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Semantic Image Segmentation Using Region Bank 
 

Wenbin Zou, Kidiyo Kpalma and Joseph Ronsin 

 Université Européenne de Bretagne, INSA/IETR/UMR CNRS 6164, France 

 

Abstract 
 

Semantic image segmentation assigns a predefined 

class label to each pixel. This paper proposes a unified 

framework by using region bank to solve this task. 

Images are hierarchically segmented leading to region 

banks. Local features and high-level descriptors are 

extracted on each region of the banks. Discriminative 

classifiers are learned based the histograms of fea-

tures descriptors computed from training region bank 

(TRB). Optimally merging predicted regions of query 

region bank (QRB) results in semantic labeling. This 

paper details each algorithmic module used in our 

system, however, any algorithm fits corresponding 

modules can be plugged into the proposed framework. 

Experiments on the challenging Microsoft Research 

Cambridge (MSRC 21) dataset show that the proposed 

approach achieves the state-of-the-art performance. 

 

1. Introduction 
 

In recent years, semantic image segmentation, 

which aims to precisely segmenting objects and as-

signing a semantic label to each pixel of the image, 

has attracted considerable attention. This has high 

practical value in many applications, such as image 

editing, object retrieval and intelligent image coding.  

Several authors have proposed to combine low-

level segmentation and high-level knowledge to 

achieve semantic segmentation. Csurka and Perronnin 

[6] applied Fisher model to describe over-segmented 

regions and employed the result of image classifica-

tion to reduce the number of object classes in an im-

age. Li et al. [7] made use of image tags and scene 

information to infer the existence of an object in the 

image. Lempitsky et al. [10] used bounding boxes 

acquired by object detection as a prior of the segmen-

tation. Some authors also suggested incorporating 

different cues into a Random Field (RF) model. 

Verbeek and Triggs [9] combined advantages of prob-

abilistic latent semantic analysis model and Markov 

Random Field (MRF) model to fuse region-level la-

bels and image-level labels.  Jiang and Tu [8] used 

auto-context model to integrate image appearances 

with context information learned by a set of classifier. 

All these methods advise that combining different cues 

might give a good result.  

However, most of existing region-based approaches 

for semantic segmentation extract local features direct-

ly from objects delineated by ground-truth and or 

single-level regions generated by over-segmentation to 

train classification models; and at the testing step, the 

features are extracted on single-level regions. As 

known that low-level segmentation is unstable and 

cannot precisely separate objects, while local features 

are only extracted on the single-level regions for 

recognition, errors from the low-level segmentation 

might directly migrate to semantic inference. In this 

paper, we explore extracting the local features on 

multi-level regions for both training and testing steps.  

The region sets used for training and testing are re-

spectively named as training region bank (TRB) and 

query region bank (QRB). Our motivation is that by 

fusing multi-level regions one might have more 

chance to capture objects or discriminative parts of 

objects; moreover, region hierarchy provides natural 

spatial constraint for high-level representation. To 

demonstrate the performance of this combination, we 

do not use any Random Field model to integrate mul-

tiple cues for inference. Experiments on the standard 

multi-object datasets show that this approach obtains 

comparable results with the state-of-the-art. 

 

2. Proposed algorithm 
 

Figure 1 shows the framework of our algorithm, 

which consists of following four algorithmic modules:  

(i) Region bank generation: creates multi-level re-

gions for an input image. (ii) Region description: ex-

tracts local invariant features on the corresponding 

region and transfers these features into high-level 

representation. (iii) Region classification: predicts 

semantic of region by using a set of discriminative 

classifiers. (iv) Image labeling: assigns each pixel with 

an object class label by fusing all regions of QRB. 

Any algorithm that fits the above modules can be 

plugged into our system. The following subsections 

detail concrete algorithms used in our system.  



 

 

 

 

 

 

 

Figure 1. Unified framework of semantic segmentation 

 

2.1. Region bank generation 
 

Region bank is a set of multi-level regions.  There 

are mainly two reasons to use region bank for seman-

tic segmentation. On one hand, single-level segmen-

tation or over-segmentation is unstable and far from 

precisely separating objects. In most cases, objects 

are segmented into many regions. On the other hand, 

hierarchical segmentation might capture objects at 

some levels, but the optimal segmentation level is 

unpredictable and may change according to compo-

nents of images. As shown in figure 2, the best seg-

mentation of image-1 is at level 8: cows grass and 

building are segmented with very few merging; while 

for image-2 the best is at level 4: face bodies, grass 

and building are separated. So we take multi-level 

regions into consideration. 
 

      image-1              level-1                 level-8              level-30 

    
      image-2              level-1                 level-4              level-30 

    
Figure 2. Results of hierarchical segmentation 

 

To create region banks, we choose contour-based 

hierarchical segmentation proposed in [1]. Because it 

generally preserves object global contour while 

providing hierarchical regions. The result of this 

segmentation is a valued ultrametric contour map 

(UCM), where the contour values reflect contrast 

between neighboring regions. Hierarchical regions 

are created by thresholding the UCM with a set of 

thresholds. For semantic segmentation, too fine re-

gions tend to produce noise labeling. So we design an 

image self-adapting method to compute thresholds: 

the minimum and maximum thresholds are computed 

by multiplying the maximum UCM value of input 

image by predefined parameters   and  ; and UCM 

values in this range are taken as thresholds to create 

multi-level regions. In our experiments,   and   are 

set to be 0.25 and 0.8 respectively. Typically we 

obtain 5 to 20 thresholds per image. The region set 

created by hierarchical segmentation for a query 

image is query region bank (QRB); and that created 

by hierarchical segmentation and ground-truth seg-

mentation for training images is training region bank 

(TRB). 

 

2.2. Region description 
 

For regions classification, it is necessary to ex-

tract robust feature descriptors for each region. Typi-

cally, the feature description consists of two steps: 

firstly, extracting local descriptors and then trans-

forming these local descriptors into high-level repre-

sentation. 
 Local feature descriptors: A good local feature 

descriptor should possess invariance property, i.e. if 

there is a transformation (e.g., rotation and scale 

change) between two instances of an object, the cor-

responding descriptor values must remain nearly the 

same.  In our algorithm, we use two kinds of local 

feature descriptors. 

The first kind of descriptor is RGB-SIFT. SIFT[2]  

have been shown to be well-adapted to matching and 

recognition tasks. The SIFT descriptor is formed by 

computing the histogram of gradient of     cells 

with 8 orientation bins in each cell. This results in a 

128-dimensional vector for one SIFT descriptor. We 

extract SIFT descriptor on R, G and B channels re-

spectively. So this leads to a 384-dimensional vector 

for one RGB-SIFT descriptor. Many authors extract 

local descriptors only on keypoints for high efficient 

image classification. However, it is not adapted to 

semantic segmentation, because keypoint detectors 

have difficulties to detect keypoints in uniform re-

gions, such as sky and calm water, and result in 

unassignment on these areas. We thus prefer to per-

form on dense grid: SIFT descriptors are extracted 

respectively at four scales of grid size (8, 16, 24, 32 

pixel diameters) with step-size of 6 pixels. 

The second kind of descriptor is texton which is 

used to describe human textural perception.  Alt-

hough the word “texton” remains a vague concept, it 

has attracted much attention and a lot of methods 

have been proposed to represent texton for image 

analysis. We generalize texton descriptors by con-

volving images with a filter-bank of 17 filters [3] 

applying it to CIE L*a*b* color space. The L* chan-
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nel owns 11 filters, 3 Gaussians (         ), 4 

Laplacian of Gaussians (          ), and 4 deriva-

tives of Gausians (      ) along x and y directions. 

Each color channel a* or b* hold the same 3 Gaussi-

ans as L*'s respectively.   

High-level representation: One of the popular 

High-level representations for image classification is 

bag-of-visual-words (BOV) [6]. We also apply it to 

semantic segmentation.  BOV is visual dictionary-

based representation: each local descriptor is quan-

tized into the nearest element of the dictionary.  As 

two kinds of local descriptors are used, we need to 

construct two visual dictionaries: RGB-SIFT diction-

ary (Ds), and texton dictionary (Dt).   

We use the simplest square-error clustering meth-

od, k-means, to generate the Ds and Dt. Note that k-

means cannot determine the number of clusters corre-

sponding to the number of visual words in dictionary, 

therefore, we run k-means several times setting dif-

ferent number of clusters and choose appropriate 

number. In our experiment, the sizes of Ds and Dt are 

set to 2000 and 400 respectively. With the dictionary, 

each local feature descriptor can be represented by its 

nearest visual word. So each region can be described 

by the histogram of visual words.  

 

2.3. Region classification 
 

Once regions have been represented by histo-

grams of visual words, the problem of region classifi-

cation is transformed to that one of multi-class super-

vised classification. To predict the classes of unla-

beled region, the classifier performs two steps: train-

ing and testing. Theoretically, any discriminative 

classifier may be performed within this task. We 

choose Support Vector Machine with Multiple Kernel 

Learning [4] (SVM-MKL) since it is convenient to 

integrate multiple features and it generally produces 

good results on high dimensional classification.  

Suppose   
  and   

  are visual word histograms of 

SIFT and texton respectively of region i; and their 

combination is denoted as   
     

    
  . The classifi-

cation function of a SVM in kernel formulation is 

expressed as: 
  

           
 
            

                (1) 
 

where    is feature histogram of a test region;   is the 

number of regions in TRB ;             indicates 

their class label;   and   is positive definite kernel, 

which is a linear combination of feature histogram 

kernels  

 

       
            

             
             (2) 

 

where    and    denote nonnegative weights of ker-

nels. Radial basis function (RBF) kernel is applied 

here to map the feature histograms into high dimen-

sion spaces. SVM-MKL learns parameters        
   

    for each classifier. Noted that most elements of    

are zero, in other words, SVM-MKL only chooses the 

most import regions of TRB for classification. If a 

dataset contains n object classes, SVM-MKL trains n 

classifiers and a query region obtains n SVM scores. 

 

2.3. Image labeling 
 

Image labeling is to fuse all predicted regions to 

produce a semantic labeled image. In this module, 

SVM scores, regions sizes and common sense are 

taken into consideration. Specifically, the most likely 

object classes that have the maximum SVM scores 

are used to pre-label each region. Then, these regions 

are sorted by their increasing SVM scores and gradu-

ally merged to form a complete labeled image by 

observing their sizes, their SVM scores and consider-

ing common sense. For example, when two regions 

overlap, if a large region predicted as sky has a light-

ly larger SVM score than a small region predicted as 

bird; we preserve the small one and label it as bird.  

 

3. Experiments 
 

In this section, we report results on the MSRC 21 

dataset [5]. This is one of the most challenging data 

set for semantic image segmentation which consists 

of 591 color images of 21 object classes. We use the 

same splitting protocol as [6] and [9]: 276 images for 

training and the remainder for testing.  

Pixel-wise global accuracy, per-class accuracy 

and average accuracy are used to evaluate perfor-

mance of the system. The global accuracy is comput-

ed as 
  

    
 

    
                              (3) 

 

where,    is the image lattice for test image i;     is 

the number of ground-truth labeled pixels of image  i; 

For pixel   in image i, the output label of the system 

is       and the ground-truth label is     ; for unla-

beled pixels,       . We also compute per-class 

accuracy as 
 

     
                              

                 
              (4) 

 

Then the average accuracy is the mean of all classes’ 

accuracies. 

Figure 3 shows the qualitative performance of our 

algorithm. The inputs images are displayed in figures 

3(a)(d)(g), and their corresponding inferred labels 

and ground-truth labels are in figures 3(b)(e)(h) and 

3(c)(f)(i) respectively. Each object class is labeled by 



a unique color. Those black pixels of ground-truth 

image are unlabeled, but our algorithm does not pro-

duce unlabeled output. In most cases, our algorithm 

provides reasonable prediction in those unlabeled 

regions, such as in figure 3.2(h), the grass under chair 

is correctly inferred. Some good segmentation results 

are shown in figure 3.1 and 3.2. There are also typical 

failure examples shown in figure 3.3, where objects 

in the images are ambiguous and or occluded leading 

to failure labeling. 

In table 1, we compare our results to the state-of-

the-art. Our approach provides highest segmentation 

accuracy for 5 classes that are “tree”, “water”, “car” 

“book”, and “dog”. All approaches produce low ac-

curacy for “boat”, because it has very few examples 

and dramatic intra variance (rowboat, sailship, steam-

ship, etc.). The average accuracy we obtained is 70% 

and ranks second. However, our method provides 

80% global accuracy which is higher than others. 

 

4. Conclusions 
 

We have proposed a novel approach for semantic 

image segmentation by using region bank.  Hierar-

chical regions are used for both training and testing. 

Experiments show that our approach obtains compa-

rable results with the state-of-the-art on the standard 

dataset for semantic image segmentation. It is worth-

while to note that our approach has not employed any 

Random Field models which are used in most exist-

ing approaches to incorporate context information, 

and only used two types of local feature.  Taking 

more features and considering the context infor-

mation would increase the segmentation accuracy.  
 

building grass tree cow sheep sky plane water face car bicycle chair road body boat unlabeled 

 

   
 

   
 

   
            a                        b                       c                         d                         e                         f                         g                         h                      i            
Figure 3. Examples of semantic segmentation. (a)(d)(g) original images; (b)(e)(h) segmented result of our system; 

(c)(f)(i) ground-truth segmentation. 
 

Table 1. Segmentation accuracies on the MSRC 21 dataset 
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[5] 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18 67 72 

[6] 84 95 81 67 78 89 72 77 87 71 86 66 59 28 85 19 68 59 47 35 9 65 77 

[8] 53 97 83 70 71 98 75 64 74 64 88 67 46 32 92 61 89 59 66 64 13 68 78 

[11] 60 78 77 91 68 88 87 76 73 77 93 97 73 57 95 81 76 81 46 56 46 75 77 

Ours  66 92 86 67 85 91 72 84 79 79 83 87 39 38 96 42 74 60 77 50 19 70 80 
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