
IMPLEMENTATION OF MOTION ESTIMATION

BASED ON HETEROGENEOUS PARALLEL

COMPUTING SYSTEM WITH OPENC

Jinglin Zhang, Jean François Nezan, Jean-Gabriel Cousin

To cite this version:

Jinglin Zhang, Jean François Nezan, Jean-Gabriel Cousin. IMPLEMENTATION OF MO-
TION ESTIMATION BASED ON HETEROGENEOUS PARALLEL COMPUTING SYS-
TEM WITH OPENC. 14th IEEE International Conference on High Performance Computing
and Communications (HPCC), Jun 2012, Liverpool, United Kingdom. pp.NC, 2012. <hal-
00763860>

HAL Id: hal-00763860

https://hal.archives-ouvertes.fr/hal-00763860

Submitted on 11 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53007576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00763860

IMPLEMENTATION OF MOTION ESTIMATION BASED ON HETEROGENEOUS
PARALLEL COMPUTING SYSTEM WITH OPENCL

Jinglin ZHANG, Jean-Francois NEZAN, Jean-Gabriel COUSIN.

Université Européenne de Bretagne, France
INSA, IETR, UMR CNRS 6164

20, Avenue des Buttes de Coesmes, 35708 RENNES , France
Email:jinglin.zhang,jnezan,jcousin@insa-rennes.fr

ABSTRACT
Heterogeneous computing system increases the performance
of parallel computing in many domain of general purpose
computing with CPU, GPU and other accelerators. Open
Computing Language (OpenCL) is the first open, royalty-
free standard for heterogenous computing on multi hardware
platforms. In this paper, we propose a parallel Motion
Estimation (ME) algorithm implemented using OpenCL
and present several optimization strategies applied in our
OpenCL implementation of the motion estimation. In the
same time, we implement the proposed algorithm on our
heterogeneous computing system which contains one CPU
and one GPU, and propose one method to determine the
balance to distribute the workload in heterogeneous com-
puting system with OpenCL. According to experiments, our
motion estimator with achieves 100× to 150× speed-up
compared with its implementation with C code executed by
single CPU core and our proposed method obtains obviously
enhancement of performance in based on our heterogeneous
computing system.

Index Terms— Motion Estimation, OpenCL, Heteroge-
neous, Parallel, CPU, GPU

I. INTRODUCTION
As a result of continued demand of Video Quality and

Compression Rate, the efficiency and complexity of Video
Coding standards face with some great challenges. The ME
is still the main time consuming task of a video encoder with
40% to 60% of the computation load. The goal of the ME is
to find relative motion between two images in order to elim-
inate temporal redundancy. For video compression, block
matching algorithms are most widely used. An example is
the full search where every candidate within a search window
of magnitude p pixels is considered. The full search ME is
very computationally intensive so that some fast algorithms
like EPZS [?] had been proposed to accelerate the ME on a
single processor core. The number of evaluated candidates is
decreased but it comes with a loss in terms of quality (lower
PSNR of the compressed video).

Urban in [?] proposed one real-time ME for H.264 high
definition video encoding on multi-core DSP, well-suited for
embedded parallel systems. New heterogeneous embedded
systems like Tegra2 [?] can integrate low power GPU, CPU
(ARM cores) and some algorithms like ME can take benefits
of this new feature [?]. Some first results had been proposed
[?], [?] using the CUDA approach. In this context, the
parallel structure of the full search is used to accelerate the
computation without decreasing the PSNR.

General-Purpose computing on Graphics Processing Units
(GPGPU) is the technique of using a GPU, which typically
handles computation only for computer graphics, to perform
computation in applications traditionally handled by the
CPU. The OpenCL is a framework executing programs
on heterogeneous platforms consisting of CPUs, GPUs and
other dedicated processors. OpenCL is a good candidate in
comparison with the CUDA approach specifically developed
for GPU platforms from Nvidia, especially for the future
heterogeneous embedded systems.

In this paper, we propose a parallelized full search ME
algorithm and apply proposed algorithm on heterogeneous
computing system with OpenCL. Section 2 presents the
optimization strategies used to achieve a high-performance
ME implementation. Section 3 illustrates our approach of
motion estimation with OpenCL. Section 4 applies our
proposed algorithm on the heterogeneous computing system
with OpenCL and present the method to distribute workload
in heterogenous system. A brief conclusion is given in
section 5.

II. OPTIMIZATION STRATEGIES OF OPENCL
In this section, we present some optimization strategies

used in our work. Table.?? lists the relationship between the
concepts of devices and those of OpenCL.

II-A. Fully saturate the computing resource
Using OpenCL, programmers should think about the prac-

tical infrastructure of different platforms. Although OpenCL
has a unified Programming Model, it cannot ensure that the

Table I. Relationship between Devices and OpenCL
Devices OpenCL
thread work-item

threads group work-group
shared memory local memory
device memory global memory

same OpenCL kernel has the best performance for different
platforms. For instance, NVIDIA’s GPU support 768 active
threads per Compute Unit and ATI’s GPU support 1024 ac-
tive threads per Compute Unit. Because of the local size, our
experiments use 256 work-items as one work-group which
means only 33.3% and 25% capability of Compute Unit
be used in NVIDIA’s and ATI’s GPU separately. Therefore
Programmers should organize as much as possible work-
items into work-group to fully employ the compute resource
of device.

II-B. Use shared memory
Because of on chip, the shared memory is much faster than

the device memory. In fact, accessing the shared memory
is as faster as accessing a register, and the shared memory
latency is roughly 100x lower than the device memory
latency tested in our experiments. To achieve high memory
bandwidth for concurrent accesses, the shared memory is
divided into equally sized memory banks, which can be
accessed simultaneously. However if multiple addresses of a
memory request map to the same memory bank, the accesses
are serialized and create banks conflict. To get maximum
performance, the most important point is to use shared
memory but avoid banks conflict. The local memory of
OpenCL corresponds the shared memory on devices. In order
to run faster and avoid re-fetching from device memory,
programmers should put the data into the local memory
ahead of complex and repeated computing.

II-C. Use vector data
In Intel’s CPU and Nvidia’GPU, there are special vector

instruction set for vector data. With vector data types, each
work-item can processes N elements which benefit from
hand-tuned vectorization of kernel code. In our kernel code,
we adopt uchar16 instead of uchar to unroll the for loop
in the procedure of SAD computing. Fig.?? and Fig.??
show the example code of no vectorization and vectorization
separately. The vectorization of kernel code has 50%-80%
performance enhancement which has been verified in our
experiments.

III. PARALLELIZED MOTION ESTIMATION
ALGORITHM

About motion estimation, there are two aspects considered
to distribute some workloads to GPUs or CPUs, massively

Fig. 1. No vectorization code of SAD calculation

Fig. 2. Vectorization code of SAD calculation

parallelized motion search and calculation of the matching
criterion.

We chose the Sum Absolute Difference (SAD) as the
matching criterion for selecting the best Motion Vec-
tors (MV).

SAD =
∑
|windows(i)− image(i)|2 (1)

post code of SAD here with transferm of HMPP Because
of the abounding workload of nested for loops, the classic
full search ME algorithm cannot satisfy the demands of the
real-time applications. As shown in Fig.??, our proposed
method apply two OpenCL kernels pipelines which can be
executed in parallel to replace the classic nested loops for
SADs computing and comparing separately.

In the host, we pad the image when we read these frames
from source file. Suppose that we have a width × height
image, and a w size search window . The padded image size
should be (width + 2 × w) × (height + 2 × w) as shown
in Fig.??. Padding image guarantees no memory accessing
violation when window moves on boundary of image and
avoid performance decreasing caused by if-else statement in
OpenCL kernel. Then we transfer the needed frames of test
sequence at one time to the devices(CPU or GPU) memory
to make use of the large memory bandwidth.

In all, we divide the workload of the proposed algorithm
into two OpenCL kernels. One is in charge of computing the
SADs , the other one is in charge of comparing these SADs
to select the best (final MV). We define the two OpenCL
kernels as kernel compute and kernel compare.

SADs
Computing

SADs
ComparingKernel2

Kernel1 SADs
Computing

SADs
Comparing

t

Fig. 3. Kernel pipelines of parallelized ME

Reference
image

width

height search
windows size

Fig. 4. Padding image

III-A. SAD computation
Based on the block marching method, every frame is di-

vided into macroblocks (MBs) (MB size = MB width×
MB height = 16× 16 = 256) which have a search region
in the reference frame. We suppose the Search Range =
32. So every MB has 32 × 32 = 1024 candidates which
concern (48) × (48) = 2304 pixels in the reference frames
as shown in the Fig.??.

In our design, we set the localsize = MB size in
NDRange and there are 256 work-items executed in one
work-group (work group size = 256). Because each
work-item process four candidates SAD, 1024 candidates
SAD of one MB are distributed to one work-groups perfectly.
For every frame, the total number of work-groups is N:

N =
width

MB width
×

height

MB height
×

Search Range2

work group size
(2)

When an OpenCL program invokes a kernel, N work-
groups are enumerated and distributed as thread blocks to
the multiprocessors with available Compute Units of CPU
or GPU.

In our kernel kernel compute, all the pixels of MB
are transferred into local memory (local[256]) by the 256
work-items in one work-group. Until all the work-items
in the same work-group reach the synchronous point us-
ing barrier() function, all the 256 work-items continue
transferring the 1024 candidates (2304 pixels of search
region concerned) of reference image into local memory
(local ref [2304]). This differentiates our approach from
approaches of [?]and[?] accelerated the full search motion
estimation in H.264 with CUDA. In their work, the current

64

16

16 48

48

current frame reference frame

Fig. 5. Proposed calculation of SADs in local memory

MB is stored in local memory, but the search region of the
reference frame is still in the global memory which results
in inevitable re-fetching from global memory.

At the end, we adopt full search strategies to calculate the
1024 candidate SADs in local memory without re-fetching
from the global memory. The amount of memory access is
significantly reduced for better performance according to our
experiment results. After calculation, all the 1024 candidate
SADs are stored back to global memory (cost[1024]).

III-B. SAD comparison
In our kernel kernel compare, we select the best candidate

from cost[1024] in three steps with 256 work-items as shown
in Fig.??. First, the cost[1024] is put into local memory.
Second, each work-item find the minimum from 4 candidates
as equation??.

cost[i] = Min(Min(cost[i], cost[i+ strid]),

Min(cost[i+ 2× strid], cost[i+ 3× strid]))
(3)

(i is the index of work-items, i ⊆ [0, 255], strid = 256).
Last, we use parallel reduction method [?] which adopt x
times iterations (2x = 256, x = 8) to find the smallest
candidate (final MV) from the remanent 256 candidates as
shown in Fig.??.

III-C. Experiments result
To evaluate the performance of our proposed ME al-

gorithm with OpenCL, we test in three different plat-
forms which support OpenCL 1.1: Intel I7 2630qm(2.8Ghz),
NVIDIA Geforce GT540m and AMD Radeon HD 6870.
First, we run the reference C code of full search ME with
single CPU core. Then, we run the proposed ME algorithm
on the OpenCL CPU platform and two different GPUs
platforms. We chose three test sequences with different
resolution, Foreman (CIF, 352x288), City (4CIF, 704x576),
Mobal ter (720p, 1280x720) and the same 32x32 search
range. As shown in Fig.??, for the different resolutions
from CIF to 720P, our proposed method with OpenCL CPU
achieves (107,19,7.6), with GT540m achieves (355,88,38)
fps and with ATI HD6870 achieves (775,200,89) fps com-
pared with C code that only produces (7.5,1.7,0.6) fps. So

sadCompare.pdf

Fig. 6. SADs comparison in parallel

Fig. 7. Performance comparison with different platforms

our proposed method with AMD HD6870 achieves 100x
to 150x speed-up for different resolutions compared with
implementation with single CPU core. The CPU I7 2630qm
with 4 physical cores and 8 threads achieves more than 10
times speed-up due to the utilization of vectorization and the
unroll procedure.

In the meantime, experiments results show that the per-
formance of the proposed ME algorithm have a close rela-
tionship with the number of Compute Units. As shown in
Fig.??, the HD 6870 have the twice performance compared
with GT540m (HD 6870 has more than 10 Compute Units
and GT540m has 2 Compute Units).

IV. HETEROGENEOUS PARALLEL COMPUTING
WITH OPENCL

In this section, we adopt the special feature of OpenCL -
Heterogeneous Parallel Computing[?] to dig for the better
performance of our proposed algorithm. First we build
one heterogeneous parallel computing environment with one
CPU(I7 2630qm) and one GPU(GT540m) as coprocessors
for our arithmetic data-parallel computing with OpenCL.
Then we distribute the workload to CPU device and GPU
device separately. In such a heterogeneous computing sys-

CPU

GPU
MEM

Commandqueue of CPU

Commandqueue of GPU

Fig. 8. Combined context for our heterogenous computing
system

Fig. 9. Example code of build combined OpenCL context
for multi-devices

tem, we should determine the usage model of multi-devices
and workload distribution. In order to minimum the cost of
memory transferring between different devices, We prefer to
use ”multi-input” and ”multi-output” for multi devices sep-
arately. Under the perfect condition, every devices complete
their’s workload at the same time.

IV-A. Cooperative multi-devices usage model
For heterogeneous computing with different devices,

we should build one cooperative multi-devices model. In
OpenCL, there are two kind of models for multi-devices:

1) Separate contexts for different devices
2) One combined context for multi-devices

Because it is difficult to share the memory object and
synchronies commandqueues of different contexts, so we
prefer to build one combined context for CPU and GPU as
shown in fig.??. The example code of building the combined
context for CPU and GPU is shown in the fig.??.

IV-B. Workload distribution
With fixed problem size, how to distribute the workload

to different devices is the key point to gain the enhancement
of performance in heterogeneous computing system. In the
video applications, the basic problem unit is frame or image.

Suppose that, our test video sequences have N frames.
We transfer M frames to CPU device and (N - M)
frames to GPU device to execute our proposed ME algo-
rithm (kernel compute and kernel compare). The suit-
able number of M does guarantee the best performance.
As discussed in section ??, the time of transferring the

Fig. 10. Experimental curves of execution with CPU

needed frames is Tmemtrans. The time of kernel computing
is Tkernel. The time of copy buffer for kernel executed is
Tmemcopy . The total cost time of is

Tdevice = Tmemtrans + Tkernel + Tmemcopy. (4)

Suppose that, Tcpu(M) is the time of CPU processes M
frames, and Tgpu(N −M) is the time of GPU processes (N
- M) frames. Under the perfect situation, the CPU and GPU
will finish their work separately at the same time. When
Tcpu(M) = Tgpu(N−M), we can get the best performance
of heterogeneous computing system.

IV-C. Find the balance of performance

At first, we should take some experimental curves to
obtain the expressions of Tcpu(M) and Tgpu(N − M)
as shown in the fig.?? and the fig.??. As shown in the
equation ??, the total cost time which contains Tmemtrans

is not be linear. So we can get the expressions of Tcpu(M)
and Tgpu(N − M) from our experimental results with the
technology of curve fitting.

Tcpu(x) = 29x2 − 52x+ 6 (5)

Tgpu(x) = 8x2 − 11x− 2.7 (6)

According to equation ?? and equation ??, we can calcu-
late the suitable M as follow:

Tcpu(M) = Tgpu(N −M)

29M2 − 52M + 6 = 8(N −M)2 − 11(N −M)− 2.7
(7)

Our test video sequence have 300 frames (N = 300), so the
final suitable M is 105 which is calculated from equation ??.
When M = 105, we measure the performance of proposed
method based on the heterogeneous computing system as
shown in the Fig.??. The experimental results illustrate the
obviously enhancement of performance.

Fig. 11. Experimental curves of execution with GPU

Fig. 12. Performance comparison with heterogeneous paral-
lel computing

V. CONCLUSION
OpenCL provides one simple way to build heterogenous

computing system and opportunities to increase the per-
formance of parallel application. In this paper, we have
presented one parallelized ME algorithm with OpenCL and
some optimization strategies applied in our method. We test
the proposed algorithm on heterogeneous parallel system
which contains CPU and GPU. We also have developed one
basic method to find the balance of workload on heteroge-
neous parallel computing system with OpenCL. Experimen-
tal results show that our method provides 100× to 150×
speed-up compared with single CPU core implementation.
Additionally we presents experimental results to show that
we find the accurate method to distribute the workload in
video applications based on heterogenous computing system
which achieve obviously enhancement of performance.
So our future work is to design a automatic performance
tuning OpenCL kernel code generator based on Open RVC-
CAL Compiler (Orcc)[?] towards performance portability for
heterogeneous parallel computing system. We aim to use the
kernel code generator to generate the suitable parameters
like localsize of kernel and determine the workload for
different combination of devices automatically to get better
performance for General Purpose date-parallel arithmetic
computing with OpenCL.

