the trace and double
Poisson brackets with the initial approach of [8, 14] in the forthcoming publications.

There are still many other interesting questions which deserve to be discussed. The nat-
ural question of a quantization the Van den Bergh construction was posed by D. Calaque

(private comunication and see also http://mathoverflow.net/questions/29543/what-is-a-double-
star-product). Our theorem 2 gives an idea of such a quantization for the tensor algebra as-

sociative r−matrix R using a quantization (if it is known ) of the associative skew-symmetric

r−matrix s in 3.38. The latter can be quantized using the ideas of [6].

We have focused in this paper on the case of the free associative algebra. But the construc-

tion of double brackets was widely studied in the framework of the non-commutative symplectic
geometry ([17, 5, 12]) aiming to describe a trace Poisson structure on quiver path algebra repre-

sentations. The paper [2] proposes some r−matrix constructions to such quadratic structures.
Some of examples from [2] are coincided with our examples. We want to stress that cited paper

doesn’t study general quadratic double Poisson brackets and the compatibility with their linear
counterparts.

The original Van den Bergh construction contains also many other interesting structures
and one of them is a Quasi-Poisson double structure ( when the double analog of the Jacobi

identity 1.3 is ”violated” or in other words the ”triple product” {{u, v, w}} ∈ A ⊗ A ⊗ A is
no more equal to zero but is somehow under a control). See the details in [17]. Recently an

interesting paper [15] had discussed the Quasi-Poisson double structures with the analogs of
trace brackets on representations of the group algebra A = K(π) where the group π is the

fundamental group of a surface. The relations with the Goldman bracket, skein algebra and
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Fox multiplication were discussed. It would be interestiong to compare our tensor approach to
the results of [15].

Finally, the last but not the least interesting subject concerns to general ( not necessary con-
stant ) solutions of various associative Yang-Baxter equations. The paper in progress ([11]) con-

tains some preliminary results in classification of parameter-dependent double Poisson brackets
and some of new examples of such brackets.
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