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Abstract. In this paper we consider the class of anti-uniform Huffman (AUH) 
codes for sources with infinite alphabet generated by geometric distribution. 
Huffman encoding of these sources results in AUH codes. As a result of this 
encoding, we obtain sources with memory. The entropy and average cost of these 
sources with memory are derived. We perform an analogy between sources with 
memory and discrete memoryless channels, showing that the entropy of the source 
with memory is similar to the mean error of the discrete memoryless channel. The 
information quantity I(X,S) specifies for AUH codes whether they are with memory 
or not, as it differs from zero or is equal to zero, respectively. 

Keywords: Huffman coding; average codeword length; entropy.  

1. Introduction  

Consider a discrete source with infinite size alphabet 

1 2: ( )ks s sξ A A

1 2: ( kP p p pA
 and associated ordered probability distribution 

, where . It is well known that 

the Huffman encoding algorithm [1] provides an optimal prefix–free code for 
this source. A binary Huffman code is usually represented using a binary tree, 

)A

                                                

1 2 ... ...kp p p≥ ≥ ≥ ≥
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whose leaves correspond to the source messages. The two edges emanating 
from each intermediate tree node (father) are labeled either 0 or 1. For related 
literature on Huffman coding and Huffman trees, we refer the reader to [2, 3, 4, 
5, 6]. 

In contrast with the uniform Huffman code where 1k jl l− ≤  (lk denotes 

the length of the codeword associated with the message sk), a code is called anti 
–uniform Huffman (AUH) [7, 8], if 1kl k= + , for 0,1,2,...k = . For this the 

following condition has to be fulfilled [7, 8] 

2 3
2

... , 1i i k i

k i

p p p p
∞

+ + = +
+ + = ≤ ≥∑ i                                      (1) 

The class of AUH sources is known for their property of achieving 
minimum redundancy in different situations. It has been shown in [9] that AUH 
codes potentially achieve the minimum redundancy of a Huffman code of a 
source for which the probability of one of the symbols is known. The AUH 
codes are efficient codes with minimal average cost in highly unbalanced cost 
regime among all prefix – free codes [10]. These properties determine a wide 
range of applications and motivate us to study these sources from information 
theoretic perspective. Such sources can be generated by a several probability 
distributions. It has been shown that geometric distribution is among the class of 
infinite alphabet anti – uniform sources [7, 8, 11, 12]. 

In this paper we consider the AUH structure and derive the average 
codeword length, the average information per binary symbol of the source with 
memory or code entropy Hm(X), as result of Huffman encoding of the discrete 
AUH source with geometric distribution, as well as the average cost of the code.  

The rest of the paper is organized as follows. In Section 2 we consider an 
infinite source with geometric distribution and compute its entropy. For this 
source we perform a Huffman encoding and derive the average codeword 
length. We also show that employing Huffman coding, a source with memory 
results, for which we compute the entropy or the average information per binary 
encoded symbol. The average cost of the code is also derived. Section 3 presents 
the analogy between sources with memory and discrete memoryless channels. 
The information quantity corresponding to mutual information for discrete 
channels, I(X,S), specifies for AUH codes whether they are with memory or not, 
as it differs from zero or is equal to zero, respectively. We conclude the paper in 
Section 4. 

 

2. The entropy and the average cost of AUH codes for sources with infinite 

alphabet 
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Let there be a discrete source with infinite alphabet, characterized by 
geometric distribution: 

( ) ( ) ( ) ( )
0 1 2

( ) ( ) ( ) 2 ( )
0 1 2

:
t t t t

k

t t t t k

k

s s s s

p q p pq p p q p p q
ξ ⎛ ⎞⎜ ⎟= = = =⎝ ⎠

A A
A A

,          (2) 

where q=1-p. 
In [12] it is shown that geometric distribution with parameter 

0 ( 5 1) /p< ≤ − 2  satisfies condition (1) and leads to an AUH code. 

The source is complete, because [15,16] 
 

0

1k

k

p q
∞

=
=∑                                             (3) 

 
After a binary Huffman encoding of this source, the graph in Fig. 1 

results, that is, an infinite anti – uniform code.  

 
Fig. 1. The graph of Huffman encoding for the source ξ  with distribution in (2) 

 
( )t

ks represents a leaf or a terminal node in the graph, corresponding to the 

message ( )t

ks  of the source and ( )i

ks  represents the intermediate node “k”.  

The probabilities of terminal nodes are equal to probabilities of the source 
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messages, ( )t

kp . Unlike a leaf, an intermediate node is not corresponding to a 

source message and, therefore no probability mass is associated. However, with 
slight abuse we can call the weight of the intermediate node also probability.  
Considering (3), the probabilities of intermediate nodes ( )i

kp  are obtained 

recursively, as the sum of the two siblings. In this way, we get: 

( ) ( )

0

1 ; 0,1,2,...
k

i t

k j

j

p p k
=

= − =∑                                         (4) 

Considering (2) and (4), the probabilities of intermediate nodes are obtained by: 
( ) 1; 0,1,2,..i k

kp p k+= = .                                           (5) 

The structure of codewords resulted from Huffman binary encoding is: 

m

0 0

1 1

2 2

1

01

001

........................

00...01

........................

k k

k

s c

s c

s c

s c

→ → ⎫⎪→ → ⎪⎪→ → ⎪⎬⎪→ → ⎪⎪⎪⎭

                                                   (6) 

The length of the codeword associated with the message kl
( )t

ks  is the number of 

edges on the path between the root and the node ( )t

ks  in the Huffman tree. 

1, 0,1,2,...kl k k= + =                                             (7) 

The average codeword length [13] is determined with  

( )

0

t

k k

k

l p
∞

=
=∑ l                                                         (8) 

The average codeword length is obtained considering (2) and (7) in (8)  

0

1
( 1)

1
k

k

l k qp
p

∞

=
= + = −∑                                                (9) 

The entropy of the source with the distribution given in (2) is 

( ) ( )

0

( ) logt

k

k

H pξ ∞

=
= −∑ t

kp                                           (10) 

where the logarithm function log is in base 2. 
Considering (2) and (10) the entropy of the source is: 

( ) log(1 ) log
1

p
H p

p
ξ = − − − − p                           (11) 

In obtaining relations (9) and (11) we have taken into account that 

0

1k

k

p q
∞

=
=∑  and 

0 1
k

k

p
kp q

p

∞

=
= −∑ . 
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We note that the probabilities to deliver the symbols 1 1x =  or  

depend on the node from which they are generated. In other words, as a result of 
Huffman encoding of the source, a source 

0 0x =
0 1{ 0,X x x 1}= = = with memory is 

obtained. Its states correspond to terminal or intermediate nodes (excluding the 
root) in the graph in Fig. 1. When a terminal node is reached, the binary 
encoding Huffman procedure is resumed from the graph root. Since the source 
with the distribution in (2) is complete, the probability of the root is equal to 1.  
The graph attached to the source with memory X can be obtained from the 
Huffman encoding graph of the source ξ∞ , as follows: 

a) We link the terminal nodes in the graph of the source ξ∞  with the 

root; 
b) The branches between successive nodes have the probabilities equal 

to the ratio between the probability of the node in which the branch 
ends and the probability of the node from which it starts; 

c) Each terminal or intermediate node will represent a state ( )t

kS  or 

 (as it is represented in Fig. 2). ( ) , 0,1,2,...i

kS k =
 

 
 

Fig. 2 The graph of the source with memory 

Let  be the state set of the 

source with memory.  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 1 1 0 1 1{ , ,..., , ,..., , ,..., , ,...}t t t t i i i i

k k k kS S S S S S S S S−= −

The probabilities of delivering the symbols 0 0x =  or 1 1x =  from the 

state  corresponding to an intermediate node , are 

equal to the probabilities of transition from the state to the states 

( )
1, 1,2,...i

kS k− = ( ) 2,...i

k−
1,

1, 1,s k =
2,...( )

1,i

kS k− =
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. .( ) , 1,2,..t

kS k = and , respectively, i.e. ( ) , 1,2,..i

kS k =
( /p x

(p x

( )
1 1) 1 , 1,2,...i

kS q p k− = = − =                            (12)  

and 
( )

0 1/ ) , 1,2,...i

kS p k− = =                                 (13) 

respectively. 
The probabilities of delivering the symbols 1 1x =  or 0 0x =  from the 

state  corresponding to a terminal node , are 

equal to the probabilities of transition from the state in the 

states and , respectively, i.e.: 

( ) , 0,1,t

kS k =
( )
0

tS ( )
0

iS

( ) , 2,...t

k

, ,...S k

0,1,s k =
0,1,2=( )t

k

2,...

1(p x

(p x

( )/ ) 1 , 0,1,2,...t

kS p k= − =                           (14) 

and 
( )

0 / ) , 0,1,2,...t

kS p k= =                             (15) 

respectively. 
The transition matrix between states is: 

( ) ( ) ( ) ( ) ( )
0 1 0 1

( ) ( )
0 0

( ) ( )
0 0

( ) ( )
0 0

( ) ( )
1 1
( ) ( )
0 0

( )

( )
1 1

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

T
0 0 0 0

0 0 0 0

t t i i i

k k

t t

t t

t t

t i

i i

t i

k k

i i

k k

S S S S S

p p

p p

p p

p p

p p

p p

p p− −

−
−
−

=

A A

A A
A A

B B A B B B B B
A A

B B A B B A B A

A B

B B B A B A

A A

B B

( )
0

( )
1

( )

( )
0

( )
1

t

t

t

k

i

i

k

S

S

S

S

S −

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

B

B

B
B

BA B B A B B

( ) ( )
2

( )

( )

0

0

0

0

0

t tS SA A

A A
A A

B B B
A A

B A B

A A

B A B A

A A

B A B

(16) 

Considering (12), (13), (14) and (15), the transition matrix (16) becomes: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
0 1 2 0 1

( )
0

( )
1

( )

( )
0

(
1

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 1 0 0

T

1

0 0 0 1 0 0

t t t t i i i

k k

t

t

t

k

i

k

S S S S S S S

Sp p

Sp p

Sp p

p p S

p p S −

−⎡ ⎤⎢ ⎥−⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥= ⎢ ⎥−⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥⎣ ⎦

A A A A

A A A A
A A A A

BB B B B B A B B B B B
A A A A

BB B B A B A B B A B A
A A A B

B B B A B A B A B A B
A A A A

B B B A B A B B A B B
)i

B

        (17) 

Let ( )t

kπ and ( )i

kπ , , denote the state probabilities of the source with 

memory. They can be determined by means of [13, 14]: 

0,1,2,...k =
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 1 0 1 0 1 0 1[ ... ... ... ...] [ ... ... ... ...]Tt t t i i i t t t i i i

k k k kπ π π π π π π π π π π π=         (18) 

( )( ) ( )

0

1t i

k k

k

π π∞

=
+ =∑                                                 (19) 

Considering (8) and (17), from (18) and (19) we get the state probabilities as: 

( ) ( )1
, 0,1,2,...t t

k kp k
l

π = =                                             (20) 

( ) ( ) ( )

0

1 1
1

k
i i t

k k j

j

p
l l

π
=

⎛ ⎞= = −⎜⎝ ⎠∑ p ⎟                                           (21) 

Considering (2) and (4) in (20) and (21), we get the state probabilities as: 
( ) 2(1 ) , 0,1,2,...t k

k p p kπ = − =                                        (22) 

( ) 1(1 ) , 0,1,2,...i k

k p p kπ += − =                                       (23) 

Generally, the entropy of the source with memory is computed by [14] 

( ) ( ) ( ) ( )1 1
( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0

( ) log logt t t i i

m k j k j k k j k j k

k j k j

H X p x S p x S p x S p x Sπ π∞ ∞

= = = =
= − ⏐ ⏐ − ⏐ ⏐∑∑ ∑∑ i  

(24) 
Substituting (12)-(15), (22) and (23) in (24), we get the entropy of the source 
with memory. 

( ) (1 ) log(1 ) log
1m

p
H X p p

p

⎛ ⎞= − − − +⎜ ⎟−⎝ ⎠p                        (25) 

From (7), (11) and (25) we see that Hm(X), the average information per symbol, 
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is the ratio between the source entropy and the average codeword length. 

( )
( )m

H
H X

l

ξ=                                                   (26) 

Let and  be the costs associated to the bits 0 and 1, respectively. The 

average cost of a code is defined by [10] 
0c 1c

(( )
0 0 1 1

0

( ) ( )t

k

k

C p n k c n k c
∞

=
= +∑ ) ,                                      (27) 

where we denote by and  the number of 0’s and 1’s in the codeword 

corresponding to the source symbol 
0 ( )n k 1( )n k

( )t

ks . 

Considering (6), the average cost is 

(( )
0 1

0

t

k

k

C p kc c
∞

=
=∑ )+                                              (28) 

We obtain the average cost of the AUH code for the source with geometric 
distribution substituting (2) in (28). 

0 1

p
C c c

p
1= +−                                                (29) 

 

3. Analogy between sources with memory and discrete, memoryless 

channels 

 
 If we consider that the state set S of the source with memory represents 
the field at a discrete memoryless channel input and the symbols generated by 
the source with memory represents the field at the channel output, from (24) we 
note that the entropy of the source with memory represents the mean error of the 
channel with input S and output X, that is, H(X|S). 

Making use of this analogy we can calculate for sources with memory the 
information quantities specific to discrete memoryless channels [17].  

1 1
( ) ( ) ( ) ( )

0 0 0 0

( , ) ( , ) log ( , ) ( , ) log ( , )t t i

j k j k j k j k

j k j k

H X S p x S p x S p x S p x S
∞ ∞

= = = =
= − −∑∑ ∑∑ i   (30) 

The joint probabilities are obtained as 
( ) ( ) ( )( , ) ( | )t t t

j k k j kp x S p x Sπ=                                            (31) 
( ) ( ) ( )( , ) ( | )i i i

j k k j kp x S p x Sπ=                                            (32) 

Substituting (12)-(15), (22) and (23) in (31) and (32), we get the joint 
probabilities: 

( ) 3
1( , ) (1 ) , 0,1,2,...t k

kp x S p p k= − =                                  (33) 
( ) 2

1( , ) (1 ) , 1,2,...i k

kp x S p p k= − =                                  (34) 
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( ) 2 1
0( , ) (1 ) , 0,1,2,...t k

kp x S p p k+= − =                              (35) 
( ) 1

0( , ) (1 ) , 1,2,...i k

kp x S p p k+= − =                                 (36) 

Substituting (33) – (36) in (30), we have: 

( , ) (2 3) log(1 ) log
1

p
H S X p p p

p

⎛= − − +⎜ −⎝ ⎠
⎞⎟                                 (37) 

1 1
( ) ( ) ( ) ( )

0 0 0 0

( | ) ( , ) log ( | ) ( , ) log ( | )t t i i

j k k j j k k

j k j k

H S X p x S p S x p x S p S x
∞ ∞

= = = =
= − −∑∑ ∑∑ j

)

(38) 

In (38) ( )( |t

k jp S x  and ( )( |i

k j )p S x  are obtained using the following relations. 

We compute the symbol probabilities as 

( ) ( )

0 0

( ) ( , ) ( , ), 0,1t i

j j k j k

k k

p x p x S p x S j
∞ ∞

= =
= +∑ ∑ =                                 (39) 

Substituting (33)-(36) in (39), we get the probabilities 

0( )p x p=                                                        (40) 

1( ) 1p x p= − .                                                    (41) 
( )

( )
( , )

( | )
( )

t

j kt

k j

j

p x S
p S x

p x
=                                            (42) 

( )
( )

( , )
( | )

( )

i

j ki

k j

j

p x S
p S x

p x
=                                            (43) 

Substituting (33)-(36), (40) and (41) in (42) and (43), we get the 
probabilities: 

( ) 2
1( | ) (1 ) , 0,1,2,...t k

kp S x p p k= − = ,                      (44) 
( )

1( | ) (1 ) , 1,2,...i k

kp S x p p k= − = ,                          (45) 
( ) 2

0( | ) (1 ) , 0,1,2,...t k

kp S x p p k= − = ,                       (46) 
( )

0( | ) (1 ) , 1,2,...i k

kp S x p p k= − = .                            (47) 

Substituting (33) – (36) and (44) - (47) in (38), we have: 

( | ) (2 ) log(1 ) log
1

p
H S X p p p

p

⎛= − − − +⎜ −⎝ ⎠
⎞⎟

i

k

                            (49) 

( ) ( ) ( ) ( )

0 0

( ) log logt t i

k k k

k k

H S π π π π∞ ∞

= =
= − −∑ ∑                                (50) 

Substituting (22) and (23) into (50), we have 

( ) (2 ) log(1 ) log
1

p
H S p p p

p

⎛ ⎞= − − − +⎜ −⎝ ⎠⎟                                    (51) 
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1

0

( ) ( ) log ( )j j

j

H X p x p x
=

= −∑                                          (52) 

Substituting (41) and (42) into (52), we have 
                                        (53) ( ) (1 )log(1 ) logH X p p p p= − − − −

( ) ( )1 1
( ) ( )

( ) ( )
0 0 0 0

log ( , ) log ( , )
( , ) ( , ) ( , )

( ) ( )

t i

j k j kt i

j k j kt i
j k j kj k j k

p x S p x S
I X S p x S p x S

p x p xπ π
∞ ∞

= = = =
= +∑∑ ∑∑     (54) 

Substituting (22), (23), (33)-(36), (41) and (42) in (54), we have 
( , ) 0I S X =                                           (55) 

We note that this quantity is equal to zero. This indicates that the source 
resulted by binary encoding of the source with geometric distribution is without 
memory. 
 

 

4. Conclusions 

 
In this paper we have considered an infinite discrete memoryless AUH 

source with geometric distribution. Performing a binary Huffman encoding of 
this source, we get a source with memory, because the probabilities of 
delivering the symbols x0=0 and x1=1 in the encoding process depend on the 
nodes in the graph from where they are generated. The graph of the source with 
memory is obtained from the encoding graph by linking the terminal nodes with 
the graph root. The states of the source with memory correspond to the terminal 
or intermediate nodes in the encoding graph. We determined the state 
probabilities of the source with memory, as well as the transition probabilities 
between states. The average information and cost per binary symbol in 
encoding process is computed. As the entropy of the source that is to be 
encoded measures the average information per codeword, and the code entropy 
measures the average information per symbol, their ratio represents the average 
length of codewords.  

Performing the analogy between discrete sources with memory and 
discrete memoryless channels, we compute the information quantities. The 
information quantity I(X,S) indicates whether the source resulted by binary 
Huffman encoding is with memory or not. The information quantity Hm(X|S) 
represents the entropy of the source with memory resulted by binary Huffman 
encoding.  
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SURSE ANTI - UNIFORME INFINITE CU DISTRIBUğIE GEOMETRICĂ  

(Rezumat)  

În acestă lucrare s-a analizat clasa codurilor Huffman antiuniforme pentru surse 
caracterizate de o distribuĠie geometrică, cu alfabet infinit.Codarea Huffman a acestor 
surse conduce la coduri AUH. Ca urmare a acestei codări se obĠin surse cu memorie. 
Pentru aceste surse s-a calculat entropia şi costul mediu. S-a efectuat o analogie între 
sursele discrete cu memorie şi canalele discrte fără memorie, arătându-se că entropia 
sursei cu memorie este similară cu eroarea medie din cazul canalului discret fără 
memorie. Mărimea informaĠională I(X,S) indică pentru codurile AUH, dacă acestea 
sunt sau nu cu memorie, după cum această mărime este diferită de zero sau nu.  
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