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ABSTRACT

This paper presents an efficient design method used to imple-
ment a hierarchical architecture of Hadamard transform mod-
ule. The proposed design method is based on the use of RVC-
CAL dataflow approach and dynamic partial reconfiguration
technique (DPR). The DPR technique allows reconfiguring a
part of the FPGA area with different functionalities at run-
time. It is a promising solution to increase performance in the
system. RVC-CAL is a specific language for writing dataflow
models which is introduced by MPEG-RVC video standard.
RVC-CAL description is composed of a set of interconnected
blocks (actors). Several dataflow models of the same appli-
cation can be used in the design process. In this work, the
hierarchical architecture of Hadamard module is composed
of three levels. And each one contains a set of blocks. The
DPR is applied between these blocks to switch from level
to another. To achieve this implementation, in the first, the
Hadamard blocks are described in RVC-CAL language and
a specific RVC-CAL tool is used to generate automatically
their hardware description. Then, the DPR design flow is ap-
plied. In our design method, we use xilinx tools and Virtex-5
FPGA board. To evaluate our implementation, we compare
its with two other architectures in terms of area occupation,
power consumption and execution time.

Index Terms— Dynamic partial reconfiguration,
Hadamard transform, RVC-CAL, hierarchical architecture,
design approach, execution time, FPGA.

1. INTRODUCTION

Modern applications like audio/video compression, image
processing and 3D graphics, need high performance and ef-
ficient architectures to be executed, especially in the embed-
ded systems domain. These applications often include a video
standard such as MPEG-2, H263, etc, which suffers from re-
usability and generality of the code (usually describe on a
C/C++ monolithic). To overcome these limits, Moving Pic-
ture Expert Group (MPEG) proposes a new standard called
MPEG-RVC [1] which allows dynamic development and im-
plementation of existing or new video coding solutions. In
this ways, MPEG-RVC improves the flexibility and reutilis-

abilty of codec features and facilites the support of various
codec. MPEG-RVC introduces a dataflow language called
RVC-CAL to describe the different functions of codec as
a networks blocks named actors. This description can be
easily translated on a specific language: software or hard-
ware depending on the target architecture. This translation
is supported by a set of tools defined by MPEG-RVC in-
cluding OpenDF [10] for the simulation, CAL2HDL [7] [6]
and ORCC [9] for the automatic code generation (C, HDL,
LLVM, ...).
In this paper, we aim to design a hierarchical implementa-
tion of Hadamard transform in RVC framework. Indeed,
Hadamard architecture is composed of three level and each
level includes four blocks, which are executed separately and
in parallel. We propose to use the dynamic partial reconfigu-
ration (DPR) to commute from level to another.
The DPR of FPGA is an attractive feature which allows
changing some processes of an FPGA device while other pro-
cesses continue in the rest of the device. Xilinx has sup-
ported partial reconfiguration for many generations of devices
(Virtex-II, Virtex-4, Virtex-5). DPR offers countless benefits
across various researches works. In fact, DPR allows the im-
provement of FPGA area efficiency and the decrease of power
consumption [2] [19]. In addition, DPR seem to be a promis-
ing solution to design flexible and adaptive system in the RVC
framework. The proposed design method can be easily ex-
tended for the wide diversity of RVC applications. In the
remainder of this paper, In section 2, we present the RVC
framework. Section 3 explains the specificities of Hadamard
transform. Section 4 presents an overview on dynamic par-
tial reconfiguration. Section 5 exposes the design approach to
implement Hadamard module using the DPR technique. The
experimental results are reported in Section 6. Section 7 con-
cludes the paper and discusses some future directions.

2. RVC FRAMEWORK

The standard MPEG-RVC is developed by MPEG. It aims
at providing a unified high-level specification of current and
future MPEG video coding technologies by using dataflow
models. This standard offers the means to overcome the lack
of interpretability between the many video codecs deployed



in the market. MPEG-RVC is composed of MPEG-B and
MPEG-C standards. The MPEG-C standard [18] presents
the library of video coding tools (VTL) employed in exist-
ing MPEG standards. And the MPEG-B standard [4] presents
the overall framework and the standard languages used to de-
scribe the different components of the framework. An ab-
stract decoder is built as a block diagram in which blocks
define processing entities called Functional Units (FUs) and
connections represent the data path. These FUs are described
by high level language called RVC-CAL [3] which is a tex-
tual and domain specific language for writing dataflow mod-
els. The main advantage of using this language is that, it is
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Fig. 1. RVC-CAL Dataflow model.

placed between the C and the VHDL languages and there are
open source tools have been developed to automate the trans-
formation of the RVC-CAL code to C (CAL2C [5], ORCC)
and to VHDL/VERILOG (CAL2HDL, ORCC). RVC-CAL
describes algorithms by using a set of encapsulated dataflow
components called actors (FUs) (figure 1). Actors are com-
pletely independent from each others and they can communi-
cate by exchanging packet data (called tokens) along FIFOs
channels. The topology of the connections between actors in-
put and output ports constituted a network, which is expressed
by using an XML dialect known as network language (XDF).
The behavior of the actor is a set of actions and only one ac-
tion is active at a time. Indeed, an actor can read inputs and
messages (tokens), modify internal state and produce outputs
(tokens). These actions depend on some constraints such as
the priority of each action, the state of the actor, the messages
availability and the input values (tokens).

3. HADAMARD TRANSFORM

This section introduces the Hadamard transform mechanism
and our proposed architecture.
The Hadamard transform derives from a generalized class of
the Fourier transform. It consists of a multiplication of a

2m × 2m matrix by an Hadamard matrix (Hm) that has the
same size. Here are examples of Hadamard matrices. H0 is
the identity matrix so H0 = 1. For any m > 0, Hm is then
deducted recursively by (1).

Hm =
1√
2

[
Hm−1 Hm−1

Hm−1 −Hm−1

]
(1)

The Hadamard is a transform used in many image and video
coders such as the LAR (Locally Adaptive Resolution) [12].
There are different Hadamard modules (H1, H2, ...) which
are executed according the block size image. It means that, if
we have 2× 2 block size image, we will use Hadamard (H1).
The H2 is exploited, if we have 4× 4 block size image.
In this paper, we adopted the (H2) Hadamard transform which
has 16 inputs and produces 16 outputs. Many architectures
are possible to achieve the H2. We propose the architecture
which is presented in figure 2.
This architecture is composed of three levels. And each level

16 inputs

CBLOCK2 BLOCK3 BLOCK4BLOCK1

CBLOCK6 BLOCK7 BLOCK8BLOCK5

CBLOCK10 BLOCK11 BLOCK12BLOCK9

16 outputs

Level 1

Level 2

Level 3

A data mangement

A data mangement

4 inputs4 inputs4 inputs4 inputs

4 outputs4 outputs4 outputs4 outputs

Fig. 2. Hierarchical architecture of Hadamard transform
(H2).

contains four blocks. Each block has four inputs and four
outputs. It contains a set of arithmetical functions. Blocks
which are included in the same level are executed separately
and in parallel. All blocks are implemented in hardware. Two
data management modules are used to save the intermediate
results and to transfer the adequate inputs values to blocks.
These two modules are implemented in software.



4. DYNAMIC PARTIAL RECONFIGURATION

Xilinx is currently the only major FPGA vendor to offer sup-
port for DPR in their programmable logic devices. In this
paper, we focus on these devices and we provide some back-
ground on partial reconfiguration technology. Then, we dis-
cuss works that exploit this technique to design a dynamic and
partial reconfigurable system on chip.

4.1. Background

Dynamic partial reconfiguration is the ability to change the
configuration of part of an FPGA device while other processes
continue in the rest of the device. A partial reconfigurable de-
sign typically comprises an area for static modules and one or
more partial reconfigurable region for partial modules. The
static modules contain logic that will remain constant during
partial reconfiguration. Partial reconfiguration module is the
design module that can be swapped in the device on the real-
time, multiple modules can be defined for a specific FPGA
region. In the early Virtex family devices like Virtex-II and
Virtex-II Pro devices, we must partially reconfigure whole
columns. Recently, in Virtex-4/5/6 devices, the partial re-
configurable region (PRR) is rectangular of arbitrary size and
may be located anywhere with no overlapping. The figure 3
illustrates an example of static and dynamic part for a recon-
figurable system.

During partial reconfiguration process, the routing signals

Clock 

Generator

Fig. 3. Static and dynamic part for a reconfigurable system.

used for inter-modules communication should be unchanged
when the module is reconfigured. This fixed routing bridge of
communication is achieved by using bus macros. Bus macros
are hard macros, which is located at the edge of boundaries
separating dynamic and static regions.
To load the partial bitstreams, designer should use a recon-
figuration controller and an internal configuration access port
(ICAP). The Virtex-II series are the first architectures that
support ICAP. This latter is a subset of the SelectMAP in-
terface having fewer signals. The ICAP [13] only deals with

partial configurations and does not have to support different
configuration modes. It gives an 8 input/output bits data bus.
While, with the Virtex-4 and Virtex-5 series, the ICAP inter-
face has been updated with 32 input/output bits data bus to
increase its bandwidth and speed up the reconfiguration time.
The intuitive benefits of using DPR are: the improvement of
FPGA area efficiency, the augmentation of architectures flex-
ibility, the decrease of power consumption [17] and smaller
FPGAs can be used to run an application because to commute
between different modules, we can just load the partial recon-
figuration bitstream. However, the implementation process
for DPR is still complex and tedious. Therefore, the designer
should have a thorough understanding of the underlying de-
vice and design methodology. Moreover, PR latency is one of
the most critical aspects in the implementation of DPR sys-
tem, if it is not brief enough, the PR interest to build efficient
systems can be jeopardized [11]. In our case study, the par-
tial reconfigurable modules are blocks, which are included in
Hadamard transform (H2).

4.2. Related works

With the appearance of dynamic partial reconfigurable FPGA,
many researchers are interested to explore the DPR in their
flow design, in order to enhance their system performance.
As results various methodologies have been developed.
Initially, Xilinx proposes a design flow called Modular De-
sign [24]. In this method, the dynamically reconfigurable
modules must occupy the whole height of the device and their
positions are fixed (as specified in the top-level design). The
interconnections between the modules are fixed also. There-
fore, the modification of module position requires the gener-
ation of new partial bitstreams, even if the implementations
do not actually modify. This methodology is based on us-
ing Virtex-II and Vitrex-II Pro FPGA architectures. Lysaght,
et al [14] present a DPR design methodology using Virtex-
4 FPGA. This approach is based on the early access partial
Reconfiguration flow (EAPR) [15] introduced by Xilinx. In
this design flow, the static and reconfigurable parts are imple-
mented separately. Then, there are merged. The reconfigu-
ration region is rectangular of arbitrary size and may be lo-
cated anywhere with no overlapping. The bus macros is used,
to implement the communication ports to interface static and
dynamic regions of a design. iMPACT Xilinx tool for down-
loading bitstreams to program devices, is exploited to down-
load partial bitstreams via JTAG interface. The limitations of
this approach are the partial bitstreams for a module to be ex-
ecuted on a reconfigurable region must be predetermined and
we can only use Xilinx tools version 9.2. Hübner et al. [25]
propose a slot based architecture with the novelty that they
can give a high level specification of the setup and all the
communication macros are automatically placed. Each mod-
ule connects to the On-chip Peripheral Bus (OPB) via the
communication macros. The tool flow generates the entire



bitstreams in EDK and then uses JBITS to cut out the partial
bitstreams. JBits is a tool provided by Xilinx that uses Java
classes to represent the bitstream and has functions able to
change the bitstream at runtime. JBITS can only support the
Virtex-II family. Horta et al. [23] present a design flow based
on the use PARBIT tool to reconfigure partial bitstreams in
Virtex-E. This tool allows transforming and restructuring bit-
files created by standard Computer Aided Design tools into
partial bitstreams that program Dynamic Hardware Plugging
(DHP).
All the above-proposed design methods are depended on
some constraints such as the FPGAs family, tools, etc. These
constraints have made the adaptation of these methodologies
in the RVC context using virtex-5 technology is complex.
Therefore, to propose a new methodology ensures high per-
formance and easy adaptation of RVC application require-
ments is important. In this paper, we propose a new solution
to implement RVC application using DPR in virtex-5 FPGA.
We exploit Xilinx tools in version 12.3. Our solution, is flex-
ible and can be adapted on full RVC applications.

5. DESIGN APPROACH

The main objective of this work is to exploit DPR technique
to design a hierarchical implementation of Hadamard module.
We use the system architecture shown in figure 4.
This architecture is composed of:

Reconfigurable
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UART

Timer

HOST

Microblaze

HWICAP

Flash 

Memory

M
b
_
P

L
B
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Module

Reconfigurable
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Fig. 4. An embedded architecture for the design method.

• A Microblaze, which is a 32-bit RISC soft proces-
sor core [20] to manage the configuration of different
blocks.

• An UART provides serial communication between PC
and FPGA.

• A ICAP core has been utilized which run at 100 MHz
and has 4 bytes width port. So by using this will be able
to reach 400 megabytes per second (MB/s).

• A flash compact memory to store the partial bitstreams.

• A timer to measure the execution time.

• Four reconfigurables modules.

• A bus PLB to connect all the peripherals.

In our implementation, we have four reconfiguration regions
and twelve reconfigurable modules. In the first, the four
blocks of the first level are reconfigured. They are executed in
parallel and separately. The results provided by these blocks
are saved. Then, these four blocks are removed and replaced
by the four blocks of the second level. They use results of the
first level as inputs and produced intermediate results, which
will be used by blocks from third level and provide the final
results.
A data management is used in this design which is a C code.
It is executed by the Microblaze processor. This code al-
lows managing efficiently the partial reconfiguration, trans-
ferring data and saving intermediate results. To achieve the
implementation, we should take into account these three con-
straints [16]:

• Reconfigurable modules implemented on the same
place, must have the same inputs/outputs.

• The area of the reconfigurable partition region is at least
equal to the greater of two area needed for each of two
reconfigurable modules.

• A unit of control is required to manage efficiently the
partial reconfiguration. This unit control is a code writ-
ten in C and executed by a Microblaze processor.

The design flow proposed in this work is based on using Xil-
inx FPGA device with dynamic partial reconfiguration (DPR)
technique. Our approach comprises a set of steps, which are
necessary to implement RVC applications using DPR. Dur-
ing the initial phase, the static modules and the partial recon-
figuration modules (PRM) are described in HDL language.
The static modules are developed manually. However, the
partial reconfiguration modules are described in RVC-CAL
language. And, they are automatically transformed in hard-
ware description using CAL2HDL tool. The generated code
is formed by VERILOG files that present the actors and a
VHDL file for the top. The top file defines the highest hierar-
chical representation of the design connections. The connec-
tion between the actors is insured by synchronous or asyn-
chronous FIFO buffers. The PRMs are, then, synthesized
using Xilinx ISE, a tool that compiles HDL code and gen-
erates the corresponding netlists for each module. In the next
step, Xilinx Platform Studio (XPS) is used to design an em-
bedded System-on-Chip (SoC) with the static logic, PRMs
and other peripherals required to build a complete DPR so-
lution. The XPS tool is exploited also to specify a software
code that will run on the MicroBlaze. This code will be com-
piled to generate binary file. In the step follow, the system



netlist and constraints specification from XPS is fed into Xil-
inx PlanAhead, a tool used to perform placement and routing
and generation the full and partial reconfiguration bitstream.
Finally, we use again XPS to merges the full bitstream from
Xilinx PlanAhead with the compiler software to generate a fi-
nal downloadable bitstream, called the System ACE file. The
System ACE file is copied onto the compact flash card and
the card is plugged into the FPGA to bring up the design on
the next power cycle.

6. RESULTS

In order to evaluate our design, we compare it with two other
architectures. The first one includes one block (actor). And
the second one is pipelined architecture. We have employed
a set of Xilinx tools version 12.3 [21]: the ISE tool for the
synthesis, the PlanAhead visual floorplanning tool for iter-
ative design and placement, and EDK tool for creating and
implementing the project.
Figure 5 presents the hardware resources requirements of
these three architectures.

According figure 5, the hierarchical architecture uses less
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Fig. 5. On-chip area requirements.

area than the two other ones. Because it implements only
the needed blocks. However, architecture with one block and
pipelined architecture require more hardware resources to
implement simultaneously the entire Hadamard application.
In figure 6, we give an accurate estimation in terms of total
power consumption for the above three architectures. To
get an available estimation of power consumption, we used
Xpower Xilinx tool [22]. The approach used by this tool
consists of providing information including the number of
LUTs, the number of flip-flops, etc and the clock frequency
to determine the power consumed by the FPGA for a given
temperature.
Total power consumption of hierarchical architecture is less

as comparing to the two other architectures. We can conclude
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that by using DPR, the designer is now able to save area and
power.
Figure 7 gives the experimental results in term of execution
time in millisecond while varying the number of inputs data
for the hierarchical architecture, the architecture with one
block and the pipelined architecture. We should note that,
the execution time of hierarchical architecture is composed of
the required time to achieve computation and the sum of the
configuration time of the blocks. The time configuration is
the time required to download the configuration data before
the system is ready to execute. Table 1 shows the partial
bitstreams size and the configuration time. We note that, the
blocks which are placed in the same reconfigurable region
(RR), have the same bitstreams size. The configuration time
can be calculated using the equation 2.

t =
bitstream ∗ 8

32 ∗ 100
(2)

The configuration time depends on the bitstreams size and

Table 1. Configuration time.

Size per Configuration
bitstream (Bytes) time (µs)

Blocks (1, 5, 9) 48128 120,32
placed in RR1

Blocks (2, 6, 10) 46080 115,20
placed in RR2

Blocks (3, 7, 11) 43008 107,52
placed in RR3

Blocks (4, 8, 12) 45056 112,64
placed in RR4

the ICAP performance. Indeed, by using ICAP of virtex-5
we will be able to reach 400 megabytes per second (MB/s).
However, the ICAP of Virtex-II allows achieving only 50
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megabytes per second (MB/s).
The comparison between the execution time and the config-
uration time shows that, the execution time is very higher
than configuration time. So, the configuration time doesn’t
degrade the execution time of the application.
In spite of the limited configuration time, the execution time
of hierarchical architecture is higher compared to two others
architectures. This is may be due to use of data management
module to save and transfer data. While, the two other archi-
tectures don’t require this module.
Figure 8 presents the energy consumption for the three pro-
posed architectures. The energy consumption is calculated
using the equation 3.

Energy = total power ∗ execution time (3)

The energy consumption of the pipelined architecture is
lower as regards to hierarchical architecture and architecture
with one block.
The comparison between these three architectures indicates
that, the pipelined architecture is more performance in terms
execution time and energy consumption. While, the hierar-
chical architecture allows saving power consumption and area
utilization.

7. CONCLUSION

This paper deals with the hierarchical implementation of
Hadamard transform (H2) using Xilinx FPGA device with
dynamic partial reconfiguration (DPR) technique. Hadamard
module is composed of three levels and in each level con-
tains four blocks. The DPR is applied between these blocks
to switch from level to another. A data management module
is used to control the reconfiguration process, to save inter-
mediates results and to transfer data between blocks. This
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module is a C code executed by the processor. The imple-
mentation results demonstrate that, the dynamic and partial
reconfiguration design approach is an effective way to reduce
the area utilization and the power consumption. However, the
execution time is higher as compared two other architectures.
Therefore, the choice of architecture is based on required per-
formance (less execution time or area utilization).
In this paper, our application is described in RVC-CAL.
Among the advantages of this language is the ability to de-
scribe easily the same application in different architectures.
We have chosen manually a hierarchical architecture for
Hadamard module which is composed of three levels. But,
it is important to study the impact of the tasks (blocks) dis-
tribution on the system performance to find the best architec-
ture. Future work, will aim to automatically define the dis-
tribution of tasks from networks actors. We will develop a
scheduler algorithm to define the best architecture to execute
tasks that forming the RVC application. This algorithm must
take into account the dependency between tasks and tasks pri-
ority. By using such algorithm, we can enhance application
performance in the MPEG-RVC framework. We plan also to
integrate this algorithm into the RVC-CAL tools in order to
automatically implement RVC applications on FPGAs using
the DPR functionality.
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