
ESA PetriNet: Petri net Based Tool for Reliability

Analysis

Romaric Guillerm, Hamid Demmou, Nabil Sadou

To cite this version:

Romaric Guillerm, Hamid Demmou, Nabil Sadou. ESA PetriNet: Petri net Based Tool for
Reliability Analysis. 2009 IEEE International Conference on Systems, Man, and Cybernetics,
Oct 2009, San Antonio, Texas, United States. 6p., 2009. <hal-00766146>

HAL Id: hal-00766146

https://hal.archives-ouvertes.fr/hal-00766146

Submitted on 19 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53007543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00766146

ESA PetriNet: Petri net Based Tool for Reliability
Analysis

R. GUILLERM, H. DEMMOU
CNRS ; LAAS

7 avenue du colonel Roche,

F-31077 Toulouse, France

University of Toulouse ; UPS, INSA, INP, ISAE ; LAAS,

F-31077 Toulouse, France

rguiller@laas.fr

demmou@laas.fr

N. SADOU
SUPELEC - IETR

Avenue de la boulais

BP 8112

F35511 Cesson-Sevigne

nabil.sadou@supelec.fr

Abstract—This paper describes the critical (feared) scenar-
ios derivation tool ESA PetriNet (Extraction Scenarios Algo-
rithm from Petri Net) available from : http://www.laas.fr/ESA.
ESA PetriNet allows to derive scenarios leading to critical
(feared) situation in embedded systems. The system model is
given by a Petri net. To derive critical scenarios and to avoid
the state space explosion, the solution is to use directly the Petri
net model. Linear logic (which does not appears in this paper)
offers a theoretical framework to interpret the Petri net model
and to extract the scenarios. ESA PetriNet provides all minimal
scenarios which contain strictly necessary and sufficient events to
reach a specified state. ESA PetriNet can be used with classical
Petri net modelling or in its objects oriented version.

Index Terms—Embedded systems, Feared scenarios extraction,
Petri nets, reliability, Dynamic systems.

I. INTRODUCTION

The growing complexity of embedded systems [1], includ-

ing more and more ECU (Electronic Control Units), makes it

difficult to perform the dependability analysis of such systems.

Considering mechatronic systems in the automotive domain

and focusing on dependability analysis, one way to help

designers is to identify critical scenarios and define corrective

actions to avoid them as early as possible in the design stage.

This means that when some event affecting the safety of the

system occurs, a reconfiguration action is executed in order to

maintain the vehicle in a safe degraded state. If the reconfig-

uration fails then the system will reach a critical (dangerous)

state with dramatic consequences for the passengers. So it is

important to understand how the system reaches such critical

states at the early design stage of the system in order to set

up the reconfiguration actions.

The safety analysis [2] of dynamic embedded systems

starts with a qualitative analysis, the objective of which is

to determine the catastrophic or unacceptable behavior of the

system.

For static systems the most popular approach for reliability

analysis is based on fault trees with its associated tool [3].

Static fault trees use traditional Boolean Logic functions to

represent the combination of component failures (events) that

cause system failure. One interesting aspect of fault trees is

that a set of minimal cutsets [4] can be derived. However, to

deal with the complexity of dynamic systems, fault trees are

not sufficient: safety analysis of such systems must include

timing considerations and the order of events [5].

To overcome these limitations, Dugan [6] introduces a new

type of gate in order to differentiate the static aspects from

the dynamic ones. The dynamic gates allow Markov analysis.

One drawback is that it is not possible to derive a qualitative

analysis, and moreover some produced feared scenarios can

lead to non-permanent feared states.

Simulation is another popular method, in particular the

Monte-Carlo simulation [7]. Good results can be obtained

when simulation is applied. Nevertheless, when used for de-

pendability analysis simulation methods have to deal with the

so-called ”rare events problem”.

Other methods based on the exploration of the state graph,

like the Markov graph or the Petri net accessibility graph[8],

are limited by the problem of state space explosion.

So, to achieve the qualitative analysis we propose an

approach focused on the search for critical scenarios in order

to propose a way to avoid the problem of state space explosion.

The basic idea is to use a Petri net model and directly extract

the critical scenarios without building the accessibility graph.

Linear logic [9], [10] offers a formal framework to interpret

the Petri net model and to extract the scenarios. The key point

of this approach is equivalence between reachability in the

Petri net and linear logic sequent provability [11]. Linear logic

thus makes it possible to analyze these cause-effect relations.

To model Embedded systems, temporal Petri nets are used.

They allow to model some continuous aspects of these sys-

tems. This modelling approach has the advantage of clearly

separating the continuous aspects (time modelling) from the

discrete ones. It allows a logical analysis using linear logic

based on the causality of events leading to a critical state.

Starting from a critical state, it is possible to go back

through the chain of causalities and to point out only those

scenarios leading to a critical situation. Each scenario is a

978-1-4244-2794-9/09/$25.00 c© 2009 IEEE SMC 2009

representation of the partial order of events necessary for

the occurrence of the critical outcome. The final objective

is to determine minimal scenarios. Indeed, a critical scenario

can contain events (the consequence of other events of the

scenario) which are not strictly necessary to reach the final

critical state. Such a scenario is not minimal. To deal with

the concept of minimality of a scenario we introduce a formal

definition of a minimal scenario. This definition has been used

in our algorithm to derive automatically critical scenarios, but

only the minimal ones. Another application of the proposed

approach is the verification of behavioral properties like safety.

This paper is organized as follows: section 2 presents briefly

the deriving scenarios extraction approach. Section 3 describes

ESA PetriNet tool. In section 4 an example illustrates the

capabilities of the tool. Finally, section 5 draws a number of

conclusions and future work.

II. SCENARIO EXTRACTION APPROACH

A. Critical scenario

Critical scenario is a set of events (transition firings for a

Petri net model) verifying a partial order and leading from

one partial state corresponding to normal behavior (partial

marking) to another one that represents a dangerous situation

of the system.

In this part we present briefly the approach for deriving

critical scenarios for dynamic reliability analysis.

B. System modelling

The system modelling is based on Petri net [12] using or

not the object-oriented concepts [13], [14]. Object oriented

approach can be used to facilitate the modelling and analysis

of complex systems.

There are several proposals incorporating the notion of time

into different components of the Petri net framework, namely

tokens, transitions, places, and arcs [15]. In this work we

use a temporal Petri net where the durations are associated

with transitions . Let us now give the formal definition of the

temporal Petri nets.

Definition [temporal Petri net]: A Temporal Petri net

is a pair Ntl =< N, D > where N is a Petri net

< P, T, Pre, Post > and D is a function that associates

to each transition ti a static temporal interval d(ti) =
[dimin(ti), dimax(ti)] that describes the enabling duration.

C. Principles of the approach

The method is based on a qualitative analysis stemming

from the Petri net model. The objective is to extract and

clearly identify the critical scenarios (leading from one partial

state corresponding to normal behavior to another one that

represents a dangerous situation of the system) starting from

a model that contains the necessary knowledge to make the

analysis. The initial partial knowledge of the critical state is

progressively enriched while analyzing the components neces-

sary to its occurrence. This method is made up of two steps:

a backward and a forward reasoning process. The backward

reasoning starts from the partial critical state in order to derive

the events that are necessary to reach it, and gives the last

nominal states preceding the critical behavior. The forward

reasoning starts from these nominal states, and determines the

components at the source of the critical scenario. To determine

the complete context in which the critical scenario occurs,

the concept of context enrichment is introduced. The context

enrichment is carried out by adding tokens to some places

(empty input places of potentially enabled transitions) that can

have an impact on the critical scenario that is being explored

(adding one token in the place p0 to make the transition t0,

initially potentially enabled, enabled in the example of the

Figure 1)).

�

Fig. 1. Marking enrichment

D. Principles of scenario extraction algorithm

The deriving scenarios algorithm (both backward and for-

ward reasoning) [13] can be considered as a Petri net player,

but not classical Petri net player (occurrence graph). It is a

player based on linear logic that guides the construction of the

partial orders between events [9].

E. Steps of the method

1) Determining the nominal states

2) Determining the target states (partial critical states or

states to be analyzed).

3) Backward reasoning starting from the partial critical

state.

4) Forward reasoning starting from the objects that contain

the conditioning state.

1) The first step is to determine the places that, when

marked, represent a normal operation state. These ’nominal’

places will be used as ”stop criteria” for backward reasoning.

This step can be achieved in two ways: by using a priori

knowledge of the normal operation states of the system, or by

a Monte Carlo simulation of the model (in a short temporal

window) in order to determine the marking probabilities of the

places of the Petri net. The places that will have a significant

marking probability will be considered as nominal places.

2) The second step determines the target states to be ana-

lyzed. This target states can be either a partial critical state or

another partial state with a direct or indirect link to the critical

state (for example a place that represents the availability of a

SMC 2009

resource that allows operating even with presence of a fault,

and avoids the occurrence of the critical event).

3) Backward reasoning: The aim of this step is to determine

the ”conditioning states” that correspond to the last normal

operation state of the system. It generates the sets of paths

that lead to the partial critical state. Backward reasoning is

carried out on the reversed Petri net model. In this reversed

Petri net, the initial marking corresponds to each minimal

Cutset of the Boolean function that represents a critical state.

We search for all the minimal scenarios (only the necessary

transitions are fired) that lead from the initial marking to a

final marking, containing only places that are associated with

normal operation. During this step, starting from the initial

context that concerns one or more objects, in most cases we

have to enrich the initial context.

4) Forward reasoning: This step is carried out on the initial

Petri net with the ’conditioning states’ as initial marking. The

goal is to determine the reachability of the critical state and

to identify the scenarios that lead to it, or to prove that the

critical state will never be reached. It aims also to identify

the bifurcations between the normal behavior and the critical

one and also to set the conditions (marking of some places

and introduced objects) associated to these bifurcations. The

analysis of these bifurcations (that correspond to transitions)

gives information about the occurrence of events which are the

causes of the critical state.

III. TOOL PRESENTATION

A. Objectives of ESA PetriNet tool

ESA PetriNet (Figure 2) implements the deriving critical

scenarios algorithm. It allows to generate critical scenarios

leading the system from normal working to critical situation.

For designers the interesting scenarios are minimal ones.

Minimal scenario [16] means that it contains only necessary

events to reach one marking from another one. So minimality

analysis [16] is implemented in to ESA PetriNet. It allows to

derive only consistent scenarios.

Another functionality of ESA PetriNet is the verification

of behavior properties. Indeed, it is possible to prove that one

scenario respects some temporal constraints. In this paper the

approach for verification is not presented. The principles of

the approach can be found in [17].

B. Input files

1) Petri net models and structural analysis: The input files

of the tool correspond to a textual description of the temporal

Petri net model of the system. To edit these files, the tool TINA

(TIme Petri Net Analyzer) [18], [19](Figure 3) is used. The

definitions of the nominal states and the target states (referring

to step 1 and 2 of the method) are also done in these files,

through the labels associated to the places of the Petri nets.

The Petri net models can be modified directly from

ESA PetriNet by editing TINA files in their textual or graph-

ical description.

More specifically, the input files corresponding to the textual

description of the Petri nets are the result files of the structural

�

Fig. 2. ESA PetriNet Screen snapshot

analysis (Figure 5) offered by TINA. These files are used

because they contain both the descriptions of the Petri nets

and the marking invariants necessary for marking enrichments.

Indeed, marking enrichments are carried out during the feared

scenario research algorithm, but they are not always possible.

And to preserve the system consistency, that’s the marking

invariants which determine if the marking enrichments are

possible or not.

2) Communication file: For the object oriented approach,

each object is modelled by one Petri net and the communica-

tion between objects is specified. Figure 4 shows communica-

tions between objects of the case study. It will be commented

later.

C. output files

1) Result File: The single output file provided by an

analysis with ESA PetriNet is the result file. It contains a

textual description of the generated feared scenarios.

But a common way to represent scenarios is in the form

of graphs, because they clearly show the sequence of events,

partial orders and the parallelism between some events. Indeed,

a precedence graph is a directed acyclic graph defined by

a set of events (those of the scenario) and a precedence

relationship that corresponds to the partial order of the scenario

created by the various links between the events. Consequently,

ESA PetriNet offers the possibility to display the scenarios in

the forme of precedence graphs starting from the result file by

clicking on the ”Precedence Graphs” button.

D. User interface

In order to obtain the critical scenarios with ESA PetriNet,

we must indicate some files through the user interface (Fig-

ure 2). Firstly, all the Petri net objects that we need must

be given to the software. Each Petri net that models one

SMC 2009

�

�

Fig. 3. TINA snapshot

�

Fig. 4. Communication file

object is specified. We have already seen that these files are

created and obtained with another tool: TINA. Next, we must

define a communication file in order to keep the consistency

of the model, eventually by using the editor provided with

ESA PetriNet. The last file that must be defined trough the

interface is the result file.

Once all the needed files have been specified, we run the

extraction of the critical scenarios by clicking on the dedicated

button: ”Generate Scenarios”. Finally, the precedence graphs

are displayed by using the ”Precedence Graphs” button.

E. Installation

ESA PetriNet can be downloaded from www.laas.fr/ESA.

ESA PetriNet is coded in Java language, so a Java virtual

machine is needed. Windows OS version is available. The

Linux version will be developed later.

IV. EXAMPLE AND APPLICATION

The case study (inspired from automotive industy) is based

on a volume regulation system of two tanks (Figure 6). It

consists of a computer, two pumps, three electrovalves, two

�

Fig. 5. Structural analysis results file

volume sensors, the two regulated tanks (Tank1 and Tank2)

and a third tank for draining. The two regulated tanks are

used on demand of a user. This demand is described by a

function of time. The volume of each tank must be kept inside

a given interval [Vimin, Vimax]. The volume is controlled by

the computer, which decides, according to the values given

by the volume sensors, to fill (or not) the concerned tank by

opening (or not) the electrovalve.

Tank1

EV2

V2L V1S

Computer

V2min

V2max

EV3 ds1 ds2

Sensors

EV1

Pump2
Pump1

V1max

V1min

V2S V1L

Tank2

Fig. 6. Case study

The control strategy of the computer is such that the

electrovalve is closed whenever the volume of the controlled

tank exceeds the upper limit Vimax (in the conjunction phase).

On the other hand, the computer commands the opening of

the electrovalve each time the value of the volume in the

controlled tank is lower than the limit Vimin (in the disjunction

SMC 2009

phase). We distinguish two normal phases of the system,

corresponding to the state of the electrovalve:

• A conjunction phase when the electrovalve is open. The

volume in the tank is increasing during this phase, no

matter what is the value of the outgoing flow to the user

(the ingoing flow to the electrovalve is much higher than

the outgoing flow).

• A disjunction phase when the electrovalve is closed. The

volume in the tank is decreasing during this phase.

This system must supply the user while avoiding the

overflow of the tanks. A relief electrovalve is added to the

system in order to drain the tanks in case of overflow. This

third electrovalve is viewed as a shared resource between the

two main tanks, and it can be used for only one tank at a

time. When the volume of one tank exceeds the high security

limit (ViL), the computer commands the opening of the relief

electrovalve. As we focus our study on critical scenarios,

and in order to simplify the problem we consider that only

the electrovalves can have failures. A typical failure of the

electrovalves one and two corresponds to a stuck open (or

closed) state in which the electrovalve does not react to a

closure (or opening) command of the computer. These two

electrovalves can be repaired after failure occurrence. When

the electrovalve 3 has a failure it is definitively out of service.

A. Modelling

We propose 3 object classes for the modelling of this

system: one tank class and two electrovalve classes. We define

two objects (tank1 and tank2) instances of tank class, two

objects (EV1 and EV2 electrovalves) instances of the first

electrovalve class and one object (relief electrovalve) instance

of the third class. In order to deal with the continuous aspects

of the system, the volume thresholds (Vimin, Vimax, ViL, Vis)

that correspond to the enabling functions of the Differential

Predicate Transition Petri Nets are replaced by temporal thresh-

olds (Timin, Timax, TiL, Tis). These temporal thresholds are

obtained by temporal abstraction of the continuous dynamic

associated to places Vi cr and Vi dec.

1) Model of the tanks: (Figure 3) shows the model of Tank1

(the model of the tank2 is identical). Place V1 dec represents

the disjunction phase (the volume is decreasing), and the place

V1 cr represents the conjunction phase in which the volume

is increasing. When the volume exceeds V1max (temporal

interval [1,1]) the tank calls a ’close electrovalve 1’ method

(associated with transition T11) provided by the electrovalve

EV1. The method ’Open electrovalve 1’ (associated with tran-

sition T12) is called by the Tank1 when the volume becomes

lower than V1min (interval [1,1]). When the volume in the

Tank1 exceeds the high security limit V1L (interval [2,2]),

the ’open electrovalve 3’ method (transition T14) provided by

the relief electrovalve is called in order to drain Tank1. This

phase lasts the time necessary for the volume to reach the low

threshold V1min. A conjunction phase is started again (place

V1 cr is marked) by firing transition T15.

There is overflow on the Tank1, when the volume in this

tank exceeds V1S (V1S reached in the interval [3,3] is higher

than V1max and V1L). In this case, transition T13 is fired and

place E red1 is marked. The firing of T13 is considered as the

critical event.
2) Model of the electrovalve 1 (EV1): The electrovalve 1

(EV1) when opened supplies the Tank1 in the conjunction

phase (Figure 7).

�

Fig. 7. Petri net model of the electrovalve 1

The EV1 is closed (firing of transition t11) when the Tank1

calls the ’close electrovalve 1’ method. The transition t12

represents the opening of the electrovalve. The two methods

provided by the EV1 ensure that the volume in the Tank1 is

kept inside a given interval [V1min, V1max].
The failures of the electrovalve are represented by the

transitions Def1 O (stuck open) or Def1 F (stuck closed). The

transitions Rep1 O and Rep1 F represent the repair of the

electrovalve. Duration is associated with the firing of these

transitions.
3) Model of the relief electrovalve 3: The relief elec-

trovalve is shared between the two tanks and its model is

presented in (Figure 8). The place EV3 OK represents the

availability of the valve. The transition t14 (respectively t24)

is the ’open electrovalve 3’ provided method that can be called

by the Tank1 (respectively Tank2) when the volume exceeds

V1L (respectively V2L). The electrovalve 3 can fail (firing of

the transition def3). In this case, place EV3 HS is marked and

the electrovalve is out of order.

�

Fig. 8. Petri net model of the relief electrovalve.

Remark:

1) We can see in figure 4 (textual file which represents the

communications between objects). For example, the transition

T11 of the tank1 calls the transition t11 of the electrovalve 1.

SMC 2009

2) In figure 5 we can see the results of the structural

analysis. For example, for the object tank1, there is a P-

invariant that corresponds to the places : E red1 V1 cr V1 dec

V1 dec s. So when one of these places is marked, it is not

possible to enrich the other places.

B. Application of the method and results

ESA PetriNet tool derives 2 minimal critical scenarios

(Figure 9) leading to the critical state E red1 (overflow of

the tank1).

The first scenario is composed by the events: failure of

electrovalve 1, failure of the relief electrovalve (EV3), followed

by the overflow of tank1 (figure 9).

The second scenario is composed by the events: failure of

electrovalve 1 and failure of electrovalve 2, the use of the relief

electrovalve (EV3) to drain tank2, followed by the overflow of

tank1.

Fig. 9. Generated scenarios

V. CONCLUSION

In this paper we presented ESA PetriNet tool that imple-

ments our algorithm for deriving critical scenario in embedded

systems.

System modelling is based on temporal Petri net. The

objects oriented approach allows to facilitate system modelling

and scenario analysis.

Another important aspect is the minimality of derived

scenarios. The tool allows generating only pertinent scenarios.

It takes into account the notion of minimal scenario [16]

which is the relevant information for designers and facilitates

analysis.

In order to deal with complex dynamic (hybrid systems)

and overcome the limitation of temporal abstraction (used

for continuous dynamic approximation), future works will

introduce the possibility of integrating complex differential

equation (one way is to connect the tool to a dynamic solver).

Another extension we have to work on is the quantitative

analysis. Monte Carlo simulation appears as the technique

that will be used to achieve quantitative analysis and will be

implemented in ESA PetriNet.

Current software development concerns improving the in-

terface tool specially its English version. An English web site

will be dedicated for it.

REFERENCES

[1] Thomas A. Henzinger and Joseph Sifakis. The embedded systems design
challenge. Proceedings of the 14th International Symposium on Formal
Methods (FM), Lecture Notes in Computer Science 4085, Springer, 2006,
pp. 1-15.

[2] F. Dufour, Y. Dutuit, ”Dynamic Reliability: A new model”, 13-
ESREL2002 European Conference, Lyon - France - 18 au 21 Mars 2002.

[3] M. Sinnamon and J. D. Andrews, ”Fault trees and binary decision
diagrams,” Proceedings of the Annual Reliability and Maintainability
Symposium, 1996, pp. 215-222.

[4] A. Rauzy. Mathematical Foundation of Minimal Cutsets. IEEE Transac-
tions on Reliability, 50(4):389-396, december 2001.

[5] Chris J. GARRET, Sergio B. Guarro, George E. APOSTOLAKIS, ”The
Dynamic Flowgraph Methodology for Assessing the Dependability of
Embedded Software Systems”, IEEE Transactions On Systems, Man, and
Cybernetics, Vol. 25, No. 5, May 1995.

[6] J.B Dugan, T. Assaf, ” Diagnostic expert systems from dynamic fault
tree”, In Annual Reliability and Maintainability Symposium 2004 Pro-
ceedings, LA, January 2004.

[7] P.E. Labeau: ”A Survey on Monte Carlo Estimation of Small Failure
Risks in Dynamic Reliability”. In International Journal of Electronics and
Communications, Vol. 52, pp. 205-211, 1998.

[8] D. Codetta-Raiteri1 and A. Bobbio. Stochastic Petri Nets Supporting
Dynamic Reliability EvaluationStochastic Petri Nets Supporting Dynamic
Reliability Evaluation. International Journal of Materials and Structural
Reliability Vol.4, No.1, March 2006, 65-77.

[9] H. Demmou, S. Khalfaoui, N. Riviere, E. Guilhem,“A method for deriving
critical scenarios from mechatronic systems”, Journal Europeen des

Systemes Automatises, volume 36 - n7/2002. pages 987 999.
[10] J.Y Girard, ”Linear Logic ”, Theoretical Computer Science, 50, 1987,

p.1-102.
[11] B. Pradin-Chzalviel, R. Valette, L.A. Knzle: ”Scenario duration charac-

terization of t-timed Petri nets using linear logic”, IEEE PNPM’99, 8th
International Workshop on Petri Nets and Performance Models, Zaragoza,
Spain, September 6-10, 1999, p.208-217.

[12] T. Murata, ”Petri Nets: Properties, Analysis and Applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[13] N.Sadou, H.Demmou, J.C.Pascal, R.Valette, “Object oriented approach
for deriving feared scenarios in hybrid system,” 2005 European Simulation

and Modeling Conference, Portugal, 24-26 Octobre 2005, pp.572-578.
[14] Booch, G., et al, (1998). ”The Unified Modelling Language User Guide”.

Addison-Wesley Longman, Inc. Harlow, England
[15] C. Ghezzi, D. Mandrioli, S . Morasca, P. Mauro. A General Way to Put

Time into Petri Nets. ACM SIGSOFT Engineering Notes, 14(3)-60-67,
Pittsburgh, Pennsylvania, 1989.

[16] N. Sadou, H. Demmou, “Minimality of critical scenarios in Petri
net model,” 2006 IEEE International Conference on Systems Man and

Cybernetics (SMC’06), Taipei (Taiwan), 8-11 October 2006, 8p.
[17] N. riviere, H.demmou, R. valette, M.medjoudj. Symbolic temporal

constraint analysis, an approach for verifying hybrid systems. 16th IFAC
World Congress, Prague, 3-8 Juillet 2005, 6p.

[18] TINA: http://www.laas.fr/tina/.
[19] B. Berthomieu, F. Vernadat, “Time Petri Nets Analysis with TINA,” In

Proceedings of 3rd Int. Conf. on The Quantitative Evaluation of Systems

(QEST 2006), IEEE Computer Society, 2006.

SMC 2009

