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Full Paper — A first step towards the design of dual-circularly 

polarised reflectarrays with independent control of both 

polarisations is proposed in X-band. A reconfigurable unit-cell 

based on a circularly- polarised selective surface is 

studied at 8.5 GHz. It provides a 2-bit phase resolution in 

reflection for the left hand circular polarisation (LHCP) and is 

nearly transparent in right hand circular polarisation (RHCP). 

The simulated characteristics are excellent over a 6.4% 

bandwidth. The proposed unit-cell is fabricated using stacked 

substrates. A loss budget demonstrates that loss is quite 

balanced between loss in materials and polarisation 

conversion. Then, a study of the effect of realistic switches is 

shown in order to demonstrate that conventional p.i.n. diodes 

would cause an acceptable loss increase. 

Keywords- Circular polarisation selective surface; Unit-cell; 

Reflectarray. 

I. INTRODUCTION 

Reconfigurable reflectarrays are very attractive for beam 
scanning or beam-shaping in space applications. In order to 
prevent from loss due to polarisation misalignment and 
increase the data rate transmission, circular polarisation (CP) 
is usually preferred. Several circularly-polarised unit-cells 
have been proposed in the literature [1], [2], but they only 
operate with one single CP wave. Reconfigurable unit-cells 
with independent control of the reflected phases in both 
circular polarisations are still required in order to increase the 
data-rates. 

In this paper, we propose to use a unit-cell based on a 
circular polarisation selective surface (CPSS) in order to 
provide a dual-circular polarisation operation. Fig. 1 
illustrates the operation principle of the proposed two-layer 
structure. The upper layer is a CPSS reflecting LHCP with a 
controllable reflection phase, while RHCP is transmitted to 
the second layer that reflects it with an independent 
controllable reflection phase shift. This second layer operates 
in single polarisation and only requires standard CP unit-
cells as for instance [3]. This paper deals with the first layer 
only. The objectives are to achieve a high isolation between 
the two incident circular polarisations and a 2-bit phase 
resolution of the reflected LHCP polarisation. Moreover, the 

loss budget is studied in order to assess the respective impact 
of polarisation conversion and dissipation in materials. It is 
then extended to account for loss in switches controlling the 
reflected phase, as a first evolution towards an active cell. 

 
Figure. 1. Schematic representation of a reflectarray with independent 

control of both incident circular polarisations. 

II. DESCRIPTION OF THE UNIT-CELL 

The basic configuration of the chosen Left-Handed CPSS 
(LH-CPSS) cell (Fig. 2) is derived from [4]. It consists of a 
1λ-long resonant wire, folded into 3 segments in a crank-like 
shape. The transverse segments (3λ/8 long) are connected by 
a λ/4 long longitudinal segment; this ensures that the currents 
induced on the transverse segments (by an impinging wave 
under normal incidence) are in phase or out of phase, 
depending of the hand of the incident CP wave. 

Fig. 2 represents a typical printed implementation (using 
the stacked substrate defined in [5]) of the resonant crank. In 
the following, this configuration is referred to as “state 1”. It 
is well known that the reflected phase of a CP wave can be 
tuned by varying the angular rotation of the reflecting 
element [6]. Consequently, different reflected phase values 
can be obtained by introducing several cranks in the same 
unit-cell with an appropriate rotation angle. So, to achieve 
four different LHCP reflected phases (namely a 2-bit phase 
resolution), four different sets of horizontal segments are 
used. Only one of them is enabled at a time by connecting 
the three segments forming the resonant crank. The 
optimised proposed unit-cell in state 1 is represented in Fig. 
3. The active crank is represented in red, while the three 
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passive ones are shown in blue. As can be seen, in this 
figure, small gaps are accommodated along the horizontal 
segments. As a consequence, in a future active version of the 
cell, switches could be used to connect or disconnect the 
different metallic parts forming a resonant crank.  In this 
paper, only frozen states are considered which means ideal 
short and open circuits replace the switches. The final design 
does not only rely on a rotation of the crank; the size and 
shape of the different segments have also been optimised in 
order to comply with both the technological constraints 
(available surface allocated to the cell, square grid, etc.) and 
foreseen objective (four possible phase states with uniform-
distribution in the [0,360°] range at 8.5 GHz). Phase states 2 
to 4, corresponding respectively to a rotation of the activated 
crank by +135, -90 and -45 degrees are shown in Fig .4 to 6. 
For states 2 and 4, the transverse segments of the resonant 
crank are meandered to accommodate them in the square 
unit-cell. The length of the different segments is tuned so that 
all cranks resonate at the same frequency (8.5 GHz). 

     
Figure. 2. Basic LH-CPSS. 

 

 
Figure. 3. Optimised proposed cell with crank 1 activated: a=22.88mm, 

w=1mm, h=8.49mm, g=1mm, L=12.1mm, ϕd=0.8mm. 

 
Figure. 4. Optimised proposed cell with crank 2 activated 

 
Figure. 5. Optimised proposed cell with crank 3 activated 

 

 
Figure. 6. Optimised proposed cell with crank 4 activated 

 

III. PERFORMANCES OF THE UNIT-CELL 

The frequency response of the unit-cell has been 
computed using Ansys HFSS ©. In the simulations, we 
assume that the cell is suspended in a square metallic 
waveguide with wave ports at both ends. Figs. 7 and 8 
represent the simulated performances for the four possible 
phase states. 

 
(a) 

 
(b) 

Figure. 7. Reflection coefficient for an incident LHCP wave for the four 
activated crank of the cell. (a) Magnitude. (b) Phase. 



 
   (a) 

     
(b) 

Figure. 8. Transmission coefficient for an incident RHCP wave for the four 
activated crank of the cell. (a) Magnitude. (b) Phase. 

Fig. 7a shows that the loss for the reflected LHCP is 
lower than 1 dB on the [8.2-8.75] GHz range. At the same 
time, as shown in Fig. 8a, for the four phase-sates (in 
LHCP), the RHCP incident wave is transmitted through the 
LH-CPSS with insertion loss lower than 1 dB over a 0.55-
GHz range (6.4%). The reflection phase responses in LHCP 
and the transmission phase responses in RHCP between 8.2 
and 8.8 GHz are plotted in Figs. 7b and 8b respectively. The 
reflection coefficient in LHCP shows excellent 
performances: four 90°-spaced phase configurations are 
obtained with almost the same frequency dispersion. 
Moreover, the RHCP wave is transmitted with a nearly 
constant phase whatever the resonant crank activated.  

IV. LOSS BUDGET 

A. Loss of the unit-cell in frozen states 

In this section, the different possible causes of loss in the 

cell are investigated. Figs. 9 a and b represent the magnitude 

of the reflection and transmission coefficients for a LHCP 

and RHCP incident wave respectively. The cell is in state 1. 

Two different configurations are considered: in the first one 

(dashed lines), substrates and metallic segments are lossless; 

in the second one (continues lines), the characteristics of the 

actual materials are used: two thin layers (0.127mm-thick) 

of dielectric substrate (RT/duroid 6002, Ɛr =2.94, 

tanδ=0.0012) separated by an 8mm-thick dielectric spacer 

(foam Rohacell 51HF, Ɛr =1.06, tanδ=0.0015) and glued by 

a 0.1mm-thick bonding film. Two conclusions can be 

drawn: i) loss in the materials is globally small, ii) the effect 

is however more pronounced for LHCP reflection. This is 

due to the resonance of the crank (only obtained for LHCP 

excitation) which increases the loss in materials. Note that 

neglecting the loss in the metallic segments (not shown) 

leaves the results unchanged, which means dielectric loss is 

prominent. A complete loss budget at the central frequency 

is given in Table I for the most critical configurations 

(LHCP incident wave). At the central frequency, the loss in 

the materials (0.075dB) is comparable to the loss due to 

polarisation conversion (ΓR-L=0.035dB in reflection and     

TR-L=0.038dB in transmission) and the loss due to power 

leakage of the LHCP wave through the LH-CPSS cell 

(0.066dB). 

     
   (a) 

 
(b) 

Figure. 9. Performance of the optimised LH-CPSS (in State 1) with or 
without consideration of the dielectric losses. (a) LHCP reflection 

coefficient. (b) RHCP transmission coefficient  

TABLE I 

LOSS BUDGET OF THE UNIT-CELL IN FROZEN STATES 

 ΓL-L ΓR-L TL-L TR-L √(1-(ΓL-L²+ΓR-L²+TL-L²+TR-L²)) 

Magnitude 

(linear) 

0.975 0.09 0.123 0.094 0.131 

Associated 

loss (dB) 

 0.035 0.066 0.038 0.075 

 

B. Losses caused by the series resistances of ON-switches 

In the previous sections, the studied unit-cell only 

involved frozen states. As a preliminary step towards the 

final reconfigurable cell, the additional loss due to the 

integration of realistic p.i.n. diode switches is now 

addressed. To do so, ideal short-circuits are replaced by 

series resistances Rs accounting for the parasitic resistance 

of the diode in the ON-state. Note that four resistances are 



necessary for the activated crank. In this study, we do not 

account for the effect of OFF-switches. Indeed, these 

switches will mainly act as a capacitive loading and this 

reactive effect could be compensated by a re-optimisation of 

the dimension of the metallic segments. Nevertheless, the 

impact on loss should be negligible. Fig. 10 shows the top 

view of the unit-cell in state 1 with the series resistance Rs 

replacing the ideal short-circuits. Fig. 11 presents the 

magnitude of reflection and transmission coefficients for 

different values of the resistance. 

 
Figure. 10. Top view of the optimised unit-cell in State 1 with the series 

resistance Rs 

   
   (a) 

 
(b) 

Figure. 11. Performances of the optimised LH-CPSS (in State 1) versus the 
values of the series resistance of the four ON-switches. (a) LHCP reflection 

coefficient. (b) RHCP transmission coefficient  

 

 

Figure. 12. Additional losses of the LHCP reflection coefficient at 8.5 GHz 
versus to the values of the serial resistance of the four ON-switches. 

As previously, the effect is more significant for the 
reflection of a LHCP incident wave. Fig. 12 plots the 
additional loss versus the resistance value at 8.5 GHz. For a 
typical value of 2 Ω, it is about 0.6 dB. 

V. CONCLUSION 

A new design of CPSS unit-cell has been proposed for 

dual circularly-polarised reflectarray applications. It 

provides a nearly 2-bit phase resolution in reflection for the 

left hand circular polarisation (LHCP) and is almost 

transparent in right hand circular polarisation (RHCP). 

Furthermore, the insertion loss for the reflected LHCP and 

transmitted RHCP is lower than 1 dB over the [8.2-8.75] 

GHz range. A loss budget demonstrates that loss is balanced 

between loss in materials, polarisation conversion and 

power leakage through the reflecting structure. A 

preliminary study of the effect of realistic switches shows 

that conventional p.i.n. diodes would cause an acceptable 

0.6 dB loss increase. 
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