
Generation of Efficient High-Level Hardware Code from

Dataflow Programs

Nicolas Siret, Matthieu Wipliez, Jean François Nezan, Francesca Palumbo

To cite this version:

Nicolas Siret, Matthieu Wipliez, Jean François Nezan, Francesca Palumbo. Generation of
Efficient High-Level Hardware Code from Dataflow Programs. Design, Automation and test in
Europe (DATE), Mar 2012, Dresden, Germany. pp.NC, 2012. <hal-00763804>

HAL Id: hal-00763804

https://hal.archives-ouvertes.fr/hal-00763804

Submitted on 11 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53007579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00763804

Generation of Efficient High-Level Hardware Code

from Dataflow Programs

Nicolas Siret and Matthieu Wipliez and Jean-François Nezan

European university of Brittany, France

INSA, IETR, UMR 6164, F-35708 RENNES

Email: name.surname@insa-rennes.fr

Francesca Palumbo

University of Cagliari, Italie

Email: francesca.palumbo@diee.unica.it

Abstract—High-level synthesis (HLS) aims at reducing the
time-to-market by providing an automated design process that
interprets and compiles high-level abstraction programs into
hardware. However, HLS tools still face limitations regarding
the performance of the generated code, due to the difficulties
of compiling input imperative languages into efficient hardware
code. Moreover the hardware code generated by the HLS tools
is usually target-dependant and at a low level of abstraction (i.e.
gate-level). A generated code at a high-level of abstraction (i.e.
chip-level) is better suited to the needs of systems’ architects
because they can understand and control all of the design
processes. We propose in this paper a new approach to HLS
to generate efficient, high-level hardware code from Dataflow
Programs. Implementation results (from two dynamic dataflow
programs) on Xilinx, Altera and Latice FPGAs and on ASIC
targeting 90nm CMOS technology are also presented.

I. INTRODUCTION

High-Level Synthesis (HLS) aims at reducing both the

complexity and the time-to-market of new applications on

hardware architectures. HLS is currently based on System-

or Model-Level (e.g. C, SystemC.) programming, and target-

specific (e.g. VHDL, System Verilog) code generation. Pro-

gramming at a higher level of abstraction allows designers to

abstract usual low-level technicalities associated with hardware

description languages. The usual low-level technicalities are

managed by the HLS tools which analyse the input designs

and insert the logic required to ensure a correct behaviour.

Not only does it result in higher productivity, but it also

increase performance by speeding up the design flow and thus

providing more opportunities for debugging and performance

tuning.

There has been a large body of research and development

on HLS [3], [4], leading to the emergence of third-generation

HLS tools either sold by major companies (e.g. Synopsis,

Mentor Graphics), or provided “as is” (e.g. OpenCores).

The suppliers of HLS compilers [4] and independent bench-

markers [5] compared the HLS to the usual hand-coded

development stages (i.e. coding, debugging, implementing,

validating) for both hardware and software programming.

According to their results, using HLS reduces the time-to-

market while keeping or improving the RTL quality and the

final performance of a design.

However HLS tools still face limitations, especially to

extract a flexible and efficient hardware code from sequential

algorithms. This paper presents the usual limitation of HLS

tools and proposes a new two-step approach for implementing

HLS in a compilation infrastructure. The first step consists

in compiling the applications into an efficient, high-level

and portable hardware code; the second step in generating

the RTL code and the bitstream using the usual hardware

synthesizers. The hardware code is generated according to a

good coding style which allows synthesizers to perform opti-

mizations and which eases the code refinement. Applications

are described using a dataflow programming language based

on the DataFlow Process Network Model of Computation

(MoC) [1].

This paper makes the following contributions with respect

to the research presented in [2] on hardware code generation:

• we present the transformations and modifications per-

formed to implement the two-step HLS in the Open RVC-

CAL Compilation infrastructure,

• we show in section III how to generate a hardware code

which, (1) can be synthesized on various FPGAs and

ASIC technologies with good performance, and (2) is

easily understandable and maintainable,

• we detail the optimizations made to reduce the required

area, especially on the inter-entities communication pro-

tocol (section IV).

Performance assessment of the presented two-step HLS is

going to be performed on a wide set of targets: a Xilinx

Spartan3 FPGA, an Altera Stratix-V FPGA, a Latice ECP2

FPGA and also an ASIC using a 90nm CMOS technology.

All those targets run two different designs extracted from two

different dynamic dataflow programs: a 2D Inverse Discrete

Cosine Transform and an AC/DC prediction (section V).

II. BACKGROUND

This section presents related work on High-Level Synthesis

and our approach compared to others.

A. Related Work

As presented in the fig.1, HLS tools allow designers to

program at a higher level of abstraction to avoid complex

low-level debugging using cycle accurate simulator (e.g. Mod-

elsim). In many cases the source programs are described using

System- or Model-level languages, like SystemC [6] because

it mimics some aspects of hardware-oriented language while

Algorithms -
architecture

Architecture
refinement

Post-optimizations

RTL or HDL Synthesis

Hardware ASIC-
FPGA

Simulations-
optimizations

HDL and C Coding

HDL/C

Tradionnal Flow
De

sig
nl

ev
el

Sy
ste

m
lev

el
RT

Ll
ev

el

HLS

RTL -Synthesis

Hardware ASIC-
FPGA

HDL

High-level Coding

C/SystemC

HLS Flow

Fig. 1: High Level Synthesis Design flow.

having the same expressiveness as a software language, or C

because it is one of the most used in the industry. However

limitations still restrict the compilation of sequential source

programs:

• the compilation is often not fully automated1 [7], [8],

because of the considerable number of possibilities of-

fered by the hardware code compilation. Designers have

thus to make multiple choices on specific elements (e.g.

mapping, technological target).

• the imperative nature of the input languages [4], [8],

restricts the performance of the generated code with

respect to the slices used and to the throughput. Indeed,

the lack of inherent parallelism in the source language

means that the generated design will execute in more

cycles than necessary.

• byte-based types used in the majority of software lan-

guages make it difficult for HLS compilers to minimize

resources.

In addition, the code generated from sequential sources pro-

grams have their own limitations:

• the generated code is mostly at a low-level of abstraction

(i.e. gate-level) which does not meet the need of designers

used to code at a higher level of abstraction (i.e. chip-

level). As a result, designers have difficulty analysing this

generated code and thus optimizing their input designs to

increase the performance.

• generating a design at a low-level of abstraction to en-

sure the same performance whatever the design, actually

restricts the optimizations made by all recent hardware

synthesizers because they expect synthesizing hand-coded

hardware code at a medium- or high-level of abstraction.

B. Our approach to HLS

As presented in the introduction, we enhanced the work

presented in [2] and developed a hardware compilation in-

1Some of the latest commercial tools, partially overcomes this limitation [4]
using complex algorithms that can perform several tests to find the best choice
in terms of performance, area or a balance between the two.

frastructure which implements a two-step HLS that fill the

gap between HLS and usual hand-coded methodologies. In

concrete terms, the two-step HLS we propose consists in (first

step) compiling a dataflow programs into hardware code while

keeping as many similarities as possible from the source; and

(second step) letting the synthesizers make the optimizations

usually made by HLS tools (e.g. removing unused gates,

optimizing the critical path).

The hardware compilation infrastructure is implemented

into the Open RVC-CAL Compiler [1] (Orcc). Orcc is a multi-

targets compilation infrastructure written in Java2 which allows

compiling dataflow programs into various target languages

such as C [10], LLVM [11], etc. The code compilation is

processed in two steps: (1) the front-end compiles dataflow

programs into an Intermediate Representation (IR) and (2)

the IR is transformed into a target language. Mono-core,

multi-cores and mixed hardware/software architectures can be

targeted using Orcc.

The dataflow programs we consider are provided in the Re-

configurable Video Coding (RVC) framework [9]. The MOC

define RVC-CAL programs as hierarchical block diagrams

called networks, where blocks can be either networks or actors,

and communicate with each other through unidirectional FIFO

channels. An RVC-CAL actor may have input and output

ports, parameters, variables, functions and procedures, actions

that may be identified by a tag, a Finite State Machine (FSM),

and a set of priorities that establish a partial order between

action tags. The behaviour of an actor is defined within its

actions which can consume or produce tokens, and process

algorithms. The time spent to learn a new language is balanced

by the time saved on the development stages, considering this

learning is required just once.

The novel HLS approach presented in this paper and de-

picted in fig.2 provides an answer to the usual limitations of

HLS tools because:

• Using the RVC-CAL dataflow language solves the prob-

lem of efficiently extracting parallelism from imperative

language since RVC-CAL naturally highlights the paral-

lelism of applications and empowers designers with the

ability to describe inherently parallel applications.

• The restrictions previously introduced in terms of code

portability, reuse and refinement are overcomed by the

two-step HLS, closer to the traditional hardware devel-

opment flow. Moreover, this code is efficiently (in terms

of performance, area, etc.) and equally well synthesized

on the various hardware synthesizers.

III. IMPLEMENTATION OF THE TWO-STEP HLS

We present in this section, the requirements needed to

implement the two-step HLS in the Orcc compilation infras-

tructure.

A. Basic Rules and Motivations

In our two-step HLS, three rules must be validated: (1)

novices and senior designers must be able to easily use the

2Orcc is available as a feature for the Eclipse environment, see orcc.sf.net

A��������s -
��	���
	���

A���������
����������

����-�������������

��L �� HDL ���������

H�� !���A�"C-
F�GA

����#������-
�������������

HDL �� C C� ��$

HDL/C

%&'()*++', F,*-

D.
/0
1
2
3.
4
.3

5
6
/7
.8
3.
4
.3

9
:

L3
.4
.3

Orcc HLS

HDL Synthesis

Hardware ASIC-
FPGA

Post-optimizations

VHDL

RVC-CAL

Orcc Flow

High-level Coding

Fig. 2: Open RVC-CAL Compiler design flow.

compiler, (2) the generated code must be flexible and main-

tenable, (3) the generated code must provide good performance

no matter what technology is targeted (i.e. FPGAs, ASICs).

Rule (1) is validated by the compilation infrastructure (Orcc)

which has been provided as an Eclipse plug-in to guarantee

usability, and by the RVC-CAL language which is halfway

between hardware and software languages.

The only way to validate rules (2) and (3) is to follow

a set of rules, also known as good synthesis coding style.

FPGAs, ASICs and IP providers supply their own coding

style [12], [13] whose essence is to ensure higher performance

by avoiding writing code that creates useless complexity

and gates amount. The portability between FPGA families

is obtained by a mix of these coding styles in addition

with others specific coding rules defined in particular by IP

providers [14]. Following a good synthesis coding style is

crucial using high-level VHDL code and it is clearly declared

by FPGAs providers like Xilinx: “certain seemingly minor

decisions made while crafting an RTL-level design can mean

the difference between a design operating at less than 100

MHz and one operating at more than 400 MHz”.

B. Actors’ body coding style

The fig. 3a presents one of the action (i.e. limit) of the“Clip”

actor which performs a clipping operation: if the input token

has a value greater than 255 or less than 0, the token is clipped

to 255 or min respectively. The value of min is determined

in another action. A part of the VHDL code compiled from

this action is presented in the fig. 3b, the generated code is

naturally understandable and can easily be compared to the

RVC-CAL one.

An FPGA is composed of logic elements whose inter-

connection are programmable so as to carry out different

functions as required by the design. These logic elements

can be binary operators (e.g. and, or), arithmetic operators

(add, sub), memories (e.g. flip-flops, latches), multiplexers,

etc. Latches must be avoided because they cause instability

and lengthen the critical path. In this way, we removed al the

latches by a proper use of the VHDL variables and signals:

actor Clip ()

int(size=10) I, bool SIGNED ==> int(size=9) O :

int(size=7) count := -1;

bool sflag;

limit: action I:[i] ==> O:[if i > 255 then 255

else if i < min then min else i end end]

var

int min = if sflag then -255 else 0 end

do

count := count - 1;

end

//..

end

(a) The limit action of the Clip actor in RVC-CAL.

Xilinx_clip_execute : process (reset_n, clock) is

-- variable declaration (...)

begin

if reset_n = ’0’ then

-- (...)

elsif rising_edge(clock) then

-- (...)

elsif (limit_go = ’1’) then

-- body of "limit" action

limit_local_sflag := sflag;

limit_local_count := count;

limit_I_i := to_integer(signed(I_data));

if (limit_local_sflag = ’1’) then

limit_tmp_if := -255;

else

limit_tmp_if := 0;

end if;

limit_min_1 := limit_tmp_if;

limit_local_count := limit_local_count - 1;

-- (...)

end if;

end if;

end process Xilinx_clip_execute;

(b) Part of the limit action of the Clip actor in VHDL.

Fig. 3: Actor code generation: core of the actor.

all the tokens to be memorized are stored in signals and the

computations are performed on variables (which temporary

contain the token) before returning the results. The name and

the type of the VHDL variables and signals are extracted from

the RVC-CAL programs.

The MOC allows an actor to contain several actions however

it also defines that only one action can be executed per cycle

in an actor. As a consequence, all actions are combined in

a single sequential process which make the behaviour of the

code predictable (the designer knows exactly which action is

executed in the current cycle) without impacting either the

number of slices required or the critical path.

C. Actors’ scheduler coding style

An RVC-CAL actor has actions which define its behaviour,

these actions may be identified by tags which can be ordered

using a Finite State Machine (FSM), and a set of priorities.

This ordering defines the scheduling of the actions within

an actor. In our approach, the scheduler manages the actions

scheduling and the transmission of the token reception ac-

knowledgement between actors using an {if(), elsif(), end if}
structure. The fig. 4 shows a part of the VHDL “Clip” actor

scheduler. The generated scheduler:

clip_scheduler : process(I_send, SIGNED_send,

O_rdy, count)

-- variable declaration (...)

begin

-- (...)

-- test if "limit" action is schedulable

isSchedulable_limit_local_count_1 := count;

if (isSchedulable_limit_local_count_1 >= 0) then

isSchedulable_limit_result_1 := ’1’;

else

isSchedulable_limit_result_1 := ’0’;

end if;

isSchedulable_limit_go := isSchedulable_limit_result_1;

-- (...)

limit_go <= ’0’;

I_ack <= ’0’;

-- (...)

elsif((isSchedulable_limit_go and I_send) = ’1’) then

limit_go <= isSchedulable_limit_go and O_rdy;

I_ack <= isSchedulable_limit_go and O_rdy;

end if;

end process;

Fig. 4: Parts of the Schedule of the Clip actor in VHDL.

• may check if tokens are available in the port of an actor

(i.e. I send in the instance), since actions can only be

fired if one or more tokens are available on its input ports,

• may control if a token can be sent to the target actor (i.e.

O rdy in the instance),

• may send an acknowledgement (i.e. I ack in the instance)

to a source actor when a token is consumed.

The scheduling of an action is usually made on the main

process which is clocked. However, in a code generated from

dynamic dataflow designs (in which sending an acknowledge-

ment when a token is consumed is compulsory), it makes

the throughput decrease from an action executed per cycle

to an action every two. In our approach shown in the fig.5,

the scheduler is executed in a combinatorial process activated

by the transmission signals to ensure the processing of one

action per cycle Using a combinatorial process split from the

;<=>?

@ABC

D>?

EFGF H=?AB I H=?AB J H=?AB

@ABC

EFGF H?I H?J H?K H?B

D>?

B K H=?AB B @>LACM<AN OPGLPB F

><=>?AC QN=>ARR

@>LACM<AN OPGLPB F

>=STPBFG=NPF< QN=>ARR

Fig. 5: Throughput depending on the location of the scheduler.

main sequential process may slightly increase the critical but

ensure a throughput of one token per cycle.

D. Inferring dual-ports RAM

Portability is strategic for hardware IP vendors since their

customers may use different FPGA and ASIC families. Be-

sides, generating and maintaining a code non-synthesizable on,

at least, Xilinx and Altera FPGAs is clearly unproductive. In

usual code generators, designers must provide a template of the

internal FPGA RAM to allow the HLS which makes the code

platform dependant. We dealt with this problem and decided

to adopt vendor-neutral RAM entities, forcing synthesizers to

infer them on the specific RAM components of the target

device. Inferring a RAM no matter the FPGA and technologies

also required to respect a good synthesis coding style. Thereby,

in the two-step HLS the lists (arrays) are transformed either

into register (small lists) or internal FPGA RAM (medium and

large lists).

IV. INTER-ACTORS COMMUNICATION

The communication protocol between actors is also impor-

tant in our two-step HLS. Indeed, hardware code generated

from a dataflow programs necessarily suffer a inter-actors

communication overhead with respect to hand-written codes.

This overhead must naturally be as low as possible. At

the same time, the protocol must be printable and close to

manual coding (first step of our approach) and it must allow

synthesizers to perform optimizations (second step).

A. Source of Communication Overhead

Hardware designs, generated from dynamic dataflow pro-

grams, are affected by an inter-entity communication overhead

to behave as hand-written designs. The reason is the model

behind dynamic dataflow programs states that both actors

production and consumption are not known a priori, i.e. actors

can receive and send data at any rate. Whereas, dealing

with manual hardware implementations, entities produce and

consume data at a fixed rate. This is not the case with

manual hardware implementations, in which entities produce

and consume data at a fixed rate. In our case, a generated

entity may need to wait for predecessors (resp. successors)

before being able to read (resp. write) data on its input (resp.

output) ports. This means that the generated code for an entity

must include code to control how data is transmitted to other

entities.

To better understand where the communication overhead

comes from, we consider the model of the Inverse Discrete

Cosine Transform (IDCT) shown in the fig. 6. This IDCT

model is provided along with all the ratios of tokens produc-

tion and consumption on the communication buses. In this

���

�����

���
	ABC�

	DEF�

FC� ���BC

��� ���

��� �������

	DEF�

FC��C�

�����

Fig. 6: A model of idct with the ratios of tokens productions

and consumption.

model of idct, the ShuffleFly actor produces one token every

two cycles [0, 1] while the Shuffle consumes a token every two

three-cycle [1, 1, 0]; the other actors produce and consume a

token every cycle [1]. The control of transmission between the

ShufflyFly and the Shuffle actors is thus compulsory to avoid

errors of transmission [0→1 (error), 1→1, 0→0, ...].

B. Minimization of the Communication Overhead

The overhead reduction problem is not trivial. It is nec-

essary to conceive and implement a clever control for data

transmission to minimally affect the area and the throughput

of the automatically generated hardware design. On most of

the HLS tools, the data transmission managed leveraging on

FIFOs, or memories, instantiated between any two instances

of a generated network. However, experience shows this is not

a satisfactory solution because:

• it needlessly complicates the code of the hardware net-

works,

• it can increase the number of logical slices used,

• it can increase the power consumption of the design.

To overcome the above mentioned issues, we develop two

optimized hand coded IPs, shown in fig. 7, which handle

the communication protocol: (1) a communication arbiter

(comArbiter) and (2) a broadcast manager (broadcast). These

two IPs always know if tokens are available or if the bus is

free between two actors and inform the actor scheduler (O rdy

in the instance presented, section III-C).

UVWXYZ
[\U]^
_\`]

a`bcdeUfWd

UgWhY

i
j
k
lm
n

[go
pqrstu

gWhY

Xvw

xyz{|}~�z�|� �����y��~z��y

�qrt� �

UVWXYZ
[\Up^
f\`p

a`bcdeUfWd

UgWhY

[go
pqrstu

�qrt� �

�|�~��~�z

�qrt� �

�qrt� �

�qrt� �

����

��������
������

�

gWhY�

cvw�

�qrt� � �qrt� �

�

u �

gWhY�cvw� cvw�

gWhY�

Fig. 7: the communication arbiter and the broadcast manager.

The communication arbiter is composed of an FSM and a

single bit memory block (usually a Flip-Flop). The Flip-Flop

stores the information of tokens production from the actor.

The FSM always checks the state of the network (if a token is

passed on) and the actor (if a token is available) and informs

the actor scheduler. When the network is free (a token can be

sent to the next actor), it unlocks the actor scheduler, otherwise

it locks the actor scheduler to prevent the token from being

lost. Note that the data is never stored in a the comArbiter

which reduces the required implementation area to nearly zero

without influence on the critical path.

Similarly, the broadcast managing all the communications

one to many, is made up of logic cells and single bit

memory blocks (usually Flip-Flops). The Flip-Flops store

the information of data consumption, and the logical cells

manage the control of the transmissions within the broadcast.

As long as a token is not consumed by one of the target

actors, the Input send information is passed (logical and

between the token consumption acknowledgement and the

send). The token consumption acknowledgement Input ack

is sent to the source actor when all the targeted actors have

consumed the token (logical equal between all the token

consumption acknowledgement and “11...1”). The fig. 7 shown

an example of a broadcast of size two but the IP is coded using

generic parameters so as to be compliant with all the sizes of

broadcast.

V. RESULTS

The performance of the presented two-step HLS has been

assessed on typical components of video decoders: the 2D

Inverse Discrete Cosine Transform (IDCT) and the AC/DC

prediction. In order to show the portability of the generated

hardware codes we are going to discuss the achieved results

both on different FPGAs vendors’ platforms, namely an Altera

StatrixIII, a Xilinx XC3S4000 and a Diamond LFE2 FPGAs,

and also targeting an ASIC design flow adopting a 90nm

CMOS technology. The Xilinx FPGA, Lattice FPGA and

Altera FPGA are respectively a low-, medium-, and high-

cost/performance FPGAs. The behaviour of the IDCT and the

AC/DC generated codes have been validated using Modelsim

6.6 and the synthesis have been performed using respectively

Altera QuartusII, Xilinx ISE, Lattice Diamond and the Design

Compiler tool of Synopsis.

For the sake of comparison, we have looked for proprietary

IPs and/or open source codes; unfortunately none of them is

free of charge, even for research purposes. In the IDCT case,

we succeeded in finding in literature an implementation on the

Xilinx XC3S4000 [15], from now on referred as (@IP). Finally

both the use cases have been also synthesized in hardware,

from their dynamic dataflow models, using OpenForge [16].

All the synthesis results are summarized in the table proposed

in the fig.8.

A. Performance on the 2D Inverse Discrete Cosine Transform

In the FPGA case, the highest frequency is obtained using

the @IP. Nevertheless the approach presented in this paper,

at the price of having an operating frequency, 8% lower

compared to this fully optimized IP (“low Power, high Speed

DCT/IDC”), is able to benefit from 60% less Slices, and 23%

less LUTs. Unfortunately, the work in [15] does not present

other reference platforms besides the Xilinx XC3S4000 one

and OpenForge has been developed for Xilinx as well; there-

fore the performance on Altera and Lattice do not have any

direct comparison. With respect to OpenForge the presented

approach provides better results for all the considered indexes.

In the ASIC case, the Synopsys Design Compiler allowed us to

carry out two types of synthesis: (1) without stringent timing

constraints (area, timing and power have been treated in the

same way) or (2) privileging timing with respect to area and

power. In the former it was possible to guarantee an operating

frequency of 714MHz with an area occupation of 0.21mm2.

In the latter case instead it was possible to reach 1GHz but an

area occupation of 0.22 mm2.

�����������	ABBBC D�EF�D��F�	�	��BC �DE��F����F���BFC D	��

����

����C
	���� �!E

�"#�$

��%C

����

����C
�"&�� D�!

��"#�$

��%C

����

����C
	���� �!E

�"#�$

��%C

����

����C

D$��

����C

�'��()�$ ��'� �$�*���" �(��E$�(+"$�

,$����'� �� --�A -./A -.0�1A -2B -B./ -A-1 A�0�2/ .B -B-- 1�1 -��0� -BBB B0���

3��� �� ��.- A2AB

,4�(�"$&� A- -A-� ��1A ��0��- � � � � � � � � � �

D�5'���$�6��*�"(

,$�����'� 2� /�2 �--/ /0�/A -�A 1BA -��� .�0�.� �- /1A -�AA .0�A 2�� B0��B

,4�(�"$&� /� /�. �--1 -�02 � � � � � � � � � �

Fig. 8: Performance of the generated code using HLS in Orcc.

B. Performance on the AC/DC prediction

The fig.8 also shows the implementation results on an

AC/DC prediction network composed of 7 actors. Our ap-

proach provides attractive results, no matter the FPGA or

ASIC technology.

VI. CONCLUSION

This paper proposes a new approach to High-Level Syn-

thesis to generate efficient, high-level, portable hardware code

starting from dynamic dataflow programs in two steps. The

compilation and implementation results show that:

• the code is generated once and is portable on FPGAs

and ASICs, from the low-cost ones, to the high-cost and

efficient ones.

• the refinement, understandability and reuse are facilitated

thanks to a code generated at high-level (i.e. chip-level)

of abstraction rather than low-level (i.e. gate-level) ab-

straction.

• Hardware synthesizers can perform optimizations (loop

managing, optimization of critical path) that can not be

achieved with low-level abstraction code,

• performance of the generated code matches that of the

hand-coded hardware in terms of frequency, power and

area.

Thereby, this approach supply a solution to overcome the usual

restrictions of HLS tools, in terms of portability, performance

or reusability.

Many interesting areas for future research involve gener-

ating low-power or low-area design, and translating higher-

level RVC-CAL constructs such as for-loops and multi-token

reads and writes into optimized high-level VHDL code. An-

other interesting area of research involves generating both

hardware and software code to target heterogeneous platforms

such as Armadeus Systems’ APF-51. Based on our previous

experience [17] we also foresee the possibility of automating

hardware/software co-design for this kind of platform.

REFERENCES

[1] Wipliez, M, “Compilation Infrastructure for Dataflow Programs,” Ph.D.
dissertation, National Institute of Applied Sciences (INSA) - Rennes,
2010.

[2] N. Siret, M. Wipliez, J. Nezan, and A. Rhatay, “Hardware code gen-
eration from dataflow programs,” in IEEE International conference on

Design and Architectures for Signal and Image Processing (DASIP),
2010, pp. 113 –120.

[3] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,”
IEEE Design & Test of Computers, pp. 18–25, 2009.

[4] P. Coussy and A. Morawiec, High-level synthesis: from algorithm to

digital circuit. Springer Verlag, 2008.
[5] I. Berkeley Design Technology, “An independent evaluation of: High-

level synthesis tools for xilinx fpgas,” www.BDTI.com, Tech. Rep.,
2010.

[6] IEEE Std 1666 - IEEE Standard SystemC Language Reference Manual,
IEEE Std 1666-2005, 2005.

[7] J. Castillo, P. Huerta, and J. Martı́nez, “An Open-Source Tool for
SystemC to Verilog Automatic Translation,” in Latin American Applied

Research, 2007.
[8] P. Coussy, D. Gajski, M. Meredith, and A. Takach, “An Introduction to

High-Level Synthesis,” Design Test of Computers, IEEE, vol. 26, no. 4,
pp. 8 –17, 2009.

[9] M. Mattavelli, I. Amer, and M. Raulet, “The Reconfigurable Video
Coding Standard [Standards in a Nutshell],” IEEE Signal Processing

Magazine, vol. 27, no. 3, pp. 159–167, may 2010.
[10] M. Wipliez, G. Roquier, and J.-F. Nezan, “Software Code Generation

for the RVC-CAL Language,” Springer journal of Signal Processing

Systems, 2009.
[11] J. Gorin, M. Wipliez, J. Piat, F. Preteux, and M. Raulet, “An llvm-based

decoder for mpeg reconfigurable video coding,” in IEEE Workshop on

Signal Processing Systems (SIPS), 2010.
[12] Altera, Recommended HDL Coding Styles. Altera, 2010.
[13] Xilinx, Coding Style Guidelines. Xilinx, 2010.
[14] J. ASHENDEN, Peter, The Designer’s Guide to VHDL - third edition.

Morgan Kaufmann Publishers, 2008.
[15] R. Megalingam, K. Venkat, S. Vineeth, M. Mithun, and R. Srikumar,

“Hardware Implementation of Low Power, High Speed DCT/IDCT
Based Digital Image Watermarking,” in International Conference on

Computer Technology and Development (ICCTD), vol. 1, nov. 2009,
pp. 535 –539.

[16] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and
M. Raulet, “Synthesizing Hardware from Dataflow Programs,” Journal

of Signal Processing Systems, 07 2009.
[17] N. Siret, I. Sabry, J. Nezan, and M. Raulet, “A codesign synthesis

from an MPEG-4 decoder dataflow description,” in Proceedings of IEEE

International Symposium on Circuits and Systems (ISCAS). IEEE, 2010,
pp. 1995–1998.

